
Constraint qualifications for nonlinear programming

Consider the standard nonlinear program

min f (x)
s.t. gi(x) ≥ 0 ∀i = 1, . . . ,m,

h j(x) = 0 ∀1 = 1, . . . , p,
(NLP)

with continuously differentiable functions f , gi, h j : Rn → R. The feasible set of (NLP) will
be denoted by Ω, i.e.,

Ω := {x ∈ Rn | gi(x) ≤ 0 (i = 1, . . . ,m), h j(x) = 0 ( j = 1, . . . , p)}.

For a feasible point x̄ ∈ Ω, the so-called tangent cone for (NLP) at x̄ is just the tangent cone of
Ω at x̄, i.e.,

T (x̄) = TΩ(x̄) :=
{
d

∣∣∣ ∃ {xk} ⊂ Ω, {tk} ↓ 0 : xk → x̄ and
xk − x̄

tk
→ d

}
= {d | ∃{dk} → d, {tk} ↓ 0 : x̄ + tkdk ∈ Ω ∀k},

and the linearized cone for (NLP) at x̄ is

L(x̄) :=
{
d

∣∣∣ ∇gi(x̄)T d ≤ 0 (i : gi(x̄) = 0),
∇h j(x̄)T d = 0 ( j = 1, . . . , p)

}
.

Note that both the tangent and the linearized cone are in fact closed cones and the latter is
obviously polyhedral convex, where this is not necessarily true for the tangent cone. In addition
to that, it is easy to see that the inclusion

T (x̄) ⊂ L(x̄) (1)

holds for all x̄ ∈ Ω.
The condition that equality holds in (1) is known as the Abadie constraint qualification (ACQ),

which we formally state in the following definition:

Definition 1 (ACQ) Let x̄ be feasible for (NLP). We say that the Abadie constraint qualification
holds at x̄ (and write ACQ(x̄)) if

T (x̄) = L(x̄).

ACQ plays a key role for establishing necessary optimality conditions for (NLP), due to the
well-known Karush-Kuhn-Tucker theorem, see [1, Theorem 5.1.3].

Theorem 2 (KKT conditions) Let x̄ be a local minimizer of (NLP) such that ACQ(x̄). Then
there exist multipliers λ ∈ Rm and µ ∈ Rp such that

0 = ∇ f (x̄) +

m∑
i=1

λi∇gi(x̄) +

p∑
j=1

µ j∇h j(x̄) (2)

and
λi ≥ 0, λigi(x̄) = 0 (i = 1, . . . ,m). (3)
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In fact, the same result could be established under the following weaker condition:

Definition 3 (GCQ) Let x̄ be feasible for (NLP). We say that the Guignard constraint qualifica-
tion (GCQ) holds at x̄ (and write GCQ(x̄)) if

T (x̄)◦ = L(x̄)◦,

i.e., if the polar1 of the tangent equals the polar of the linearized cone.

In general, we call a property of the feasible set a constraint qualification if it guarantees the
KKT conditions to hold at a local minimizer.

GCQ is, in a sense, see [2], the weakest constraint qualification, and, as the following example
shows, may be strictly weaker than ACQ.

Example 4 Consider
min x2

1 + x2
2 s.t. x1, x2 ≥ 0, x1x2 = 0. (4)

The global minimizer is x̄ = (0, 0)T . We compute that

T (x̄) = {d | d1, d2 ≥ 0, d1d2 = 0} ( {d | d1, d2 ≥ 0} = L(x̄).

L(x̄)◦ = T (x̄)◦

L(x̄)T (x̄)

x1

x2

Figure 1: Tangent cone, linearized cone and their polars for (4) at x̄

Hence, ACQ is violated at x̄. On the other hand we have

T (x̄)◦ = {v | v1, v2 ≤ 0} = L(x̄)◦,

and hence GCQ is satsified at x̄. Note, however, that ACQ (and hence GCQ) is satisfied at any
other feasible point of (4).

1For a cone C ⊆ Rn its polar is given by C◦ := {v | vT d ≤ 0 ∀d ∈ C}
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ACQ and thus GCQ are considered to be pretty mild assumptions, which have a good chance
to be statisfied. On the other hand they are hard to check, since the tangent cone may be hard
to compute. Furthermore, they are, in general, not strong enough to guarantee convergence of
possible algorithms for solving (NLP).

For these purposes the following two constraint qualifications are most useful.

Definition 5 Let x̄ be feasible for (NLP) and put I(x̄) := {i | gi(x̄) = 0}. We say that

a) the linear independence constraint qualification (LICQ) holds at x̄ (and write LICQ(x̄)) if
the gradients

∇gi(x̄) (i ∈ I(x̄)), ∇h j(x̄) ( j = 1, . . . , p)

are linearly independent.

b) the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x̄ (and write MFCQ(x̄))
if the gradients

∇h j(x̄) ( j = 1, . . . , p)

are linearly independent and there exists a vector d ∈ Rn such that

∇gi(x̄)T d < 0 (i ∈ I(x̄)), ∇h j(x̄)T d = 0 ( j = 1, . . . , p).

Note that LICQ and MFCQ are violated at any feasible point of the nonlinear program from
Example 4.
In order to establish our main theorem on the relation of the constraint qualifications introduced
above, we need the following auxiliary result.

Lemma 6 Let x̄ ∈ Ω such that MFCQ is satsified at x̄. Then there exists ε > 0 and a C1-curve
x : (−ε, ε)→ Rn such that x(t) ∈ Ω for all t ∈ [0, ε), x(0) = x̄ and x′(0) = d.

Proof. Define H : Rp+1 → Rp by

Hi(y, t) = hi(x̄ + td + h′(x̄)T y) ∀ j = 1, . . . , p,

where h′(x̄) denotes the Jacobian of h at x̄. The nonlinear equation H(y, t) = 0 has the solution(ȳ, t̄) =

(0, 0) with
H′y(0, 0) = h′(x̄)h′(x̄)T

and the latter matrix is non-singular (even positive definite) due to the linear independence of the
vectors ∇h j(x̄) ( j = 1, . . . , p). The implicit function theorem yields a C1-function y : (−ε, ε) →
Rp such that y(0) = 0, H(y(t), t) = 0 and

y′(t) = −H′y(y(t), t)−1H′t (y(t), t)

for all t ∈ (−ε, ε). Hence, we have

y′(0) = −H′y(0, 0)−1H′t (0, 0) = −H′y(0, 0)−1h′(x̄)d = 0.
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Now, put x(t) = x̄+td+h′(x̄)T y(t) for all t ∈ (−ε, ε). Reducing ε if necessary, x : (−ε, ε)→ Rn has
all desired properties: Obviously, x ∈ C1, x(0) = x̄, x′(0) = d and hi(x(t)) = 0 for all t ∈ (−ε, ε).
Moreover, by continuity we have gi(x(t)) < 0 for all i < I(x̄) and |t| sufficiently small. For i ∈ I(x̄)
we have gi(x(0)) = gi(x̄) = 0 and

d
dt

gi(x(0)) = ∇gi(x̄)T d < 0

and hence gi(x(t)) < 0 for all t > 0 sufficiently small. �

Theorem 7 Let x̄ be feasible for (NLP). Then the following implications hold:

LICQ(x̄) =⇒ MFCQ(x̄) =⇒ ACQ(x̄) =⇒ GCQ(x̄). (5)

Proof. LICQ(x̄) =⇒ MFCQ(x̄): Obviously, the vectors ∇h j(x̄) ( j = 1, . . . , p) are linear indepen-
dent. It remains to find a suitable vector d: For these purposes, consider the matrix(

∇gi(x̄)T (i ∈ I(x̄))
∇h j(x̄)T ( j = 1, . . . , p)

)
∈ R(|I(x̄)|+p)×n,

which has full rank by LICQ(x̄). Hence we can add rows to obtain non-singular matrix A(x̄) ∈
Rn×n, and hence the linear equation

A(x̄)d =

(
−e
0

)
with e being the vector (in R|I(x̄)|) of all ones has a solution d̂, which fulfills the requirements for
MFCQ(x̄).

MFCQ(x̄) =⇒ ACQ(x̄): In view of (1), it suffices to show that L(x̄) ⊆ T (x̄) holds. Hence,
let d ∈ L(x̄) and d̂ given by MFCQ(x̄) such that

∇gi(x̄)T d̂ < 0 ∀i ∈ I(x̄), ∇h j(x̄)T d̂ = 0 ∀ j.

Put d(δ) := d + δd̂ for δ > 0. Then for all δ > 0 we have

∇gi(x̄)T d(δ) < 0 ∀i ∈ I(x̄), ∇hi(x̄)T d(δ) = 0 ∀i.

We claim that this implies d(δ) ∈ T (x̄) for all δ > 0: By Lemma 6 there exists a C1-curve
x : (−ε, ε) → Rn such that x(t) ∈ Ω for all t ∈ [0, ε), x(0) = x̄ and x′(0) = d(δ). For an arbitrary
sequence {tk} ↓ 0 and xk := x(tk) we hence infer that xk →X x̄ and thus

d(δ) = x′(0) = lim
k→∞

x(tk) − x̄
tk − 0

= lim
k→∞

xk − x̄
tk
∈ T (x̄).

And since T (x̄) is closed, this implies d = limδ↓0 d(δ) ∈ T (x̄).

ACQ(x̄) =⇒ GCQ(x̄): Follows immediately from the definitions.
�

We would like to point out that there is a variety of other constraint qualifications for (NLP)
occuring in the literature. A very comprehensive suryey on that topic is given by [3].
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