Hilbert Spaces

Definition. A complex inner product space (or pre-Hilbert space) is a complex vector
space X together with an inner product: a function from X x X into C (denoted by (z,y))
satisfying:

(1) Vze X) (z,z) > 0; (z,z) =0 iff z = 0.
(2) Va,B€C) (Va,y,2 € X), {ax + By, z) = alx, 2) + By, z).

(3) (Ya,y € X) (y,2) = (z,9)

Remarks.
(2) says the inner product is linear in the first variable;
(3) says the inner product is conjugate symmetric;
(2) and (3) imply (z,az + By) = &(z,x) + B{z,y), so the inner product is conjugate

symmetric in the second variable.

Definition. For z € X, let ||z|| = \/(z, z).

Cauchy-Schwarz Inequality. (Vz,y € X) |(z,y)| < ||z|| - ||y||, with equality iff z and y
are linearly dependent.

Proof. The result is obvious if (z,y) = 0. Suppose v = (z,y) # 0. Then z # 0 # y. Let
z = Ly. Then (z,2) = ﬁ(x,y) = |y] > 0. Let v = Ty W = - Then lv]] = |Jw|| =1

17l z||*
and (v,w) > 0. Since 0 < ||v — w|]? = (v,v) — 2Re{v, w) + (w,w), (v, w) < 1 (with equality

iff v = w, which happens iff  and y are lin. dep.) So [{(z,y)| = (z,2) = ||z|| - ||z]|{v, w) <
]l - Izl = [l - llyl O
Facts.

(1) (Vz e X)||z|| > 0; ||z|]| =0 iff z = 0.

(2) Vae Qe € X) |az]| = |of - ||z]|-

(3) (Va,y € X) [lz+yll < [zl + [yl

81
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(Proof of (3): ||z +yl* = llz]* + 2Re(z, y) + [|ylI* < ll=[* + 2[{z, »)[ + llyll* < ll=]]* + 2| -
lly|l + |ly||?>.) Hence ||-|| is a norm on X; called the norm induced by the inner product (-, -).

Definition. An inner product space which is complete with respect to the norm induced by
the inner product is called a Hilbert space.

Example. X = C". For z = (v1,...,7,) and y = (y1,...,y,) € C*, let (z,y) = > 7", 2,7;.

Then ||lz|| = y/>"j_; |=;|* is the {*-norm on C",

Examples of Hilbert spaces
e any finite dimensional inner product space
o = {(z1,20,3,...) 2 € C, D77, |2x|? < o0} with (z,y) =D 27, xxTk

e for any A™* C R", L?(A) with (f,g) = [, f(

Incomplete inner product space

Cla, b] with (f, g) f f(z

Cla, b] with this inner product is not complete; it is dense in L?[a, b] with this inner
product, which s complete.

Parallelogram Law. Let X be an inner product space. Then (Vz,y € X)
Iz +ylI* + llz — ylI* = 2(llz]I* + lly[I*)-

(Proof: ||z +y|P+ |z =9 = +y,v+y)+{x —y,z —y) = (z,z) + (z,9) + (y,z) +
(,9) + (z,2) — (z,9) — (¥, 2) + (v, v) = 2((z, 2) + (y,9)) = 2(||z[]* + [|[v]]*)-)

Polarization Identity. Let X be an inner product space. Then (Vz,y € X)
(e,9) = 3 (I + P ~ Iz — vl +illz + iyl — illz — iglP)
(Sketch: Expanding out the implied inner products, one shows easily that
Iz +ylI* = llz — ylI* = 4Re(z, y) and [z + iy||* — |z — iy|* = 43(z, y).)

Note: In a real inner product space, (z,y) = 1 (|lz + y||* — ||z — y||?).

Remark. In an inner product space, the inner product determines the norm. The polarization
identity shows that the norm determines the inner product. But not every norm on a vector
space X is induced by an inner product.

Theorem. Suppose (X, || -||) is a normed linear space. The norm || - || is induced by an
inner product iff the parallelogram law holds in (X, || - ||).
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Proof Sketch. (=) see above. (<) Use the polarization identity to define (-,-). Then
immediately (z,z) = ||z||?, (y,z) = (z,y), and (iz,y) = i{z,y). Use the parallelogram law
to show (x + y,2) = (z,2) + (y,z). Then show (az,y) = afz,y) successively for a € N,

%EN,aEQ,aER,andﬁnallyaEC O

Continuity of the Inner Product. Let X be an inner product space with induced norm
Il - 1|- Then (-,-): X x X — C is continuous.

Proof. Since X x X and C are metric spaces, it suffices to show sequential continuity.
Suppose z, — x and y,, — y. Then by the Schwarz inequality,

[(@n, yn) = (@) | = @ — 2, 9n) + (@ Y0 — D] < |20 — 2| - [ynll + [12]] - [|yn — 9]l = 0.
O
Orthogonality. If (z,y) = 0, we say = and y are orthogonal and write z L y. For any

subset A C X, define At = {z € X : (z,y) = 0Vy € A}. Since the inner product is linear

in the first component and continuous, At is a closed subspace. Also (span{A})t = A+,
(A)+ = AL, and (span{A})+ = AL,

2

The Pythagorean Theorem. If z,,...,2z, € X and z; L z; for j # k, HZ?leL'j
> i Il

Proof. If z L y then ||z + y||* = ||z]|* + 2Re(x,y)° = ||z||*. Apply induction. O

Convex Sets. A subset A of a vector space X is called conver if (Vz,y € A) (Vt € (0,1))
(1-tx+ty e A

Examples.

(1) Every subspace is convex.
(2) In a normed linear space, for ¢ > 0 and x € X, B(e,z) is convex.

(3) If Ais convex and x € X, then A+z ={y+x:y € A} is convex.

Theorem. Every nonempty closed convex subset A of a Hilbert space X has a unique
element of smallest norm.

Proof. Let § = inf{||z|| : = € A}. If z,y € A, then =¥ € A by convexity, and by the
parallelogram law, ||z — y||* = 2(||z|> + ||y||*) — ||z + ¥||* < 2(||=]|* + ||y||?) — 46%. Uniqueness
follows: if ||z]| = ||y|| = 0, then ||z — y||* < 46> — 46° = 0, so = y. For existence, choose
{yn}nzs C A for which [ly,|| = 6. As n,m = 00, [lyn — yml® < 2([yal* + [|ymll?) — 46* — 0,
so {yn} is Cauchy. By completeness, 3y € X for which y, — vy, and since A is closed, y € A.
Also [ly|| = lim [y, || = 0. 0

Corollary. If A is a nonempty closed convex set in a Hilbert space and x € X, then 9 a
unique closest element of A to x.

Sketch. Let z be the unique smallest element of the nonempty closed convex set A — x =
{y—x:y € A}, and let y = z + z. Then y € A is clearly the unique closest element of A to
x.
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Orthogonal Projections onto Closed Subspaces
The Projection Theorem. Let M be a closed subspace of a Hilbert space X.

(1) For each z € X, 3 unique u € M, v € M+ > 2z = u+v. (So as vector spaces,
X=Me M)

Define the operators P: X - M and Q: X — M+t by P:z+— u and Q : z — v.
(2) Ifxr € M, Pr=1z and Qz = 0; if v € M+, Px = 0 and Qz = x.

(3) P2 = P, Range(P) = M, Null Space (P) = M*+; Q? = Q, Range(Q) = M=+, Null
Space (Q) = M.

(4) P,Q € B(X,X). ||P|| = 0if M = {0}; otherwise ||P| = 1. ||Q] = 0 if M+ = {0};
otherwise ||Q|| = 1.

(5) Pz is the unique closest element of M to z, and Qx is the unique closest element of
M+ to z.

(6) P+ @ = I (obvious by the definition of P and Q).

Sketch. Given x € X, x + M is a closed convex set; define QQx to be the smallest element
of x+ M, and let Pr = x — Qx. Since Qr € v+ M, Px € M. Let z = Qx. Suppose y € M
and ||y|| = 1. Let a = (z,y). Then z —ay € z+ M, so ||z|* < ||z — ay|* = ||2]]* — a(y, 2) —
alz,y) + |a?* = ||z]|* — |@/®. So @ = 0. Thus z € M*. Since clearly M N M+ = {0}, the
uniqueness of v and v in (1) follows. (2) is obvious by uniqueness. (3) follows from (1) and

€M JEeM
(2). For z,y € X, ax+ By = (aPx+ BPy) +(aQz + BQy) , so by uniqueness
in (1), P(ax + By) = aPz + Py and Q(ax + fy) = aQzx + SQy. By the Pythagorean
Theorem, ||z||* = ||Pz|* + ||Qz]|*, so P,Q € L(X,X) and |P||,||Q] < 1. The rest of (4)
follows from (2). Fix z € X. If y € X, then ||z — y||* = ||Pz — Py||* + ||Qz — Qy||*>. If
y € M, then ||z — y||*> = ||Pz — y||* + ||Q=]|?, which is clearly min iff y = Px. If y € M+,
then [z — y||> = || Pz|]* + ||Qz — yl|?, which is clearly min iff y = Qz. O

Corollary. If M is a closed subspace of a Hilbert space X, then (M+)+ = M. In general,
for any A C X, (A1) = span{A}, which is the smallest closed subspace of X containing A,
often called the closed linear span of A.

Bounded Linear Functionals and the Riesz Representation Theo-
rem

Proposition. Let X be an inner product space, fix y € X ,and define f, : X — C by
fy(z) = (z,y). Then f, € X* and [|f,|| = |ly|

Proof. |f,(z)| = [(z,9)| < [|z]|- lyll, so f, € X* and [|fy[| <[yl Since |f,(¥)] = (v, v)| =
Iyl12- Al = Nyl So [[fll = 1yl O

Theorem. Let X be a Hilbert space.
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(1) If f € X*, then Jauniquey € X 3 f = f,, ie, 3 f(z) = (z,y)V2 € X.

(2) The map ¢ : X — X* given by ¢ : y — f, is a conjugate linear isometry of X onto
X

Proof.

(1) Iff=0lety =0 If f e X*and f # 0, then M = f~'[{0}] is a proper closed
subspace of X, so 3z € M+ 3 ||z]| = 1. Let a = f(z) and y = az. Given z € X,
u= f(z)z — f(z)z € M, s0 0 = (u,2) = f(z)(2,2) — f(2){z,2) = f(z) — (z,02) =
f(z) = (z,y), i-e., f(z) = (x,y). Uniqueness: if (x,y;) = (x,y2) Vo € X, then (letting
T=y—ya) [y — y2||2 =0, 80 Y1 = Y-

(2) follows immediately from (1), the previous proposition, and the conjugate linearity of
the inner product in the second variable.

O

Corollary. X* is a Hilbert space with the inner product (f,g) = (¥=1(f),v=1(g)) (i-e.,

{fas fy) = (2, 9))-

Proof. Clearly (f,f) >0, (f,f) = 0iff v='(f) = 0iff f = 0, and (f,g) = (g, f). Also
<a1fﬂ71 + a2f$2) = <f5¢1z1+5¢2z27 fy) = <d1$1 + Qioxg, y> = O‘1<$1: y) + O‘2<$2: y) = Ofl(fma fy) +

{ fzy, fy), 50 (-,-) is an inner product on X*. Since (fy, fy) = (y,v) = [lYlI> = 11>, (")
induces the norm on X*. Since X* is complete, it is a Hilbert space. ]

Remark. Part (1) of the Theorem above is often called [one of] the Riesz Representation
Theorem]s].

Strong convergence/Weak convergence

Let X be a Hilbert space. We say x, — x strongly if ||z, — z|| — 0 as n — oo. This is
the usual concept of convergence, also called convergence in norm. We say x, — = weakly

if Vy € X) (zn,y) = (z,y) as n — oo. (Other common notations for weak convergence:
Ty =T, Ty — 1)

Example. (Weak convergence ¥ strong convergence if dim X = oo). Let X € [?. For
k'™ entry

k=1,2,...,let e, = (0,...,0,1,0...) (so {ex : k =1,2,...} is an orthonormal set in

12).

Claim. e, — 0 weakly as £k — oo.

Proof. Fix y € 2. Then Y 2, |yx|* < 00, so yx — 0. So {ex,y) =y — 0. O
Note that ||ex]| = 1, so ex > 0 strongly.

Remark. 1f dim X < oo, then weak convergence = strong convergence (exercise).

Theorem. Suppose z, — x weakly in a Hilbert space X. Then
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(@) lf] < Timinfy o0 [|2]

(b) If ||zk|| = ||z||, then zx — z strongly (i.e., ||zx — z|| — 0).

Proof.

(a) 0 < ||z — z||* = ||=]|* — 2Re(x, zx) + ||zk||*. By hypothesis, (z,zx) — (z,z) = ||z|]*.
So taking liminf above, 0 < ||z||* — 2||z||? 4+ liminf ||zx||?, i.e. ||z]|* < liminf ||zg]]*.

(b) If 2, — z weakly and ||zx|| — ||z||, then ||z — zi||* = ||z]|* — 2Relx, 1) + ||zk||* —
lz]1* = 2[|z]|* + [|=[* = 0.

g

Remark. The Uniform Boundedness Principle implies that if xy — x weakly, then ||z is
bounded.

Orthogonal Sets

Definition. Let X be an inner product space. Let A be a set (not necessarily countable).
A set {uq}aeca C X is called an orthogonal set if (Vo # B € A) (uq,ug) = 0. (often include
also that u, # 0).

Orthonormal Sets

Definition. Let X be an inner product space. A set {uq}qca is called an orthonormal set
if Va # 8 € A)(ug,ug) = 0 (ortho-) and (Vo € A)||uy|| = 1 (normal). For each z € X,
define a function 7 : A — C by T(«) = (x, u,). The Z(«)’s are called the Fourier coefficients
of z with respect to the orthonormal set {uq}aca-

Theorem. If {uy,...,ux} is an orthonormal set in an inner product space X, and z =

Z?:l cjuj, then ¢; = (z,u;) for 1 < j < k and ||z|*> = 22:1 i ((z, wi) =D ¢j{uy,ui) = ¢

and then use the Pythagorean Theorem).
Corollary. Every orthonormal set is linearly independent.

Example. If A is finite, say A = {1,2,...,n}. Then for any z € X, we know that the
closest element of span{uy,...,u,} to z is > ,_ (z, ug)uy.

Theorem. (Gram Schmidt process) Let V' be a subspace of an inner product space X,
and suppose V' has a finite or countable basis {z,}n>1. Then V has a basis {up},>1 which
is orthonormal (we reserve the term “orthonormal basis” to mean something else); moreover
we can choose {uy,},>1 so that for all m > 1, span{uy,..., Uy} = span{zi,...,z,}.

Sketch. Define {u,} by induction: w; = -£-. Having defined uq,...,u,_1, let v, =

llzfl”

n—1 v
Tn = Y521 (Tns ug)u;j and u, = o O
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Theorem. Let V be a finite dimensional subspace of a Hilbert space X. Let {uy,...,un}
be a basis for V' which is orthonormal, and let P be the orthogonal projection of X onto V.

Then Pz =377 \(z,uj)u; and ||z||* = || Pz|]® + |Qz|* = 327_; [(z,u;) | + [|Qz[.

j—1 Jj=1

Definition. Let A be a nonempty set. For each o € A, let y, be a nonnegative real number.
Define Y .4 Yo = SUp{d_,cr ¥ : F' C A and F is finite}.

Remark. This definition is equivalent to the integral of nonnegative functions f € LT (u)
where y is counting measure on A (defined on P(A)): if f(a) = ya, then >° 4 vo = [, fdp.

Definition. Let A be a nonempty set. Define I2(A) = L2(u) (i-e., functions f : A — C for
which 3, |f(a)> < co) where p is counting measure on A. Then [?(A) is a Hilbert space

with inner product (f,g) =3, f(2)g(a) (= [, fgdu) and norm ||f||> = \/(f. f). (Since

pE=0=E =0, f =gae = f =g everywhere,s0 no quotient is needed.)

Bessel’s Inequality. Let {u,}aca be an orthonormal set in a Hilbert space X, let z € X,
and let Z(a) = (, uq). Then >, , [Z(a)[* < |||

Proof. By the previous Theorem, this is true for every finite subset of A. Take the sup. [

Corollary.
(1) 7 € I2(A) and ||Z]|2 < ||z]| so

(2) {a € A:Z(a) # 0} is countable.

Theorem. Define F' : x — [?(A) (where X is a Hilbert space; F is for Fourier) by F : z +— T
where Z(a) = (z,u,) (Where {ug}qca is an orthonormal set). Then F' is a bounded linear
operator with ||F|| = 1 mapping X onto [?(A).

Proof. Clearly F is linear. By (1) of the Corollary, F' is bounded and ||F|| < 1. If 2 = u,
for some o € A, ||Z]la = 1 = ||z||, so ||F|| = 1. Given f € [*(A4), f(a) # 0 only for a
countable set Ay C A; enumerate them oy, s, a3,.... Let 2, = Z?Zl f(ej)u;. Clearly
Zr(a) = f(a) for ay, ..., o and T () = 0 otherwise. So Zx(a) — f(«) pointwise on A, and
since |Tx(a) — f(a)? < |f(a)* € L'(n), Txr — f in [*(A) by the Dominated Convergence
Theorem. Since each z; is a finite linear combination of the u,’s, ||z; — zk|| = ||Z; — Zk||2,
so {zx} is Cauchy in X, so zy — x in X for some z € X. For each a € A,

B(0) = (2, u) = Jim (25, u) = Jim Fx(a) = f(a).

So F' is onto. O

Theorem. Let X be a Hilbert space. Every orthonormal set in X is contained in a maximal
orthonormal set (i.e., an o.n. set not properly contained in any o.n. set).

Proof. Zorn’s lemma. ]
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Corollary. Every Hilbert space has a maximal orthonormal set.

Theorem. Let {uy}aca be an orthonormal set in a Hilbert space X. The following condi-
tions are equivalent:

(a) {uq}aca is a maximal orthonormal set.
(b) The set of finite linear combinations of the u,’s is dense in X.

(¢) (Vo e X) ||z|]*> = c4 |Z(a)]?* (Parseval’s relation).

(d) (Va,y € X) (2,5) = 3 o4 T(@)7(a).

(e) (Vze X)if Va€ A) (x,u,) =0 then z =0.

Proof. (a) = (b): Let V = span{u, : « € A} and M = V. Then M is a closed subspace.
Since {u,} is maximal, V+ = {0}, so M+ = {0}, so M = X. (b) = (c): Clear if x = 0.
Given z # 0, and given € > 0 (WLOG assume ¢ < ||z||), choose y € V 3 ||z — y|| < e, say
y € span{ug,,-..,Uq, . Let 2 =2Z(o1)Uq, + - - -+ (k) Uq,. Then z minimizes ||z — w|| over
w € span{ua,,...,Uq, } 50 ||z — 2| < ||z —y|| <e. Thus ||z]| < ||z]|+¢, so (||z]]| —€)? < ||2|?
and [|z||? = Z?Zl Z(a)]? <Y pen 1Z(@)?. So [lz||” < D ,c4 |1Z(c) . the other inequality is
Bessel’s inequality. (¢) = (d): Use polarization. (d) = (e): Suppose (Va € A){x,u,) = 0.
Then Z(a) = 0, so ||z||* = (z,z) = 0, so z = 0. (e) = (a): If {uy} is not maximal, then
dz #03 (z,us) =0 for all a € A. O

Notation. An orthonormal set {u,} in a Hilbert space X satisfying the conditions in the
previous theorem is called a complete orthonormal set (or complete orthonormal system) or
an orthonormal basis in X.

Caution. If X is infinite dimensional, an orthonormal basis is not a basis in the usual
definition of a basis for a vector space (i.e., each x € X has a unique representation as a
finite linear combination of basis elements — such a basis in this context is called a Hamel
basis).

Definition. Let X and Y be inner product spaces. A map T : X — Y which is linear,
bijective, and preserves inner products (i.e., (Vz,y € X) (z,y) = (T'z,Ty) — this implies T

is an isometry ||z|| = ||Tz||) is called a unitary isomorphism.

Corollary. If X is a Hilbert space and {u, }aca is an orthonormal basis of X, then the map
F : X — I>(A) mapping z — T (where Z(a) = (7, u,)) is a unitary isomorphism.

Corollary. Every Hilbert space is unitarily isomorphic to I(A) for some A.
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Convergence of Fourier Series (in norm)

Theorem. Let X be a Hilbert space, {uq}aca be an orthonormal set in X, and let z € X.
Let {c;};>1 be any enumeration of {o € A : (z,uq) # 0}. Then ||z|* = 3", [(z,ua,)[? (ie.

n

Parseval’s Equality holds for this z) iff lim,, Hx — D i1 (T, Ua; ) Ua, H =0 (i.e. the Fourier

series Y| T(v;)uq, converges to ).

Proof. Let M, = span{ua,,,...,uqs,} and let P, be the orthogonal projection onto M, (so
I — P, is the orthogonal projection onto M;"). Then P,z = Y7 (T, Uayj)ta;, [|Paz* =

> i1 (@, uay)?, and [|z]|* = [| Pz ||* + |(T = Pa)z||?, s [|2]|* — || Po||* = ||z — Poz|]*. Hence

|z]|? = disi (@, uq, ) |* iff limy oo || Poz]|® = [|2f|? iff lim, o ||z — Ppz||* = 0. (Note: If
{a € A: {(z,u,) # 0} is finite, say {a,...,a,}, then Parseval holds iff || P,z||? = ||z||? iff
T = Pyz,ie, =37 (T,Ua;)Ua; € My.) O

Corollary. Let {uy}aca be an orthonormal set in a Hilbert space X. Then {u,} is an

orthonormal basis iff for each z € X and each enumeration {a;};>1 of {a € A : (z,u,) # 0},

lim,, o || — Z?:1<x, Ug, ) U, || = 0.

Cardinality of Orthonormal Bases

Proposition. [2(A) is unitarily isomorphic to [?(B) iff card(A) = card(B).

Proposition. Any pair of orthonormal bases in a Hilbert space have the same cardinality.
Proposition. A Hilbert space X is separable iff it has a countable orthonormal basis.

Remark. For a separable Hilbert space X, one can show directly without invoking Zorn’s
lemma that X has a countable complete orthonormal set.

Proof. Clear if dim X < oo. Suppose dim X = oo. Let 21, 2,... be a countable dense
subset. Apply Gram-Schmidt (dropping zero vectors along the way) to get an orthonormal
sequence Ui, Us, . .. whose finite linear combinations include 2, z, .. ., and thus are dense. [

Theorem. (orthogonal projection in terms of orthonormal bases) Let X be a Hilbert space,
and let M be a closed subspace of X. Let {vs}gep be a complete orthonormal set in M,
and let {w,},ec be a complete orthonormal set in M*. Then {vz} U {w,} is a complete
orthonormal set in X. The orthogonal projection of X onto M is Pz =}, s(z,vs)vg, and
the orthog. proj. of X onto M* is Qz = Zyec@’ Wey YW,y

Proof. Follows directly from X = M @ M+ and the projection theorem. U

Example. (Orthogonal Polynomials in weighted L? spaces). Fix a,b € R with —co < a <
b < oo. Let w(z) € C(a,b) with w(z) > 0 on (a,b) and f:w(x)dx < 00. (w(z) is called the
weight function, e.g., w(v) = -z on (=1,1).) Define

b
L2 (a,b) = {f : f is measurable on (a,b) and / |f(z)Pw(z)dz < oo}
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and define (f, g)w = [ f(z)g(x)w(z)dz for f,g € L2 (a,b). Then (after identifying f and g

a

when f = g a.e.), L2 (a,b) is a Hilbert space.
Claim. Polynomials are dense in L2 (a,b).

Proof. First note that if f € L*®(a,b), then f € L2(a,b) since fab|f(a:)|2w(x)dx <
1

IFII2 2 w(z)dz, and thus ||fll, < M||f|e (where M = (fa”w(x)dxf < o). Given

f e L(a,b), 3g € Cla,b] for which ||f — g|l, < § (exercise). By the Weierstrass Approx-
imation Theorem, polynomials are dense in (C[a, b], || - ||), S0 3 a polynomial p for which

lg —pllo < 557- Then ||f = pllw <|[f —gllw+lg —Pllw < §+M|lg—pllc <5 +5=¢. O

Theorem. The orthogonal polynomialsin L2 (a, b) (the result of Gram-Schmidt on {1, z,z?%,...})
are a complete o.n. set in L2 (a,b).

Proof. Finite lin. comb. are dense. O



