Hilbert Spaces

Definition. A complex inner product space (or pre-Hilbert space) is a complex vector space X together with an inner product: a function from $X \times X$ into \mathbb{C} (denoted by $\langle x, y \rangle$) satisfying:

- (1) $(\forall x \in X) \langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0$ iff x = 0.
- (2) $(\forall \alpha, \beta \in \mathbb{C})$ $(\forall x, y, z \in X), \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle.$
- (3) $(\forall x, y \in X) \langle y, x \rangle = \overline{\langle x, y \rangle}$

Remarks.

- (2) says the inner product is linear in the first variable;
- (3) says the inner product is conjugate symmetric;
- (2) and (3) imply $\langle z, \alpha x + \beta y \rangle = \bar{\alpha} \langle z, x \rangle + \bar{\beta} \langle z, y \rangle$, so the inner product is conjugate symmetric in the second variable.

Definition. For $x \in X$, let $||x|| = \sqrt{\langle x, x \rangle}$.

Cauchy-Schwarz Inequality. $(\forall x, y \in X) |\langle x, y \rangle| \leq ||x|| \cdot ||y||$, with equality iff x and y are linearly dependent.

Proof. The result is obvious if $\langle x,y\rangle=0$. Suppose $\gamma\equiv\langle x,y\rangle\neq 0$. Then $x\neq 0\neq y$. Let $z=\frac{\gamma}{|\gamma|}y$. Then $\langle x,z\rangle=\frac{\bar{\gamma}}{|\gamma|}\langle x,y\rangle=|\gamma|>0$. Let $v=\frac{x}{||x||},\ w=\frac{z}{||z||}$. Then ||v||=||w||=1 and $\langle v,w\rangle>0$. Since $0\leq ||v-w||^2=\langle v,v\rangle-2\mathcal{R}e\langle v,w\rangle+\langle w,w\rangle,\ \langle v,w\rangle\leq 1$ (with equality iff v=w, which happens iff x and y are lin. dep.) So $|\langle x,y\rangle|=\langle x,z\rangle=||x||\cdot||z||\langle v,w\rangle\leq ||x||\cdot||z||=||x||\cdot||y||$.

Facts.

- (1') $(\forall x \in X) ||x|| \ge 0$; ||x|| = 0 iff x = 0.
- $(2') \ (\forall \alpha \in \mathbb{C})(\forall x \in X) \ \|\alpha x\| = |\alpha| \cdot \|x\|.$
- $(3') \ (\forall x, y \in X) \ \|x + y\| \le \|x\| + \|y\|.$

(Proof of (3'): $||x+y||^2 = ||x||^2 + 2\mathcal{R}e\langle x,y\rangle + ||y||^2 \le ||x||^2 + 2|\langle x,y\rangle| + ||y||^2 \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$.) Hence $||\cdot||$ is a norm on X; called the norm induced by the inner product $\langle \cdot, \cdot \rangle$.

Definition. An inner product space which is complete with respect to the norm induced by the inner product is called a *Hilbert space*.

Example. $X = \mathbb{C}^n$. For $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n) \in \mathbb{C}^n$, let $\langle x, y \rangle = \sum_{j=1}^m x_j \overline{y_j}$. Then $||x|| = \sqrt{\sum_{j=1}^n |x_j|^2}$ is the l^2 -norm on \mathbb{C}^n .

Examples of Hilbert spaces

- any finite dimensional inner product space
- $l^2 = \{(x_1, x_2, x_3, \dots) : x_k \in \mathbb{C}, \sum_{k=1}^{\infty} |x_k|^2 < \infty\}$ with $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}$
- for any $A^{\text{meas}} \subset \mathbb{R}^n$, $L^2(A)$ with $\langle f, g \rangle = \int_A f(x) \overline{g(x)} dx$.

Incomplete inner product space

$$C[a, b]$$
 with $\langle f, g \rangle = \int_a^b f(x) \overline{g(x)} dx$

C[a, b] with this inner product is *not* complete; it is dense in $L^2[a, b]$ with this inner product, which is complete.

Parallelogram Law. Let X be an inner product space. Then $(\forall x, y \in X)$

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

(Proof:
$$||x+y||^2 + ||x-y||^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle = 2(\langle x, x \rangle + \langle y, y \rangle) = 2(||x||^2 + ||y||^2).)$$

Polarization Identity. Let X be an inner product space. Then $(\forall x, y \in X)$

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2).$$

(Sketch: Expanding out the implied inner products, one shows easily that

$$||x+y||^2 - ||x-y||^2 = 4\Re(x,y)$$
 and $||x+iy||^2 - ||x-iy||^2 = 4\Im(x,y)$.

Note: In a real inner product space, $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$.

Remark. In an inner product space, the inner product determines the norm. The polarization identity shows that the norm determines the inner product. But not every norm on a vector space X is induced by an inner product.

Theorem. Suppose $(X, \|\cdot\|)$ is a normed linear space. The norm $\|\cdot\|$ is induced by an inner product iff the parallelogram law holds in $(X, \|\cdot\|)$.

Proof Sketch. (\Rightarrow) see above. (\Leftarrow) Use the polarization identity to define $\langle \cdot, \cdot \rangle$. Then immediately $\langle x, x \rangle = \|x\|^2$, $\langle y, x \rangle = \overline{\langle x, y \rangle}$, and $\langle ix, y \rangle = i \langle x, y \rangle$. Use the parallelogram law to show $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$. Then show $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ successively for $\alpha \in \mathbb{N}$, $\frac{1}{2} \in \mathbb{N}$, $\alpha \in \mathbb{Q}$, $\alpha \in \mathbb{R}$, and finally $\alpha \in \mathbb{C}$.

Continuity of the Inner Product. Let X be an inner product space with induced norm $\|\cdot\|$. Then $\langle\cdot,\cdot\rangle:X\times X\to\mathbb{C}$ is continuous.

Proof. Since $X \times X$ and \mathbb{C} are metric spaces, it suffices to show sequential continuity. Suppose $x_n \to x$ and $y_n \to y$. Then by the Schwarz inequality,

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \le ||x_n - x|| \cdot ||y_n|| + ||x|| \cdot ||y_n - y|| \to 0.$$

Orthogonality. If $\langle x,y\rangle=0$, we say x and y are orthogonal and write $x\perp y$. For any subset $A\subset X$, define $A^{\perp}=\{x\in X: \langle x,y\rangle=0\ \forall\ y\in A\}$. Since the inner product is linear in the first component and continuous, A^{\perp} is a $closed\ subspace$. Also $(\operatorname{span}\{A\})^{\perp}=A^{\perp}$, $(\bar{A})^{\perp}=A^{\perp}$, and $(\overline{\operatorname{span}\{A\}})^{\perp}=A^{\perp}$.

The Pythagorean Theorem. If $x_1, \ldots, x_n \in X$ and $x_j \perp x_k$ for $j \neq k$, $\left\| \sum_{j=1}^n x_j \right\|^2 = \sum_{j=1}^n \|x_j\|^2$.

Proof. If $x \perp y$ then $||x + y||^2 = ||x||^2 + 2\mathcal{R}e\langle x, y\rangle^0 = ||x||^2$. Apply induction.

Convex Sets. A subset A of a vector space X is called *convex* if $(\forall x, y \in A)$ $(\forall t \in (0, 1))$ $(1 - t)x + ty \in A$.

Examples.

- (1) Every subspace is convex.
- (2) In a normed linear space, for $\varepsilon > 0$ and $x \in X$, $B(\varepsilon, x)$ is convex.
- (3) If A is convex and $x \in X$, then $A + x \equiv \{y + x : y \in A\}$ is convex.

Theorem. Every nonempty closed convex subset A of a Hilbert space X has a unique element of smallest norm.

Proof. Let $\delta = \inf\{\|x\| : x \in A\}$. If $x, y \in A$, then $\frac{x+y}{2} \in A$ by convexity, and by the parallelogram law, $\|x-y\|^2 = 2(\|x\|^2 + \|y\|^2) - \|x+y\|^2 \le 2(\|x\|^2 + \|y\|^2) - 4\delta^2$. Uniqueness follows: if $\|x\| = \|y\| = \delta$, then $\|x-y\|^2 \le 4\delta^2 - 4\delta^2 = 0$, so x = y. For existence, choose $\{y_n\}_{n=1}^{\infty} \subset A$ for which $\|y_n\| \to \delta$. As $n, m \to \infty$, $\|y_n - y_m\|^2 \le 2(\|y_n\|^2 + \|y_m\|^2) - 4\delta^2 \to 0$, so $\{y_n\}$ is Cauchy. By completeness, $\exists y \in X$ for which $y_n \to y$, and since A is closed, $y \in A$. Also $\|y\| = \lim \|y_n\| = \delta$.

Corollary. If A is a nonempty closed convex set in a Hilbert space and $x \in X$, then \exists a unique closest element of A to x.

Sketch. Let z be the unique smallest element of the nonempty closed convex set $A - x = \{y - x : y \in A\}$, and let y = z + x. Then $y \in A$ is clearly the unique closest element of A to x.

Orthogonal Projections onto Closed Subspaces

The Projection Theorem. Let M be a closed subspace of a Hilbert space X.

(1) For each $x \in X$, \exists unique $u \in M$, $v \in M^{\perp} \ni x = u + v$. (So as vector spaces, $X = M \oplus M^{\perp}$.)

Define the operators $P:X\to M$ and $Q:X\to M^\perp$ by $P:x\mapsto u$ and $Q:x\mapsto v$.

- (2) If $x \in M$, Px = x and Qx = 0; if $x \in M^{\perp}$, Px = 0 and Qx = x.
- (3) $P^2 = P$, Range(P) = M, Null Space $(P) = M^{\perp}$; $Q^2 = Q$, Range $(Q) = M^{\perp}$, Null Space (Q) = M.
- (4) $P, Q \in \mathcal{B}(X, X)$. ||P|| = 0 if $M = \{0\}$; otherwise ||P|| = 1. ||Q|| = 0 if $M^{\perp} = \{0\}$; otherwise ||Q|| = 1.
- (5) Px is the unique closest element of M to x, and Qx is the unique closest element of M^{\perp} to x.
- (6) P + Q = I (obvious by the definition of P and Q).

Sketch. Given $x \in X$, x + M is a closed convex set; define Qx to be the smallest element of x + M, and let Px = x - Qx. Since $Qx \in x + M$, $Px \in M$. Let z = Qx. Suppose $y \in M$ and $\|y\| = 1$. Let $\alpha = \langle x, y \rangle$. Then $z - \alpha y \in x + M$, so $\|z\|^2 \le \|z - \alpha y\|^2 = \|z\|^2 - \alpha \langle y, z \rangle - \bar{\alpha} \langle z, y \rangle + |\alpha|^2 = \|z\|^2 - |\alpha|^2$. So $\alpha = 0$. Thus $z \in M^{\perp}$. Since clearly $M \cap M^{\perp} = \{0\}$, the uniqueness of u and v in (1) follows. (2) is obvious by uniqueness. (3) follows from (1) and (2). For $x, y \in X$, $\alpha x + \beta y = (\alpha Px + \beta Py)$ $+(\alpha Qx + \beta Qy)$, so by uniqueness in (1), $P(\alpha x + \beta y) = \alpha Px + \beta Py$ and $Q(\alpha x + \beta y) = \alpha Qx + \beta Qy$. By the Pythagorean Theorem, $\|x\|^2 = \|Px\|^2 + \|Qx\|^2$, so $P, Q \in L(X, X)$ and $\|P\|$, $\|Q\| \le 1$. The rest of (4) follows from (2). Fix $x \in X$. If $y \in X$, then $\|x - y\|^2 = \|Px - Py\|^2 + \|Qx - Qy\|^2$. If $y \in M$, then $\|x - y\|^2 = \|Px - y\|^2 + \|Qx - y\|^2$, which is clearly min iff y = Px. If $y \in M^{\perp}$, then $\|x - y\|^2 = \|Px\|^2 + \|Qx - y\|^2$, which is clearly min iff y = Qx.

Corollary. If M is a closed subspace of a Hilbert space X, then $(M^{\perp})^{\perp} = M$. In general, for any $A \subset X$, $(A^{\perp})^{\perp} = \overline{\operatorname{span}\{A\}}$, which is the smallest closed subspace of X containing A, often called the *closed linear span* of A.

Bounded Linear Functionals and the Riesz Representation Theorem

Proposition. Let X be an inner product space, fix $y \in X$, and define $f_y : X \to C$ by $f_y(x) = \langle x, y \rangle$. Then $f_y \in X^*$ and $||f_y|| = ||y||$.

Proof. $|f_y(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y||$, so $f_y \in X^*$ and $||f_y|| \le ||y||$. Since $|f_y(y)| = |\langle y, y \rangle| = ||y||^2$. $||f_y|| \ge ||y||$. So $||f_y|| = ||y||$.

Theorem. Let X be a Hilbert space.

- (1) If $f \in X^*$, then \exists a unique $y \in X \ni f = f_y$, i.e., $\ni f(x) = \langle x, y \rangle \forall x \in X$.
- (2) The map $\psi: X \to X^*$ given by $\psi: y \mapsto f_y$ is a conjugate linear isometry of X onto X^* .

Proof.

- (1) If $f \equiv 0$, let y = 0. If $f \in X^*$ and $f \not\equiv 0$, then $\underline{M} \equiv f^{-1}[\{0\}]$ is a proper closed subspace of X, so $\exists z \in M^{\perp} \ni ||z|| = 1$. Let $\alpha = \overline{f(z)}$ and $y = \alpha z$. Given $x \in X$, $u \equiv f(x)z f(z)x \in M$, so $0 = \langle u, z \rangle = f(x)\langle z, z \rangle f(z)\langle x, z \rangle = f(x) \langle x, \alpha z \rangle = f(x) \langle x, y \rangle$, i.e., $f(x) = \langle x, y \rangle$. Uniqueness: if $\langle x, y_1 \rangle = \langle x, y_2 \rangle \, \forall \, x \in X$, then (letting $x = y_1 y_2$) $||y_1 y_2||^2 = 0$, so $y_1 = y_2$.
- (2) follows immediately from (1), the previous proposition, and the conjugate linearity of the inner product in the second variable.

Corollary. X^* is a Hilbert space with the inner product $\langle f, g \rangle = \overline{\langle \psi^{-1}(f), \psi^{-1}(g) \rangle}$ (i.e., $\langle f_x, f_y \rangle = \overline{\langle x, y \rangle}$).

Proof. Clearly $\langle f, f \rangle \geq 0$, $\langle f, f \rangle = 0$ iff $\psi^{-1}(f) = 0$ iff f = 0, and $\overline{\langle f, g \rangle} = \langle g, f \rangle$. Also $\langle \alpha_1 f_{x_1} + \alpha_2 f_{x_2} \rangle = \langle f_{\bar{\alpha}_1 x_1 + \bar{\alpha}_2 x_2}, f_y \rangle = \overline{\langle \bar{\alpha}_1 x_1 + \bar{\alpha}_2 x_2, y \rangle} = \alpha_1 \overline{\langle x_1, y \rangle} + \alpha_2 \overline{\langle x_2, y \rangle} = \alpha_1 \langle f_{x_1}, f_y \rangle + \alpha_2 \overline{\langle f_{x_2}, f_y \rangle}$, so $\langle \cdot, \cdot \rangle$ is an inner product on X^* . Since $\langle f_y, f_y \rangle = \overline{\langle y, y \rangle} = ||y||^2 = ||f_y||^2$, $\langle \cdot, \cdot \rangle$ induces the norm on X^* . Since X^* is complete, it is a Hilbert space.

Remark. Part (1) of the Theorem above is often called [one of] the Riesz Representation Theorem[s].

Strong convergence/Weak convergence

Let X be a Hilbert space. We say $x_n \to x$ strongly if $||x_n - x|| \to 0$ as $n \to \infty$. This is the usual concept of convergence, also called convergence in norm. We say $x_n \to x$ weakly if $(\forall y \in X) \langle x_n, y \rangle \to \langle x, y \rangle$ as $n \to \infty$. (Other common notations for weak convergence: $x_n \rightharpoonup x$, $x_n \stackrel{w}{\to} x$.)

Example. (Weak convergence \Rightarrow strong convergence if dim $X = \infty$). Let $X \in l^2$. For $k = 1, 2, ..., let <math>e_k = (0, ..., 0, 1, 0...)$ (so $\{e_k : k = 1, 2, ...\}$ is an orthonormal set in l^2).

Claim. $e_k \to 0$ weakly as $k \to \infty$.

Proof. Fix
$$y \in l^2$$
. Then $\sum_{k=1}^{\infty} |y_k|^2 < \infty$, so $y_k \to 0$. So $\langle e_k, y \rangle = \overline{y_k} \to 0$. Note that $||e_k|| = 1$, so $e_k \to 0$ strongly.

Remark. If dim $X < \infty$, then weak convergence \Rightarrow strong convergence (exercise).

Theorem. Suppose $x_n \to x$ weakly in a Hilbert space X. Then

- (a) $||x|| \leq \liminf_{k \to \infty} ||x_k||$
- (b) If $||x_k|| \to ||x||$, then $x_k \to x$ strongly (i.e., $||x_k x|| \to 0$).

Proof.

- (a) $0 \le ||x x_k||^2 = ||x||^2 2\mathcal{R}e\langle x, x_k \rangle + ||x_k||^2$. By hypothesis, $\langle x, x_k \rangle \to \langle x, x \rangle = ||x||^2$. So taking \liminf above, $0 \le ||x||^2 2||x||^2 + \liminf ||x_k||^2$, i.e. $||x||^2 \le \liminf ||x_k||^2$.
- (b) If $x_k \to x$ weakly and $||x_k|| \to ||x||$, then $||x x_k||^2 = ||x||^2 2\mathcal{R}e\langle x, x_k \rangle + ||x_k||^2 \to ||x||^2 2||x||^2 + ||x||^2 = 0$.

Remark. The Uniform Boundedness Principle implies that if $x_k \to x$ weakly, then $||x_k||$ is bounded.

Orthogonal Sets

Definition. Let X be an inner product space. Let A be a set (not necessarily countable). A set $\{u_{\alpha}\}_{{\alpha}\in A}\subset X$ is called an *orthogonal* set if $(\forall \alpha\neq\beta\in A)\ \langle u_{\alpha},u_{\beta}\rangle=0$. (often include also that $u_{\alpha}\neq 0$).

Orthonormal Sets

Definition. Let X be an inner product space. A set $\{u_{\alpha}\}_{{\alpha}\in A}$ is called an *orthonormal set* if $(\forall \alpha \neq \beta \in A)\langle u_{\alpha}, u_{\beta} \rangle = 0$ (ortho-) and $(\forall \alpha \in A)||u_{\alpha}|| = 1$ (normal). For each $x \in X$, define a function $\widehat{x}: A \to \mathbb{C}$ by $\widehat{x}(\alpha) = \langle x, u_{\alpha} \rangle$. The $\widehat{x}(\alpha)$'s are called the *Fourier coefficients* of x with respect to the orthonormal set $\{u_{\alpha}\}_{{\alpha}\in A}$.

Theorem. If $\{u_1, \ldots, u_k\}$ is an orthonormal set in an inner product space X, and $x = \sum_{j=1}^k c_j u_j$, then $c_j = \langle x, u_j \rangle$ for $1 \leq j \leq k$ and $||x||^2 = \sum_{j=1}^l |c_j|^2$ ($\langle x, u_i \rangle = \sum_j c_j \langle u_j, u_i \rangle = c_i$ and then use the Pythagorean Theorem).

Corollary. Every orthonormal set is linearly independent.

Example. If A is finite, say $A = \{1, 2, ..., n\}$. Then for any $x \in X$, we know that the closest element of span $\{u_1, ..., u_n\}$ to x is $\sum_{k=1}^n \langle x, u_k \rangle u_k$.

Theorem. (Gram Schmidt process) Let V be a subspace of an inner product space X, and suppose V has a finite or countable basis $\{x_n\}_{n\geq 1}$. Then V has a basis $\{u_n\}_{n\geq 1}$ which is orthonormal (we reserve the term "orthonormal basis" to mean something else); moreover we can choose $\{u_n\}_{n\geq 1}$ so that for all $m\geq 1$, $\mathrm{span}\{u_1,\ldots,u_m\}=\mathrm{span}\{x_1,\ldots,x_m\}$.

Sketch. Define
$$\{u_n\}$$
 by induction: $u_1 = \frac{x_1}{\|x_1\|}$. Having defined u_1, \ldots, u_{n-1} , let $v_n = x_n - \sum_{j=1}^{n-1} \langle x_n, u_j \rangle u_j$ and $u_n = \frac{v_n}{\|v_n\|}$.

Theorem. Let V be a finite dimensional subspace of a Hilbert space X. Let $\{u_1, \ldots, u_n\}$ be a basis for V which is orthonormal, and let P be the orthogonal projection of X onto V. Then $Px = \sum_{j=1}^{n} \langle x, u_j \rangle u_j$ and $||x||^2 = ||Px||^2 + ||Qx||^2 = \sum_{j=1}^{n} |\langle x, u_j \rangle|^2 + ||Qx||^2$.

Definition. Let A be a nonempty set. For each $\alpha \in A$, let y_{α} be a nonnegative real number. Define $\sum_{\alpha \in A} y_{\alpha} = \sup \{ \sum_{\alpha \in F} y_{\alpha} : F \subset A \text{ and } F \text{ is finite} \}.$

Remark. This definition is equivalent to the integral of nonnegative functions $f \in L^+(\mu)$ where μ is counting measure on A (defined on $\mathcal{P}(A)$): if $f(\alpha) = y_{\alpha}$, then $\sum_{\alpha \in A} y_{\alpha} = \int_{A} f d\mu$.

Definition. Let A be a nonempty set. Define $l^2(A) = L^2_{\mathbb{C}}(\mu)$ (i.e., functions $f: A \to \mathbb{C}$ for which $\sum_{\alpha \in A} |f(\alpha)|^2 < \infty$) where μ is counting measure on A. Then $l^2(A)$ is a Hilbert space with inner product $\langle f, g \rangle = \sum_{\alpha \in A} f(\alpha) \overline{g(\alpha)} \ (= \int_A f \overline{g} d\mu)$ and norm $||f||_2 = \sqrt{\langle f, f \rangle}$. (Since $\mu E = 0 \Rightarrow E = \emptyset$, f = g a.e. $\Rightarrow f = g$ everywhere, so no quotient is needed.)

Bessel's Inequality. Let $\{u_{\alpha}\}_{{\alpha}\in A}$ be an orthonormal set in a Hilbert space X, let $x\in X$, and let $\widehat{x}(\alpha)=\langle x,u_{\alpha}\rangle$. Then $\sum_{\alpha\in A}|\widehat{x}(\alpha)|^2\leq \|x\|^2$.

Proof. By the previous Theorem, this is true for every finite subset of A. Take the sup. \Box

Corollary.

- (1) $\hat{x} \in l^2(A)$ and $\|\hat{x}\|_2 \le \|x\|$ so
- (2) $\{\alpha \in A : \widehat{x}(\alpha) \neq 0\}$ is countable.

Theorem. Define $F: x \to l^2(A)$ (where X is a Hilbert space; F is for Fourier) by $F: x \mapsto \widehat{x}$ where $\widehat{x}(\alpha) = \langle x, u_{\alpha} \rangle$ (where $\{u_{\alpha}\}_{{\alpha} \in A}$ is an orthonormal set). Then F is a bounded linear operator with ||F|| = 1 mapping X onto $l^2(A)$.

Proof. Clearly F is linear. By (1) of the Corollary, F is bounded and $||F|| \le 1$. If $x = u_{\alpha}$ for some $\alpha \in A$, $||\widehat{x}||_2 = 1 = ||x||$, so ||F|| = 1. Given $f \in l^2(A)$, $f(\alpha) \ne 0$ only for a countable set $A_f \subset A$; enumerate them $\alpha_1, \alpha_2, \alpha_3, \ldots$ Let $x_k = \sum_{j=1}^k f(\alpha_j)u_j$. Clearly $\widehat{x}_k(\alpha) = f(\alpha)$ for $\alpha_1, \ldots, \alpha_k$ and $\widehat{x}_k(\alpha) = 0$ otherwise. So $\widehat{x}_k(\alpha) \to f(\alpha)$ pointwise on A, and since $|\widehat{x}_k(\alpha) - f(\alpha)|^2 \le |f(\alpha)|^2 \in L'(\mu)$, $\widehat{x}_k \to f$ in $l^2(A)$ by the Dominated Convergence Theorem. Since each x_k is a finite linear combination of the u_{α} 's, $||x_j - x_k|| = ||\widehat{x}_j - \widehat{x}_k||_2$, so $\{x_k\}$ is Cauchy in X, so $x_k \to x$ in X for some $x \in X$. For each $\alpha \in A$,

$$\widehat{x}(\alpha) = \langle x, u_{\alpha} \rangle = \lim_{k \to \infty} \langle x_k, u_{\alpha} \rangle = \lim_{k \to \infty} \widehat{x}_k(\alpha) = f(\alpha).$$

So F is onto.

Theorem. Let X be a Hilbert space. Every orthonormal set in X is contained in a maximal orthonormal set (i.e., an o.n. set not properly contained in any o.n. set).

Proof. Zorn's lemma.

Corollary. Every Hilbert space has a maximal orthonormal set.

Theorem. Let $\{u_{\alpha}\}_{{\alpha}\in A}$ be an orthonormal set in a Hilbert space X. The following conditions are equivalent:

- (a) $\{u_{\alpha}\}_{{\alpha}\in A}$ is a maximal orthonormal set.
- (b) The set of finite linear combinations of the u_{α} 's is dense in X.
- (c) $(\forall x \in X) \|x\|^2 = \sum_{\alpha \in A} |\widehat{x}(\alpha)|^2$ (Parseval's relation).
- (d) $(\forall x, y \in X) \langle x, y \rangle = \sum_{\alpha \in A} \widehat{x}(\alpha) \overline{\widehat{y}(\alpha)}$.
- (e) $(\forall x \in X)$ if $(\forall \alpha \in A) \langle x, u_{\alpha} \rangle = 0$ then x = 0.

Proof. (a) \Rightarrow (b): Let $V = \operatorname{span}\{u_{\alpha} : \alpha \in A\}$ and $M = \overline{V}$. Then M is a closed subspace. Since $\{u_{\alpha}\}$ is maximal, $V^{\perp} = \{0\}$, so $M^{\perp} = \{0\}$, so M = X. (b) \Rightarrow (c): Clear if x = 0. Given $x \neq 0$, and given $\varepsilon > 0$ (WLOG assume $\varepsilon < \|x\|$), choose $y \in V \ni \|x - y\| < \varepsilon$, say $y \in \operatorname{span}\{u_{\alpha_1}, \ldots, u_{\alpha_k}\}$. Let $z = \widehat{x}(\alpha_1)u_{\alpha_1} + \cdots + \widehat{x}(\alpha_k)u_{\alpha_k}$. Then z minimizes $\|x - w\|$ over $w \in \operatorname{span}\{u_{\alpha_1}, \ldots, u_{\alpha_k}\}$ so $\|x - z\| \leq \|x - y\| < \varepsilon$. Thus $\|x\| < \|z\| + \varepsilon$, so $(\|x\| - \varepsilon)^2 < \|z\|^2$ and $\|z\|^2 = \sum_{j=1}^k |\widehat{x}(\alpha_j)|^2 \leq \sum_{\alpha \in A} |\widehat{x}(\alpha)|^2$. So $\|x\|^2 \leq \sum_{\alpha \in A} |\widehat{x}(\alpha)|^2$. the other inequality is Bessel's inequality. (c) \Rightarrow (d): Use polarization. (d) \Rightarrow (e): Suppose $(\forall \alpha \in A)\langle x, u_{\alpha}\rangle = 0$. Then $\widehat{x}(\alpha) \equiv 0$, so $\|x\|^2 = \langle x, x \rangle = 0$, so x = 0. (e) \Rightarrow (a): If $\{u_{\alpha}\}$ is not maximal, then $\exists x \neq 0 \ni \langle x, u_{\alpha} \rangle = 0$ for all $\alpha \in A$.

Notation. An orthonormal set $\{u_{\alpha}\}$ in a Hilbert space X satisfying the conditions in the previous theorem is called a *complete orthonormal set* (or complete orthonormal system) or an *orthonormal basis* in X.

Caution. If X is infinite dimensional, an orthonormal basis is not a basis in the usual definition of a basis for a vector space (i.e., each $x \in X$ has a unique representation as a finite linear combination of basis elements — such a basis in this context is called a Hamel basis).

Definition. Let X and Y be inner product spaces. A map $T: X \to Y$ which is linear, bijective, and preserves inner products (i.e., $(\forall x, y \in X) \ \langle x, y \rangle = \langle Tx, Ty \rangle$ — this implies T is an isometry ||x|| = ||Tx||) is called a *unitary isomorphism*.

Corollary. If X is a Hilbert space and $\{u_{\alpha}\}_{{\alpha}\in A}$ is an orthonormal basis of X, then the map $F: X \to l^2(A)$ mapping $x \mapsto \widehat{x}$ (where $\widehat{x}(\alpha) = \langle x, u_{\alpha} \rangle$) is a unitary isomorphism.

Corollary. Every Hilbert space is unitarily isomorphic to $l^2(A)$ for some A.

Convergence of Fourier Series (in norm)

Theorem. Let X be a Hilbert space, $\{u_{\alpha}\}_{{\alpha}\in A}$ be an orthonormal set in X, and let $x\in X$. Let $\{\alpha_j\}_{j\geq 1}$ be any enumeration of $\{\alpha\in A: \langle x,u_{\alpha}\rangle\neq 0\}$. Then $\|x\|^2=\sum_{j\geq 1}|\langle x,u_{\alpha_j}\rangle|^2$ (i.e. Parseval's Equality holds for this x) iff $\lim_{n\to\infty} \left\|x-\sum_{j=1}^n \langle x,u_{\alpha_j}\rangle u_{\alpha_j}\right\|=0$ (i.e. the Fourier series $\sum_{j=1}^{\infty} \widehat{x}(\alpha_j) u_{\alpha_j}$ converges to x).

Proof. Let $M_n = \operatorname{span}\{u_{\alpha_1}, \dots, u_{\alpha_n}\}$ and let P_n be the orthogonal projection onto M_n (so $I - P_n$ is the orthogonal projection onto M_n^{\perp}). Then $P_n x = \sum_{j=1}^n \langle x, u_{\alpha_h j} \rangle u_{\alpha_j}$, $\|P_n x\|^2 = \sum_{j=1}^n |\langle x, u_{\alpha_j} \rangle|^2$, and $\|x\|^2 = \|P_n x\|^2 + \|(I - P_n)x\|^2$, so $\|x\|^2 - \|P_n x\|^2 = \|x - P_n x\|^2$. Hence $\|x\|^2 = \sum_{j\geq 1} |\langle x, u_{\alpha_j} \rangle|^2$ iff $\lim_{n\to\infty} \|P_n x\|^2 = \|x\|^2$ iff $\lim_{n\to\infty} \|x - P_n x\|^2 = 0$. (Note: If $\{\alpha \in A : \langle x, u_{\alpha} \rangle \neq 0\}$ is finite, say $\{\alpha_1, \dots, \alpha_n\}$, then Parseval holds iff $\|P_n x\|^2 = \|x\|^2$ iff $x = P_n x$, i.e., $x = \sum_{j=1}^n \langle x, u_{\alpha_j} \rangle u_{\alpha_j} \in M_n$.)

Corollary. Let $\{u_{\alpha}\}_{{\alpha}\in A}$ be an orthonormal set in a Hilbert space X. Then $\{u_{\alpha}\}$ is an orthonormal basis iff for each $x\in X$ and each enumeration $\{\alpha_j\}_{j\geq 1}$ of $\{\alpha\in A: \langle x,u_{\alpha}\rangle\neq 0\}$, $\lim_{n\to\infty}\|x-\sum_{j=1}^n\langle x,u_{\alpha_j}\rangle u_{\alpha_j}\|=0$.

Cardinality of Orthonormal Bases

Proposition. $l^2(A)$ is unitarily isomorphic to $l^2(B)$ iff card(A) = card(B).

Proposition. Any pair of orthonormal bases in a Hilbert space have the same cardinality.

Proposition. A Hilbert space X is separable iff it has a countable orthonormal basis.

Remark. For a separable Hilbert space X, one can show directly without invoking Zorn's lemma that X has a countable complete orthonormal set.

Proof. Clear if $\dim X < \infty$. Suppose $\dim X = \infty$. Let z_1, z_2, \ldots be a countable dense subset. Apply Gram-Schmidt (dropping zero vectors along the way) to get an orthonormal sequence u_1, u_2, \ldots whose finite linear combinations include z_1, z, \ldots , and thus are dense. \square

Theorem. (orthogonal projection in terms of orthonormal bases) Let X be a Hilbert space, and let M be a closed subspace of X. Let $\{v_{\beta}\}_{{\beta}\in\mathcal{B}}$ be a complete orthonormal set in M, and let $\{w_{\gamma}\}_{{\gamma}\in\mathcal{C}}$ be a complete orthonormal set in M^{\perp} . Then $\{v_{\beta}\}\cup\{w_{\gamma}\}$ is a complete orthonormal set in X. The orthogonal projection of X onto M is $Px = \sum_{{\beta}\in\mathcal{B}}\langle x,v_{\beta}\rangle v_{\beta}$, and the orthog. proj. of X onto M^{\perp} is $Qx = \sum_{{\gamma}\in\mathcal{C}}\langle x,w_{\gamma}\rangle w_{\gamma}$.

Proof. Follows directly from $X = M \oplus M^{\perp}$ and the projection theorem.

Example. (Orthogonal Polynomials in weighted L^2 spaces). Fix $a,b \in \mathbb{R}$ with $-\infty < a < b < \infty$. Let $w(x) \in C(a,b)$ with w(x) > 0 on (a,b) and $\int_a^b w(x) dx < \infty$. (w(x) is called the weight function, e.g., $w(x) = \frac{1}{\sqrt{1-x^2}}$ on (-1,1).) Define

$$L_w^2(a,b) = \left\{ f : f \text{ is measurable on } (a,b) \text{ and } \int_a^b |f(x)|^2 w(x) dx < \infty \right\}$$

and define $\langle f,g\rangle w=\int_a^b f(x)\overline{g(x)}w(x)dx$ for $f,g\in L^2_w(a,b)$. Then (after identifying f and g when f=g a.e.), $L^2_w(a,b)$ is a Hilbert space.

Claim. Polynomials are dense in $L_w^2(a,b)$.

Proof. First note that if $f \in L^{\infty}(a,b)$, then $f \in L^{2}_{w}(a,b)$ since $\int_{a}^{b} |f(x)|^{2}w(x)dx \leq \|f\|_{\infty}^{2} \int_{a}^{b} w(x)dx$, and thus $\|f\|_{w} \leq M\|f\|_{\infty}$ (where $M = \left(\int_{a}^{b} w(x)dx\right)^{\frac{1}{2}} < \infty$). Given $f \in L^{2}_{w}(a,b)$, $\exists g \in C[a,b]$ for which $\|f-g\|_{w} < \frac{\varepsilon}{2}$ (exercise). By the Weierstrass Approximation Theorem, polynomials are dense in $(C[a,b],\|\cdot\|_{\infty})$, so \exists a polynomial p for which $\|g-p\|_{\infty} < \frac{\varepsilon}{2M}$. Then $\|f-p\|_{w} \leq \|f-g\|_{w} + \|g-p\|_{w} < \frac{\varepsilon}{2} + M\|g-p\|_{\infty} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. \Box

Theorem. The orthogonal polynomials in $L^2_w(a,b)$ (the result of Gram-Schmidt on $\{1,x,x^2,\ldots\}$) are a complete o.n. set in $L^2_w(a,b)$.

Proof. Finite lin. comb. are dense.