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Ralph Greenberg

1 Introduction

Let p be a prime. Iwasawa’s famous conjecture relating Kubota-Leopoldt p-adic L-functions
to the structure of certain Galois groups has been proven by Mazur and Wiles in [10]. Wiles
later proved a far-reaching generalization involving p-adic L-functions for Hecke characters
of finite order for a totally real number field in [14]. As we discussed in [5], an analogue
of Iwasawa’s conjecture for p-adic Artin L-functions can then be deduced. The formulation
again involves certain Galois groups. However, one can reformulate this result in terms
of Selmer groups for the Artin representations. There are several advantages to such a
reformulation. First of all, it fits perfectly into the much broader framework described in
[6] which relates the p-adic L-function for a motive to the corresponding Selmer group. The
crucial assumption in [6] that the motive be ordinary at p (or at least potentially ordinary)
is satisfied by an Artin motive and all of its Tate twists.

A second advantage of a reformulation involving Selmer groups is that the issue of how
to define the µ-invariant becomes resolved in a natural and transparent way. Thirdly, the
arguments in [5] can be simplified. In particular, there is no need for singling out the class of
Artin representations which are called type S in [5]. The purpose of this paper is to explain
these advantages.

Suppose that F is a totally real number field. Consider an Artin representation

ρ : GF −→ AutE(V ) ,

where GF is the absolute Galois group of F and V is a finite dimensional vector space over
a finite extension E of Qp. We will assume that ρ is totally even. This means that ρ factors
through ∆ = Gal(K/F ), where K is a finite extension of F which is also totally real. Let O
be the ring of integers of E . Let T be an O-lattice in V which is GF -invariant. Furthermore,
let D = V/T , a discrete O-module.
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Let F∞ denote the cyclotomic Zp-extension of F . The Selmer group associated to D over
F∞ is defined by

SelD(F∞) = ker
(
H1(F∞, D) −→

∏

η∤p

H1(F∞,η, D)
)
.

Here η runs over all the primes of F∞ except for the finitely many primes lying over p. The
archimedean primes are included in the product, although this is only important when p = 2.
One defines the field F∞,η to be the union of the η-adic completions of the finite extensions
of F contained in F∞.

To relate the above definition to the way Selmer groups are defined in [6], note that if ρ
is a totally even Artin representation of GF over C, then the Artin L-function L(s, ρ) does
not have a critical value at s = 1 in the sense of Deligne. However, its value at s = 1− n is
critical in that sense when n is even and positive. One can write

L(1− n, ρ) = L(1, ρ(n))

where ρ(n) is the n-th Tate twist. The underlying representation space for ρ(n) over E is
V (n) = V ⊗ χn

F , where χF : GF → Z×
p is the p-power cyclotomic character. In the notation

of [6], we have F+V (n) = V (n) when n ≥ 1. (This is so for all the primes above p.) Let
T (n) = T ⊗ χn and D(n) = V (n)/T (n). The corresponding Selmer group SelD(n)(F∞), as
it is defined in [6], is just as above, but with D(n) replacing D. Let d = [F (µq) : F ], where
q = p when p is odd and q = 4 when p = 2. If we take n ≡ 0 (mod d), then D(n) ∼= D for
the action of GF∞

. Thus, the two Selmer groups are then the same, although the action of
Gal(F∞/F ) on those groups is somewhat different. (See remark 2.11.)

Since SelD(F∞) is a discrete O-module and ΓF = Gal(F∞/F ) acts naturally and continu-
ously on it, we can regard SelD(F∞) as a discrete Λ(O,F )-module, where Λ(O,F ) = O[[ΓF ]]. It
is not difficult to show that the Pontryagin dual XD(F∞) of SelD(F∞) is a finitely generated,
torsion Λ(O,F )-module. (See proposition 2.1.) We denote the characteristic ideal of that
Λ(O,F )-module by Iρ. It is a principal ideal in the ring Λ(O,F ). As the notation suggests, this
ideal depends only on ρ, and not on the choice of the Galois-invariant O-lattice T , as we
show in proposition 2.4.

Another discrete Λ(O,F )-module to be considered is H0(F∞, D). Its Pontryagin dual
YD(F∞) is clearly a finitely-generated O-module and hence a torsion Λ(O,F )-module. Let Jρ
denote the characteristic ideal of YD(F∞). This ideal is nontrivial if and only if ρ has at least
one irreducible constituent which factors through ΓF .

The p-adic L-function associated to ρ will be denoted by Lp(s, ρ). It is characterized
by a certain interpolation property. In case ρ is 1-dimensional, this functions have been

2



constructed by Deligne and Ribet in [1], by Cassou-Noguès in [3], and by Barsky in [2]. One
can then define Lp(s, ρ) if ρ has arbitrary dimension by using a classical theorem of Brauer
from group theory.

One can associate to Lp(s, ρ) a certain element θρ in the fraction field of Λ(O,F ). For an
odd prime p, the Main Conjecture is the assertion that the fractional ideals Λ(O,F )θρ and
IρJ

−1
ρ are the same. This is proved in section 4 as a consequence of theorems of Wiles proved

in [14]. For p = 2, there is an extra power of 2 in the formulation, but this case appears to
still be open.

2 Basic results concerning the Selmer group

We will prove several useful propositions. We continue to make the same assumptions as in
the introduction. In particular, F is a totally real number field and ρ is a totally even Artin
representation of GF defined over a field E , a finite extension of Qp. The ring of integers in
E is denoted by O.

We will use the traditional terminology for modules over a topological ring Λ. If S is a
discrete Λ-module, and X is its Pontryagin dual, then we say that S is a cofinitely-generated
Λ-module if X is finitely-generated. If X is a torsion Λ-module, we say that S is cotorsion.

Suppose that V , T , and D = V/T are as in the introduction. Let d = dimE(V ). As an
O-module, we have D ∼= (E/O)d. The Selmer group SelD(F∞) is a discrete Λ(O,F )-module.

Proposition 2.1. The Λ(O,F )-module SD(F∞) is cofinitely-generated and cotorsion.

Proof. Suppose that ρ factor through Gal(K/F ), where K is a totally real, finite Galois
extension of F . Let ∆ = Gal(K∞/F∞) and let M∞ be the maximal abelian pro-p extension
of K∞ which is unramified at the primes of K∞ not lying over p (including the archimedean
primes). One can consider X(K∞) = Gal(M∞/K∞) as a module over Λ(Zp,K) = Zp[[ΓK ]].
A well-known theorem of Iwasawa asserts that X(K∞) is finitely-generated and torsion as a
Λ(Zp,K)-module. The fact that it is torsion is equivalent to the fact that the so-called weak
Leopoldt conjecture is valid for K∞/K.

We have H0(K∞, D) = D. Also, H1(∆, D) is finite. Hence the restriction map

(1) H1(F∞, D) −→ H1(K∞, D)∆

has finite kernel. We can identify ΓK with Gal(F∞/K ∩ F∞), a subgroup of ΓF . The
map (1) is ΓK-equivariant. Now H1(K∞, D) = Hom(Gal(Kab

∞/K∞), D), where Kab
∞ is the
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maximal abelian extension of K∞. It is clear that the image of SelD(F∞) under the map (1)
is contained in Hom(X(K∞), D), which is a cofinitely-generated, cotorsion Λ(Zp,K)-module
according to Iwasawa’s theorem. Since (1) has finite kernel, it follows that SelD(F∞) is
cofinitely-generated and cotorsion as a Λ(Zp,K)-module, and therefore as a Λ(O,F )-module. �

Remark 2.2. With the notation of the above proof, the cokernel of the map (1) is also
finite. This follows from the fact that H2(∆, D) is finite. Assume that the order of im(ρ) is
not divisible by p. We can then assume that p ∤ |∆|. In particular, K ∩ F∞ = F . Hence the
map ΓK → ΓF is an isomorphism. We then have Gal(K∞/F ) ∼= ∆ × ΓF . Furthermore, (1)
is an isomorphism. The induced map

(2) SelD(F∞) −→ Hom∆(X(K∞), D)

is also easily verified to be an isomorphism. In addition to assuming p ∤ |∆|, assume that ρ
is absolutely irreducible. Let eρ be the idempotent for ρ in O[∆]. Then

Hom∆(X(K∞), D) ∼= HomO[∆]

(
X(K∞)⊗

Zp
O, D

)
∼= HomO[∆]

(
eρX(K∞)⊗

Zp
O, D

)
.

Thus, the Λ(O,F )-modules XD(F∞) and eρX(K∞) ⊗Zp
O are closely related. In fact, the

characteristic ideal of the second module is Idρ .

Remark 2.3. Suppose that X is any Λ(O,F )-module and that I is the characteristic ideal of
X . Let π be a generator of the maximal ideal of O. The µ-invariant of X will be denoted by
µF (X). It is the integer µ characterized by I ⊆ πµΛ(O,F ), I 6⊆ πµ+1Λ(O,F ). A conjecture of
Iwasawa (at least for odd primes p) asserts that the µ-invariant of the Λ(O,K)-module XK∞

should vanish. This should be true even for p = 2. If this is so, then the proof of proposition
2.1 would show that µF

(
XD(F∞)

)
= 0.

It will be useful to have an alternative definition of SelD(F∞). Let Σ be a finite set of
primes of F containing the archimedean primes, the primes lying over p, and the ramified
primes for ρ. For each v ∈ Σ, define

Hv(F∞, D) = lim
−→
n

⊕

ν|v

H1(Fn,ν, D)

where, for each n, ν runs over the primes of Fn lying over v. The maps defining the direct
limit are induced by the local restriction maps. If v is a finite prime, then

H1
v(F∞, D) =

⊕

ν|v

H1(F∞,ν, D)
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where ν runs over the finite set of primes of F∞ lying over v. The p-cohomological dimension
of GF∞,ν

is 1, and so H2(F∞,ν, D[π]) = 0. It follows that H1(F∞,ν , D) is O-divisible. Now
assume that v ∤ p. Then, according to proposition 2 in [6], the O-corank of H1(F∞,ν , D) is
finite. It therefore follows that the Pontryagin dual of H1

v(F∞, D) is a torsion-free O-module
of finite rank. Hence it is a free O-module. It is also a Λ(O,F )-module. Since its O-rank is
finite, it must be a torsion Λ(O,F )-module whose µ-invariant vanishes.

If p is odd and v is an archimedean prime, then H1
v(F∞, D) = 0. However, if p = 2, then

H1
v(F∞, D) is nontrivial. More precisely, since all the Fn’s are totally real, and ρ is totally

even, we have
H1(Fn,ν , D) = H1(R, D) = D[2] ∼= (O/2O)d

if ν is archimedean. One sees that H1
v(F∞, D) is a direct limit of modules isomorphic to

(O/2O)[Gal(Fn/F )]
d. The Pontryagin dual ofH1

v(F∞, D) is isomorphic to
(
Λ(O,F )

/
2Λ(O,F )

)d
as a Λ(O,F )-module. It is a torsion Λ(O,F )-module, but its µ-invariant is positive and is
determined by d = dimE(V ).

One can similarly define H2
v(F∞, D) as a direct limit by replacing the H1’s by H2’s. How-

ever, for any finite prime v, the p=cohomological dimension of GF∞,ν
is 1 and so H2

v(F∞, D)
vanishes. This is also true if v|∞ because H2(R, D) = 0.

The following definition is equivalent to the one given in the introduction:

(3) SelD(F∞) = ker
(
H1(FΣ/F∞, D) −→

∏

v∈Σ,v∤p

H1
v(F∞, D)

)
.

To verify the equivalence, we first point out that if v is a non-archimedean prime of F and
v ∤ p, and if ν is a prime of F∞ lying over v, then F∞,ν is the unramified Zp-extension of Fv.
It follows that the restriction map H1(F∞,ν, D) → H1(F unr

v , D) is injective. Here F unr
v is the

maximal unramified extension of Fv and contains F∞,ν . Therefore, requiring a cocycle class
to be trivial in H1(F∞,ν , D) is equivalent to requiring it to be trivial in H1(F unr

ν , D).

Suppose now that φ is a 1-cocycle for GF∞
with values in D. Note that we have

H1(FΣ, D) = Hom(GFΣ
, D). Also, GFΣ

is generated topologically by the inertia subgroups
Iη of GF for all primes η of FΣ lying over some v 6∈ Σ. Thus, the class [φ] in H1(F∞, D) has
a trivial restriction to all those Iη’s if and only if [φ] is in

ker
(
H1(F∞, D) → H1(FΣ, D)

)
= im

(
H1(FΣ/F∞, D) → H1(F∞, D)

)
.

Thus, the cocycle classes in H1(FΣ/F∞, D) can be identified under the inflation map with
the cocyle classes in H1(F∞, D) which are unramified at all primes of F∞ not lying over
primes in Σ. The equivalence of (3) and the earlier definition follows.
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It will also be useful to point out that the global-to-local map in (3) is surjective. This
follows proposition 2.1 in [7]. It is only proved there for F = Q and odd p, but the argument
works if F is totally real and for any p. One assumption is that SelD(F∞) is ΛO,F -cotorsion,
which is satisfied by proposition 2.1 above. The other assumption is that H0(F∞, D

∗) is
finite. Here D∗ = Hom(T, µp∞) and the finiteness is clear since F∞ is totally real and
H0(R, µp∞) is finite (and even trivial if p is odd).

Let T ′ be another GF -invariant O-lattice in V . Let D′ = V/T ′. We consider XD(F∞)
and XD′(F∞) as Λ(O,F )-modules.

Proposition 2.4. The Λ(O,F )-modules XD(F∞) and XD′(F∞) have the same characteristic

ideal.

Proof. As above, let π be a generator of the maximal ideal of O. Scaling by a power of
π, we may assume that T ⊆ T ′. We then have a GF -equivariant map ϕ : D → D′ with
finite kernel. Such a map ϕ is called a GF -isogeny. It is surjective. Let Φ = ker(ϕ). Then
Φ ⊆ D[πt] for some t ≥ 0. There is also a GF -isogeny ψ : D′ → D such that ψ ◦ ϕ is the
map D → D given by multiplication by πt.

The map ϕ induces a map from SelD(F∞) to SelD′(F∞) whose kernel is killed by πt.
Similarly, ψ induces such a map from SelD′(F∞) to SelD(F∞) and the compositum is multi-
plication by πt. It follows that the characteristic ideals I and I ′ of XD(F∞) and XD′(F∞),
respectively, are related as follows: I ′ = πsI for some s ∈ Z. Thus, the proposition is
equivalent to showing that the µ-invariants for the two modules are equal.

Assume first that p is odd. In the definition (3),H1
v(F∞, D) = 0 when v|∞ andH1

v(F∞, D)
has finite O-corank when v ∈ Σ, v ∤ p. Thus, the µ-invariants for the Pontryagin duals
of SelD(F∞) and H1(FΣ/F,D) are equal. The same statement is true for SelD′(F∞) and
H1(FΣ/F,D

′). And so it suffices to prove that the Pontryagin duals of H1(FΣ/F,D) and
H1(FΣ/F,D

′) have the same µ-invariants. This is sufficient even for p = 2. This follows
because the map (3) and the corresponding global-to-local map for D′ are both surjective.
Furthermore, for any archimedean prime v, the µ-invariants of H1

v(F∞, D) and H1
v(F∞, D

′)
are equal.

Using the notation in the proof of proposition 2.1, we have an exact sequence

H0(FΣ/F∞, D
′) −→ H1(FΣ/F∞,Φ) −→ H1(FΣ/F∞, D) −→ H1(FΣ/F∞, D

′)

−→ H2(FΣ/F∞,Φ) −→ H2(FΣ/F∞, D) .

Now the µ-invariant of H0(FΣ/F∞, D
′) certainly vanishes. Also, H2(FΣ/F∞, D) = 0. One

can verify this for odd p by using propositions 3 and 4 in [6]. For H2(FΣ/F,D) is Λ(O,F )-
cotorsion by proposition 3, and Λ(O,F )-cofree by proposition 4. For p = 2, H2(FΣ/F,D) is
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still Λ(O,F )-cotorsion. The analogue of proposition 4 is that

ker
(
H2(FΣ/F∞, D) →

∏

v|∞

H2
v(F∞, D)

)

is Λ(O,F )-cofree, and hence must vanish. However, since H2
v(F∞, D) vanishes, it follows that

H2(R, D) = 0. Consequently, we indeed have H2(FΣ/F∞, D) = 0.

To complete the proof, we must show that H1(FΣ/F∞,Φ) and H
2(FΣ/F∞,Φ) have the

same µ-invariants as Λ(O,F )-modules. In the statement of the proposition, we can reduce to

the case where Φ is killed by π. Let Λ̃(O,F ) = Λ(O,F )/πΛ(O,F ). It then suffices to show that

corankΛ̃(O,F )

(
H1(FΣ/F∞,Φ)

)
= corankΛ̃(O,F )

(
H2(FΣ/F∞,Φ)

)
.

Here Φ is a representation space for GF over O/(π) and is totally even. The Euler-Poincaré

characteristic over F∞, which is the alternating sum of the Λ̃(O,F )-coranks of H
i(FΣ/F∞,Φ)

for 0 ≤ i ≤ 2, is 0. The above equality follows. �

Remark 2.5. As mentioned in remark 2.3, µ
(
XD(F∞)

)
should always vanish. The above

proof would then show that XD(F∞) and XD′(F∞) are pseudo-isomorphic as Λ(O,F )-modules.
This is also true if µ

(
XD(F∞)

)
= 1. In contrast, for non-Artin motives, the µ-invariant of

the Pontryagin dual of a Selmer group can be nonzero and can change under isogeny. This
phenomenon was first pointed out by Mazur in [9]. The exact change in the µ-invariant
under an isogeny is studied in [13] and [11]. In fact, proposition 2.4 is just a special case of
the main theorem in [11] when p is an odd prime.

Remark 2.6. If ϕ : D → D′ is a GF -isogeny and ker(φ) = D[mt] for some t ≥ 0, then
D ∼= D′ as GF -modules. This follows because m is a principal ideal. Any other GF -isogeny
will be called nontrivial. Such GF -isogenies ϕ exist if and only if T/πT is reducible as a
GF -representation space over the residue field O/(π). Now, if ρ is irreducible over E and
im(ρ) has order prime to p, then it is well-known that T/πT is also irreducible. In contrast,
if im(ρ) has order divisible by p, then T/πT may be reducible even if ρ is irreducible.

Proposition 2.7. Suppose that ρ1 and ρ2 are totally even Artin representations of GF . Let

ρ = ρ1 ⊕ ρ2. Then Iρ = Iρ1Iρ2 and Jρ = Jρ1Jρ2.

Proof. We assume that E is a field of definition for ρ1, ρ2, and ρ. Let V1 and V2 be the
underlying representations spaces for ρ1 and ρ2 over E , and let V = V1 ⊕ V2. Let T1 and T2
be Galois invariant O-lattices in V1 and V2. Let T = T1⊕T2. Then D = D1⊕D2. With this
choice of O-lattices, it is clear that SelD(F∞) ∼= SelD1(F∞) ⊕ SelD2(F∞). The first equality
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in the proposition follows. We also have H0(F∞, D) ∼= H0(F∞, D1) ⊕ H0(F∞, D2), giving
the second equality. �

Suppose that F ′ is a totally real, finite extension of F and that ρ′ is a totally even Artin
representation of GF ′. Thus, ρ′ factors through Gal(K ′/F ′), where K ′ is totally real. We
can then define ρ = IndGF

GF ′
(ρ′). Then ρ is an Artin representation of GF and factors through

Gal(K/F ), where K is the Galois closure of K ′ over F . Note that K is totally real, and
hence ρ is also totally even. Furthermore, there is an injective homomorphism ΓF ′ → ΓF .
Therefore, we can regard Λ(O,F ′) as a subring of Λ(O,F ). One sees easily that Λ(O,F ) is a
finite integral extension of Λ(O,F ′) and that the degree is [ΓF : ΓF ′] = [F ′ ∩ F∞ : F ]. The
characteristic ideals I and J are essentially unchanged by induction. To be precise, we have

Proposition 2.8. With the above notation, we have Iρ = Iρ′Λ(O,F ) and Jρ = Jρ′Λ(O,F ).

To simplify notation in the following proof, we will write just write IndF
F ′(ρ′) in place of

IndGF

GF ′
(ρ′). We will also write ρ∞ and ρ′∞ for the restrictions of ρ and ρ′ to F∞ and F ′

∞,
respectively.

Proof. We consider separately the two cases where F ′ ∩ F∞ = F and F ′ ⊂ F∞. That will
suffice because if E = F ′ ∩ F∞, then E∞ = F∞ and IndF

E

(
IndE

F ′(ρ′)
)
= ρ.

Suppose first that F ′ ∩ F∞ = F . In this case, we can identify ΓF ′ with ΓF and hence
Λ(O,F ′) with Λ(O,F ). For brevity, let G = GF , G

′ = GF ′, and N = GF∞
, a normal supgroup

of G. Then N ∩ G′ = GF ′
∞
. Furthermore, suppose that K is a finite, totally real Galois

extension of F which contains F ′ and such that ρ′ factors through Gal(K/F ′). Then ρ factors
through Gal(K/F ). Furthermore, since NG′ = G, we have [G : G′] = [N : N ∩ G′], and it
follows that

ρ|N = IndG
G′(ρ′)

∣∣
N
= IndN

N∩G′(ρ′|N) .

Consequently, ρ∞ ∼= IndF∞

F ′
∞
(ρ′∞).

Choose the Galois invariant O-lattices for ρ and ρ′ so that IndG
G′(D′) = D. Here we can

replace G and G′ by N and N ∩G′. Then H0(F∞, D) ∼= H0(F ′
∞D

′), and the isomorphism is
equivariant for the action of ΓF = ΓF ′. It follows that Jρ = Jρ′ .

Note that K∞ = KF∞ contains F ′
∞. Let M∞ be defined exactly as in the proof of

proposition 2.1. Then, since the inertia subgroups of GK∞
for all primes η ∤ p generate that

group topologically, we have injective maps

(4) SelD(F∞) → H1(M∞/F∞, D), SelD′(F ′
∞) → H1(M∞/F

′
∞, D

′)

The cokernels of these maps are finite. To see this, suppose that v is a nonarchimedean prime
of F not dividing p. The inertia subgroup of Gal(K∞/F∞) for any η|v is finite. Consequently,
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the inertia subgroup of Gal(M∞/F∞) for any prime of M∞ over η will be finite. Now η lies
over some prime ν of F∞. One need only pick one such inertia subgroup for each prime ν of
F∞ lying over v. Now if A is any finite subgroup of Gal(M∞/F∞), then H1(A,D) is finite.
It follows that the cokernel of the first map in (4) is indeed finite. Similarly, this is also true
for the second map.

Let U = GM∞
. Then we can identify Ind

G/U
G′/U(ρ

′) with ρ, viewed as a representation

of G/U = Gal(M∞/F ), and also of the subgroup Gal(M∞/F∞). According to Shapiro’s
Lemma, we then have a canonical isomorphism

(5) H1(M∞/F∞, D) −→ H1(M∞/F
′
∞, D

′)

The map is ΓF -equivariant and so the isomorphism is as discrete Λ(O,F )-modules. Their
Pontryagin duals are isomorphic as Λ(O,F )-modules. It follows that the Pontryagin duals of
SelD(F∞) and SelD′(F ′

∞) are pseudo-isomorphic and therefore that Iρ = Iρ′ , as stated. We
remark in passing that, with a little more care, one can verify that (5) actually defines an
isomorphism of SelD(F∞) to SelD′(F ′

∞).

Suppose now that F ′ ⊂ F∞. Then F ′
∞ = F∞ and ΓF ′ is a subgroup of ΓF of finite index

t. We use the previous notation, but now we have N ⊂ G′ ⊂ G. Thus, ρ∞ and ρ′∞ are the
restrictions of ρ and ρ′ to N , respectively. In this case, ρ∞ is a direct sum of representations
obtained from ρ′∞ by composing with certain automorphisms of N . The automorphism are
just the restriction of certain inner automorphisms of G, namely the inner automorphisms
defined by some set of coset representatives g1, ..., gt for G

′ inG. We take g1 to be the identity.
Denote these representations of G′ by ρ′1, ..., ρ

′
t. (They are not necessarily distinct.) Define

the corresponding discrete G′-modules D′
1, ..., D

′
t obtained from D′ by composing with the

above specified automorphisms of N . We have D′
1 = D′. For each i, 1 ≤ i ≤ t, conjugating

by gi also defines an isomorphism of H1(N,D′) to H1(N,D′
i). Since ΓF is commutative, this

isomorphism is ΓF ′-equivariant. Also, the isomorphism induces an isomorphism of SelD′(F∞)
to SelD′

i
(F∞). Thus, the SelD′

i
(F∞)’s are all isomorphic to SelD′(F∞) as Λ(O,F ′)-modules.

As a GF∞
-module, D ∼= ⊕1≤i≤tD

′
i. Furthermore, D′

i = gi(D
′). Thus,

SelD(F∞) ∼= ⊕
1≤i≤t

SelD′
i
(F∞)

as ΓF ′-modules and the action of ΓF permutes the summands in the corresponding way. The
same thing is true for the Pontryagin duals. It follows that

XD(F∞) ∼= XD′(F∞)⊗Λ(O,F )′
Λ(O,F )

and therefore Iρ = Iρ′Λ(O,F ) as stated. �
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Propositions 2.7 and 2.8 show that it is enough to consider Iτ and Jτ where τ is a
totally even, absolutely irreducible Artin representation of GQ. For if ρ is a totally even

Artin representation over F , then IndQ
F (ρ) is a direct sum of absolutely irreducible Artin

representations which must also be totally even. The field E must be chosen to be sufficiently
large. Both ρ and all of the absolutely irreducible constituents of IndQ

F (ρ) must be realizable
over E . The next remark shows that the choice of E is otherwise not too significant.

Remark 2.9. Suppose that E ′ and E are finite extensions of Qp with rings of integers O′

and O, respectively. Assume that E ′ ⊆ E . Let Γ = Zp. Let Λ
′ = O′[[Γ]] and Λ = O[[Γ]], and

let L′ and L be their fraction fields. Thus, Λ is the integral closure of Λ′ in L. Since Λ′ is
integrally closed in L′, one has Λ′ = Λ∩L. It follows that if I ′ is a principal ideal in Λ′, and
I = I ′Λ, then one can recover I ′ from I by I ′ = I ∩ Λ′.

In particular, suppose that ρ′ is a totally even Artin representation of GF over E ′, and D′

is the corresponding discrete Galois module. Extending scalars to E , one obtains an Artin
representation ρ over E , and one can take D = D′⊗O′ O as the corresponding discrete Galois
module. One sees easily that SelD(F∞) ∼= SelD′(F∞) ⊗O′ O. The characteristic ideals are
related by Iρ = Iρ′Λ(O,F ). Hence Iρ′ = Iρ ∩Λ(O′,F ). Similar statements hold for the ideals Jρ′
and Jρ.

Our final result in this section concerns the effect of twisting the Galois representation ρ.
Suppose that ξ is a 1-dimensional Artin representation of GF which factors through ΓF . We
must choose E sufficiently large so that ξ has values in E . Thus, ξ : ΓF → O× is a continuous
homomorphism. We denote the twist ρ ⊗ ξ simply by by ρξ. The corresponding discrete
GF -module is D⊗ ξ = D⊗O O(ξ), where O(ξ) is the free O-module of rank 1 on which GF

acts by ξ. We use a similar notation below for other discrete and compact O-modules. For
brevity, we denote D⊗ ξ by Dξ. Of course, as O-modules and GF∞

-modules, we can identify
Dξ and D. The actions of ΓF on the corresponding Galois cohomology groups are related by

H1(FΣ/F∞, Dξ) ∼= H1(FΣ/F∞, D)⊗ ξ

and therefore we have the following ΓF -equivariant isomorphism of discrete O-modules:

(6) SelDξ
(F∞) ∼= SelD(F∞)⊗ ξ .

Both of these O-modules are Λ(O,F )-modules and the isomorphism is a Λ(O,F )-module iso-
morphism.

It follows from (6) that XDξ
(F∞) ∼= XD(F∞) ⊗ ξ−1 as Λ(O,F )-modules. Furthermore,

noting that
H0(FΣ/F∞, Dξ) = H0(FΣ/F∞, D)⊗ ξ ,

10



it follows that YDξ
(F∞) ∼= YD(F∞) ⊗ ξ−1 as Λ(O,F )-modules. These isomorphisms give a

simple relationship between Iρξ and Iρ and between Jρξ and Jρ, as we now discuss.

In general, suppose that Γ is a commutative pro-p group. Let ΛO = O[[Γ]]. We have
the natural inclusion map ε : Γ → Λ×. Suppose that ξ : ΓF → O× is a continuous homo-
morphism. Since O× ⊂ Λ×

O, we obtain a continuous homomorphism ξε : Γ → Λ×
O. This

is the map γ 7→ ξ(γ)γ for all γ ∈ Γ. We can then extend ξε to a continuous O-algebra
homomorphism twξ : ΛO → ΛO. This is an automorphism of ΛO. The inverse map is twξ−1 .

Now suppose that Γ ∼= Zp and that ξ : Γ → O× is a continuous homomorphism. Let X be
a finitely-generated, torsion ΛO-module. For any λ ∈ ΛO, X [λ] denotes {x ∈ X | λx = 0 }.
The characteristic ideal IX is determined by the invariants µ(X) and rankO

(
X [θt]

)
, where

θ varies over the irreducible elements in ΛO and t ≥ 1. We write Xξ−1 for X ⊗ ξ−1. It is
easily seen that µ(X) = µ(Xξ−1). We regard X and Xξ−1 as the same O-modules, but with
different O-linear actions of Γ. If γ ∈ Γ, and x ∈ X = Xξ−1 , we denote the first action by
γ · x and the second by γ · ·x. Thus, γ · ·x = ξ(γ)−1γ · x. That is, we have (ξ(γ)γ) · ·x = γ · x
for all γ ∈ Γ, x ∈ X . It follows that twξ(θ) · ·x = θ ·x for all θ ∈ ΛO and x ∈ X . In particular,
for any irreducible element θ ∈ ΛO and t ≥ 1, we have

Xξ−1 [twξ(θ
t)] = X [θt] .

Consequently, we have the following result.

Proposition 2.10. Let ξ be a character of finite order of ΓF . Then Iρξ = twξ(Iρ) and

Jρξ = twξ(Jρ).

Remark 2.11. In the introduction, we mentioned the Selmer group SelD(n)(F∞) associated
to the Tate twist D(n) when n ≥ 2 and n ≡ 0 (mod p − 1). Note that χn

F = κnF factors
through ΓF . The above discussion shows how the actions of ΓF on SelD(F∞) and SelD(n)(F∞)
differ. In fact, if θ generates the characteristic ideal of XD(F∞), then twκn

F
(θ) generates the

characteristic ideal of XD(n)(F∞).

3 The definition of p-adic Artin L-functions.

If F is totally real and ρ : GF → GLd(C) is a totally even Artin representation, then the
corresponding Artin L-function L(z, ρ) is a meromorphic function on C. We will let L∗(z, ρ)
denote the function given by the same Euler product as L(z, ρ), but with the Euler factors for
the primes of F lying above p omitted. A theorem of Siegel implies that L(1− n, ρ) ∈ Q(ψ)
for all integers n ≥ 1. Here ψ is the character of ρ and Q(ψ) is the field generated by its
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values. Furthermore, L(1− n, ρ) 6= 0 when n is even. For our purpose, we will consider the
values L∗(1− n, ρ). They are also algebraic numbers and are nonzero for even n ≥ 2.

The above L-values behave well under conjugacy in the following sense. If g ∈ Gal(Q/Q),
then ψ′ = g ◦ ψ is the character of another totally even Artin representation ρ′ of GF . We
then have L(1 − n, ρ′) = g

(
L(1 − n, ρ)

)
for all n ≥ 1. The Euler factors for primes above p

behave similarly, and so we have the same conjugacy properties for the values L∗(1− n, ρ).
Therefore, if we arbitrarily choose embeddings of Q into C and into Qp, then the complex

algebraic numbers L∗(1 − n, ρ) and the values of ψ can all be regarded as elements of Qp.

The character ψ is then the character of an Artin representation ρ : GF → GLd(Qp). Of
course, ψ determines ρ up to equivalence. The values L∗(1 − n, ρ) are also determined by
the Qp-valued character ψ, and do not depend on the choice of embeddings. In fact, if ψ
has values in a finite extension E of Qp, then the values L∗(1− n, ρ) for n ≥ 1 are also in E ,
and are nonzero when n is even.

These L-values also behave well under induction. Suppose that F ′ is a finite, totally real
extension of F . Suppose that ρ = IndF

F ′(ρ′), where ρ′ is a totally even Artin representation
of GF ′. We have L(z, ρ) = L(z, ρ′). The same identity is true if we delete the Euler factors
for primes above p. Thus,

L∗(1− n, ρ) = L∗(1− n, ρ′)

for all n ≥ 1.

The p-adic L-function Lp(s, ρ) satisfies the following interpolation property:

Lp(1− n, ρ) = L∗(1− n, ρ)

for all n ≡ 0 (mod [F (µp) : F ]) if p is odd, or all n ≡ 0 (mod 2) if p = 2. It is a meromorphic
function defined on a certain disc D in Qp. The existence of such a function was proved by
Deligne and Ribet when ρ is of dimension 1. In this case, it is holomorphic on D, except
possibly at s = 1.

Suppose now that ρ factors through ∆ = Gal(K/F ), where K is a finite, totally real, Ga-
lois extension of F . The existence of Lp(s, ρ) then follows if ρ is induced from a 1-dimensional
representation ρ′ of a subgroup ∆′ of ∆. Then ρ is a so-called monomial representation. If
∆′ = Gal(K/F ′), then ρ = IndF

F ′(ρ′) and we have Lp(s, ρ) = Lp(s, ρ
′). Thus, Lp(s, ρ) is again

holomorphic on D, except possibly at s = 1.

In general, a theorem of Brauer states that there exist monomial representations ρ1, ..., ρs
σ1, ..., σt of ∆, where s, t ≥ 0, such that

(7) ρ⊕
( t
⊕
j=1

σj
)
∼=

s
⊕
i=1

ρi
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and so we can define Lp(s, ρ) as the quotient
∏s

i=1 Lp(s, ρi)
/∏t

j=1Lp(s, σj). The above
interpolation property is indeed satisfied by this function.

Let Γ = ΓQ = Gal(Q∞/Q). There is a canonical isomorphism κ : Γ → 1 + qZp, where
q = p for odd p and q = 4 for p = 2. It is defined as the composite map

Gal(Q(µp∞)/Q)
χ

−→Z×
p −→ 1 + qZp

which indeed factors through Γ. Here χ is the p-power cyclotomic character. The second
map is just the projection map for the decomposition Z×

p = W × (1 + qZp), where W is the
group of roots of unity in Qp. For any s ∈ Zp, one can define κs : Γ → 1 + qZp, which is
a continuous group homomorphism. It extends to a continuous O-algebra homomorphism
Λ(O,Q) → O which we also denote by κs. Furthermore, for any F , the restriction map ΓF → Γ
defines an injective homomorphism Λ(O,F ) → Λ(O,Q). We identify Λ(O,F ) with its image and
define κsF to be the restriction of κs to that subring.

Let L(O,F ) denote the fraction field of Λ(O,F ). Suppose that θ ∈ L(O,F ). Write θ = αβ−1,
where α, β ∈ Λ(O,F ) and β 6= 0. The Weierstrass preparation theorem implies that κsF (β) 6= 0
for all but finitely many s ∈ Zp. Thus, excluding a finite set of values of s, one can make
the definition κsF (θ) = κsF (α)κ

s
F (β)

−1. Furthermore, one has the following property:

If θ1, θ2 ∈ L(O,F ) and κ
s
F (θ1) = κsF (θ2) for infinitely many s ∈ Zp, then θ1 = θ2.

One verifies this by writing θ1 = α1β
−1
1 , θ2 = α2β

−1
2 , and applying the Weierstrass prepara-

tion theorem to α1β2 − α2β1.

One can associate to Lp(s, ρ) a nonzero element θρ of L(O,F ). It is characterized as follows:

(8) Lp(1− s, ρ) = κsF (θρ) for all but finitely many s ∈ Zp.

for all but finitely many s ∈ Zp. If ρ is 1-dimensional, then Deligne and Ribet’s construction
of Lp(1− s, ρ) proves the existence of such a θρ. Furthermore, they show that

Jρθρ ⊆ 2[F :Q]Λ(O,F ) ,

where Jρ is the ideal in Λ(O,F ) defined in the introduction. Note that Jρ = Λ(O,F ) unless ρ
factors through ΓF . If ρ is monomial, one can use proposition 2.8 to prove that θρ exists.
Then θρ has the integrality property

(9) Jρθρ ⊆ 2[F :Q] deg(ρ)Λ(O,F )

since if ρ is induced from a 1-dimensional Artin representation ρ′ of GF ′, where F ′ is a finite
extension of F , then [F ′ : Q] = [F : Q] deg(ρ).
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If ρ has arbitrary dimension, then the existence of θρ satisfying (8) follows from (7). One
assumes at first that E is large enough so that all of the monomial representations ρi and
σj are realizable over E . The θρi ’s and θσj

’s are nonzero elements in the fraction fields of
various subrings of Λ(O,F ). One can then define

(10) θρ =
s∏

i=1

θρi

/ t∏

j=1

θσj

With this definition, we can only say that θρ is an element in the fraction field of Λ(O,F ).

The behavior of the values L∗(1−n, ρ) under conjugacy implies a similar behavior for the
elements θρ. To be precise, suppose that γ ∈ GQp

. Let O′ = γ(O). Let ρ′ = γ ◦ ρ. Note that
γ induces a continuous isomorphism from Λ(O,F ) to Λ(O′,F ). This isomorphism extends to an
isomorphism of the fraction fields, which we also denote by γ. We then have θρ′ = γ

(
θρ
)
.

Concerning the choice of O, the above conjugacy property and a straightforward Galois
theory argument show that one can even take O to be the extension of Zp generated by the
values of the character of ρ. In the next section, we will see that the integrality property (9)
still holds when p is odd.

The above remarks give us the following properties of the θρ’s which are parallel to the
assertions in propositions 2.7 and 2.8.

Proposition 3.1. With the same notation as in proposition 2.7, we have θρ = θρ1θρ2.

Proposition 3.2. With the same notation as in proposition 2.8, we have θρ = θρ′.

We will also need the analogue of proposition 2.10. It relies on another property of the p-
adic L-functions constructed by Deligne and Ribet. The interpolation property for θρ stated
before can be expressed as follows:

κnF (θρ) = L∗(1− n, ρ) = L∗(1, ρκnF )

for all n ≥ 2 satisfying n ≡ 0 (mod p − 1) if p is odd (or n ≡ 0 (mod 2) if p = 2). The
underlying E representation space for ρκnF is the Tate twist V (n). However, if ξ is a character
of ΓF of finite order, and O contains the values of ξ, then Deligne and Ribet also show that

κnF ξ(θρ) = L∗(1− n, ρξ) = L∗(1, ρξκnF ) = L∗(1, ρκnF ξ).

Furthermore, one has κnF (θρξ) = L∗(1, ρξκnF ). Thus, we have κ
n
F ξ(θρ) = κnF (θρξ) for the above

values of n.
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Suppose that ϕ : ΓF → O× is any continuous homomorphism. Let ξ be as above. Then
both ϕ and ϕξ : ΓF → O× extend to continuous O-algebra homomorphisms ϕ and ϕξ from
Λ(O,F ) to O. We also have the continuous O-algebra homomorphism ϕ ◦ twξ : Λ(O,F ) → O.
Such O-algebra homomorphisms are determined uniquely by their restrictions to ΓF . Note
that

(ϕ ◦ twξ)(γ) = ϕ(ξ(γ)γ) = (ϕξ)(γ).

Therefore, we also have (ϕ ◦ twξ)(θ) = (ϕξ)(θ) for all θ ∈ Λ(O,F ). Applying this to ϕ = κnF ,
where n ≥ 2 and n ≡ 0 (mod p− 1) (or n ≡ 2 (mod 2) if p = 2), we obtain

κnF
(
twξ(θρ)

)
= (κnF ◦ twξ)(θρ) = κnF (θρξ)

for all such n and therefore it follows that twξ(θρ) = θρξ.

Proposition 3.3. If ξ is a 1-dimension Artin representations of GF which factors through

ΓF , then θρξ = twξ(θρ).

4 Relationship of Selmer groups to p-adic L-functions

We can state the relationship quite succinctly in terms of the notation of the preceding
sections. We refer to this statement as the Iwasawa Main Conjecture for ρ. As before, we
assume that ρ is realizable over a finite extension E of Qp with ring of integers O. Let

m(ρ) = [F : Q]dim(ρ), which is just the degree of the representation IndQ
F (ρ).

IMC(ρ). Suppose that F is a totally real number field and that ρ is a totally even Artin

representation of GF . Then Iρ = Jρθρ2
−m(ρ).

Note that Iρ is an ideal in Λ(O,F ) by definition, but the assertion that Jρθρ2
−m(ρ) is an ideal

in that ring, and not just a “fractional ideal”, is not at all clear from the definitions.

It is interesting to note that when p = 2, one can omit the extra power of 2 appearing
in the formulation of IMC(ρ) by merely omitting the local conditions at the archimedean
primes in the definition of the Selmer group. One obtains a larger Selmer group Sel#D(F∞) and
the characteristic ideal of the Pontryagin dual of Sel#D(F∞)

/
SelD(F∞) is precisely 2m(ρ)Λ(O,F ).

One sees this by using the surjectivity of the map (3) together with the structure ofH1
v(F∞, D)

for archimedean v as described in section 2. If I#ρ denotes the characteristic ideal of the Pon-

tryagin dual of Sel#D(F∞), then IMC(ρ) is equivalent to the assertion that I#ρ = Jρθρ.
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We also consider a weaker form of IMC(ρ). It amounts to the above equality up to
multiplication by a power of a uniformizing parameter π of O. We will denote the ring
Λ(O,F )[

1
π
] by Λ∗

(O,F ). It is a subring of the fraction field L(O,F ) of Λ(O,F ).

IMC(ρ)∗. We have IρΛ
∗
(O,F ) = JρθρΛ

∗
(O,F ).

The main purpose of this section is to point out that the results proved by Wiles in [14]
are sufficient to prove IMC(ρ) for all p ≥ 3. Let

A(ρ) = I−1
ρ Jρθρ2

−m(ρ)

which is a principal fractional ideal of Λ(O,F ), i.e., a nonzero free Λ(O,F )-submodule of the
fraction field L(O,F ). Such fractional ideals form a group.

If I is a nonzero principal ideal of Λ(O,F ), and θ is a generator of I, then we will refer to
µ(Λ(O,F )/I) as the µ-invariant associated to I, or to θ. We denote it by µ

I
. For a principal

fractional ideal I = I1I
−1
2 , we define the associated µ-invariant by µ

I
= µ

I1
− µ

I2
. A simple

direct argument, or the fact that Λ(O,F ) is a UFD, shows that µ
I
is well-defined.

Suppose that ρ = ρ1 ⊕ ρ2, where ρ1 and ρ2 are totally even Artin representations of GF .
It is clear that m(ρ) = m(ρ1) + m(ρ2). It therefore follows from propositions 2.7 and 3.1
that

(11) A(ρ) = A(ρ1)A(ρ2) .

Suppose that F ′ is a finite, totally real extension of F , that ρ′ is a totally even Artin
representation of GF ′, and that ρ = IndF

F ′(ρ′). It is clear that m(ρ) = m(ρ′), and so
propositions 2.8 and 3.2 imply that

(12) A(ρ) = A(ρ′) .

The conjecture IMC(ρ) asserts that A(ρ) = Λ(O,F ). The conjecture IMC(ρ)∗ asserts that
A(ρ) is generated by a power of π. Suppose that ρ factors through ∆ = Gal(K/F ), where
K is totally real. It is clear from (11) and (12) that if one proves IMC(ρ′) (respectively,
IMC(ρ′)∗) for all 1-dimensional representation ρ′ of all subgroups ∆′ of ∆, then IMC(ρ)
(respectively, IMC(ρ)∗) follows.

Now suppose that ξ is a 1-dimensional Artin representation which factors through ΓF .
Obviously, m(ρξ) = m(ρ). It therefore follows from propositions 2.10 and 3.3 that

(13) A(ρξ) = twξ

(
A(ρ)

)
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When p is an odd prime, Wiles proves IMC(ρ)∗ for a certain class of totally even,
1-dimensional Artin representations ρ over any totally real number field F , namely the
representations which factor through Gal(K/F ) where K ∩ F∞ = F . (These are the repre-
sentations of type S.) This result is Theorem 1.3 in [14]. Therefore, A(ρ) is generated by a
power of π for all those ρ’s. However, one sees easily that if ρ is 1-dimensional, but not of
type S, then there exists a 1-dimensional Artin representation ξ factoring through ΓF such
that ρξ is of type S. Since twξ(π) = π, it follows that if A(ρξ) = (πt), then A(ρ) = (πt).
Therefore, IMC(ρ)∗ is established when p is an odd prime, F is any totally real number
field, and ρ is any 1-dimensional, even Artin representation. It then follows from (11) and
(12) that IMC(ρ)∗ holds for an arbitrary totally even Artin representation of GF when p is
odd. For p = 2, Wiles does prove partial results, but not enough to prove IMC(ρ)∗

Now consider IMC(ρ). Wiles proves this assertion when p is odd and ρ is 1-dimensional
and has order prime to p. It follows from Theorem 1.3 and 1.4 in [14]. The above remarks
and the lemma below allow one to establish IMC(ρ) for all ρ.

An alternative way to deal with the µ-invariants when ρ is 1-dimensional, but of order
divisible by p, is described in [4], pages 9 and 10. It is in terms of Galois groups instead
of Selmer groups. We should also add that theorem 1.4 in [14] involves odd 1-dimensional
representations instead of even. However, the equivalence of that theorem with what we
need here is a consequence of the so-called “Reflection Principle”. It is also a consequence
of theorem 2 in [6].

Lemma 4.1. Suppose that G is a finite group and that ψ is the character of a representation

of G over Qp. Assume that the values of ψ are in Qunr
p . Then, there exists subgroups Hi of

G and a 1-dimensional character ψi of each Hi, where 1 ≤ i ≤ t for some t ≥ 1, such that

1. mψ =
∑t

i=1 miInd
G
Hi
(ψi), where m,m1, ..., mt ∈ Z, m ≥ 1

2. Each ψi has order prime to p

Proof. Brauer’s theorem asserts that ψ =
∑s

i=1 aiInd
G
Ki
(ϕi), where the ai’s are integers, the

Ki’s are subgroups of G, and, for each i, ϕi is a 1-dimensional character of Ki. If σ ∈ GQunr
p

,

then σ fixes the values of ψ and one also has ψ =
∑t

i=1 niInd
G
Ki
(σ ◦ ϕi). The extension of

Qunr
p generated by the values of all the ϕi’s is finite. If m is its degree, then, by taking the

trace, one obtains

mψ =
s∑

i=1

biInd
G
Ki
(τi)
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where τi is the sum of the conjugates of ϕi over Q
unr
p and the bi’s are integers. Since induction

is transitive, it is enough to prove the lemma for each of the characters τi of Ki. The values
of τi are in Qunr

p .

Let K be a subgroup of G and let ϕ be a 1-dimensional character of K. Then ϕ = αβ,
where α has order prime to p and β has p-power order. Let pk be the order of β. We can
assume that k ≥ 1. The values of α are in Qunr

p . Let τϕ and τβ denote the sums of the
conjugates of ϕ and of β over Qunr

p , respectively. Note that τϕ = ατβ.

Let J = ker(β). Thus, β factors through K/J , which is cyclic of order pk. The conjugates
of β over Qunr

p are the characters of K/J of order pk. Let J1 be the subgroup of K such
that J ⊂ J1 ⊆ K and J1/J is cyclic of order p. Let ǫ

J
and ǫ

J1
denote the trivial characters

of J and J1, respectively. Then IndK
J (ǫJ ) is the sum of all the irreducible characters of K/J

and IndK
J1
(ǫ

J1
) is the sum of the irreducible characters factoring through K/J1. Hence the

difference is τβ . Thus, τβ = IndK
J (ǫJ )− IndK

J1
(ǫ

J1
). It follows that

τϕ = IndK
J (αJ

)− IndK
J1
(α

J1
),

where α
J
and α

J1
denote the restrictions of α to J and to J1, respectively. Their orders are

prime to p. �

Assume now that p is odd and that ρ is an arbitrary totally real Artin representation over
F . We assume that ρ is realizable over a finite extension E of Qp. Assume further that E
is Galois over Qp. Since IMC(ρ)∗ is established, it suffices to just consider the µ-invariants
to prove IMC(ρ). Now if ρ and ρ′ are conjugate over Qp under the action of Gal(E/Qp),
then one sees easily that Iρ and Iρ′ are conjugate under the natural action of Gal(E/Qp) on
Λ(O,F ). In particular, the µ-invariants associated to those ideals are equal. The µ-invariants
associated to Jρ and Jρ′ are 0. In addition, θρ and θρ′ are conjugate too, and so the µ-
invariants associated to those elements of L(O,F ) are equal. It follows that the µ-invariants
associated to A(ρ) and A(ρ′) are equal.

Let ρ̃ = ⊕σ σ, where σ runs over the conjugates of ρ over Qp. Then the character of ρ̃ has
values in Qp, and hence in Qunr

p . Furthermore, the above remarks show that it suffices to
prove that the µ-invariant for A(ρ̃) vanishes. The µ-invariant for A(ρ) will then also vanish.
Lemma 4.1, the behavior of A(·) under induction and direct sums, and Theorem 1.4 in [14]
imply that the µ-invariant for A(ρ̃) is indeed zero.
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