Galois representations with open image

Ralph Greenberg

University of Washington
Seattle, Washington, USA

May 7th, 2011

Introduction

This talk will be about representations of the absolute Galois group of \mathbf{Q} :

$$
G_{\mathbf{Q}}=\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})
$$

We will consider continuous representations

$$
\rho: G_{\mathbf{Q}} \longrightarrow G L_{n}\left(\mathbf{Z}_{p}\right)
$$

where $n \geq 3$ and \mathbf{Z}_{p} denotes the ring of p-adic integers. We will be interested in constructing such representations so that the index

$$
\left[G L_{n}\left(\mathbf{Z}_{p}\right): \operatorname{Im}(\rho)\right]
$$

is finite. Equivalently, this means that $\operatorname{Im}(\rho)$ is an open subgroup of $G L_{n}\left(\mathbf{Z}_{p}\right)$.

The case $n=1$

For $n=1$, for any prime p, and for any $t \geq 0$, the group of p^{t}-th roots of unity in $\overline{\mathbf{Q}}^{\times}$is isomorphic to $\mathbf{Z} / p^{t} \mathbf{Z}$. We denote this group by $\mu_{p^{t}}$. The group $G_{\mathbf{Q}}$ acts on $\mu_{p^{t}}$. One can consider the inverse limit of the $\mu_{p^{t}}$'s as $t \rightarrow \infty$. This is isomorphic to \mathbf{Z}_{p} and has a continuous action of $G_{\mathbf{Q}}$. This gives a continuous representation

$$
\chi_{p}: G_{Q} \longrightarrow G L_{1}\left(\mathbf{Z}_{p}\right)
$$

The map χ_{p} is surjective.

The case $n=2$

For $n=2$, One obtains examples from the theory of elliptic curves. Suppose that E is an elliptic curve defined over \mathbf{Q}. Suppose that p is any prime. For any $t \geq 0$, the p^{t}-torsion in the abelian group $E(\overline{\mathbf{Q}})$ is isomorphic to $\mathbf{Z} / p^{t} \mathbf{Z} \times \mathbf{Z} / p^{t} \mathbf{Z}$. It is denoted by $E\left[p^{t}\right]$.

The Galois group G_{Q} acts on $E\left[p^{t}\right]$. The p-adic Tate module for E is defined to be the inverse limit of the groups $E\left[p^{t}\right]$ as $t \rightarrow \infty$. It is a free \mathbf{Z}_{p}-module of rank 2. Thus, we get a continuous representation

$$
\rho_{E, p}: G_{\mathbf{Q}} \longrightarrow G L_{2}\left(\mathbf{Z}_{p}\right) .
$$

Serre's Theorem

There is a famous theorem of Serre which states that if $\operatorname{End}_{\mathbf{C}}(E) \cong \mathbf{Z}$, then $\operatorname{Im}\left(\rho_{E, p}\right)$ has finite index in $G L_{2}\left(\mathbf{Z}_{p}\right)$.

Furthermore, under the same assumption, $\rho_{E, p}$ is surjective for all but finitely many primes p (depending on E).

The assumption that $E n d_{\mathbf{C}}(E) \cong \mathbf{Z}$ means that E does not have complex multiplications. The entire first page of Cremona's table of elliptic curves are such non-CM elliptic curves.

Some known results when $n=3$

Representations $\rho: G_{\mathbf{Q}} \rightarrow G L_{3}\left(\mathbf{Z}_{p}\right)$ with open image have been constructed by Spencer Hamblen when $p \equiv 8(\bmod 21)$. The approach uses deformation theory.

Surjective representations $\rho: G_{F} \rightarrow G L_{3}\left(\mathbf{Z}_{p}\right)$, where $F=\mathbf{Q}(\sqrt{-3})$, and for all but finitely many primes $p \equiv 1(\bmod 3)$, have been constructed by Margaret Upton. The construction is based on the action of G_{F} on the p-adic Tate module of certain abelian varieties whose endomorphism ring contains the integers of F.

More results for $n \geq 3$.

I have managed to construct such representations ρ in the following cases:

1. p is an odd, regular prime and $\left[\frac{n}{2}\right] \leq \frac{p-1}{4}$

In particular, the construction works if $n=3$ and p is a regular prime ≥ 5.

Definition: Recall that p is a regular prime if p doesn't divide the class number of $\mathbf{Q}\left(\mu_{p}\right)$. Here μ_{p} denotes the p-th roots of unity.

All primes $p<100$ are regular, except for $p=37,59$, and 67 .

More results.

2. $n=3, p \equiv 1(\bmod 4)$ and $p<10,000$
(and even $p<3 \times 10^{9}$ if $p \equiv 1$ or $4(\bmod 5)$).
3. $p=3,4 \leq n \leq 29 ; \quad p=5,4 \leq n \leq 13$.

In principle, the construction should work for every pair (p, n) where p is odd and $n \geq 3$, except for $(p, n)=(3,3)$. It depends on finding an abelian extension K of \mathbf{Q} with certain properties.

Our approach

The approach that we will describe here is an algebraic number theory approach and involves the structure of the Galois groups of certain infinite extensions. The approach also involves some observations about the structure of a Sylow pro- p subgroup of $S L_{n}\left(\mathbf{Z}_{p}\right)$.

A Sylow p-subgroup of $S L_{n}\left(\mathbf{F}_{p}\right)$ is the subgroup U_{n} of upper triangular, unipotent matrices. A Sylow pro- p subgroup of $S L_{n}\left(\mathbf{Z}_{p}\right)$ is the subgroup of matrices whose image under reduction modulo p is in U_{n}. We denote this subgroup by P_{n}.

Let D_{n} denote the subgroup of the diagonal matrices in $G L_{n}\left(\mathbf{Z}_{p}\right)$ whose entries are ($p-1$)-st root of unity (in \mathbf{Z}_{p}^{\times}.) Thus, D_{n} is a finite subgroup of $G L_{n}\left(\mathbf{Z}_{p}\right)$ of order $(p-1)^{n}$.

The group D_{n} acts (as a group of automorphisms) on P_{n} by conjugation.

More about the structure of P_{n}

The Sylow pro-p subgroup P_{n} of $S L_{n}\left(\mathbf{Z}_{p}\right)$ can be topologically generated by the following set of n elements:

$$
T_{n}=\left\{I_{n}+E_{12}, \ldots, I_{n}+E_{(n-1) n}\right\} \bigcup\left\{I_{n}+p E_{n 1}\right\}
$$

In contrast, the congruence subgroup $I_{n}+p M_{n}\left(\mathbf{Z}_{p}\right)$ requires n^{2} topological generators. Its intersection with $S L_{n}\left(\mathbf{Z}_{p}\right)$ requires $n^{2}-1$ generators

Why does T_{n} generate P_{n} ?

A key lemma in proving that P_{n} is generated topologically by T_{n} is the following. We let $M_{n}\left(\mathbf{F}_{p}\right)^{(0)}$ denote the matrices of trace 0 .

Lemma: Let U_{n} act on $M_{n}\left(\mathbf{F}_{p}\right)^{(0)}$ by conjugation. Then $M_{n}\left(\mathbf{F}_{p}\right)^{(0)}$ is a cyclic $\mathbf{F}_{p}\left[U_{n}\right]$-module generated by $E_{n 1}$.

One applies this lemma to the successive quotients

$$
\left(I_{n}+p^{t} M_{n}\left(\mathbf{Z}_{p}\right)\right) /\left(I_{n}+p^{t+1} M_{n}\left(\mathbf{Z}_{p}\right)\right)
$$

for $t \geq 1$, all of which can be identified with $M_{n}\left(\mathbf{F}_{p}\right)$ by the maps

$$
I_{n}+p^{t} A \longrightarrow A \quad\left(\bmod p M_{n}\left(\mathbf{Z}_{p}\right)\right)
$$

The action of D_{n} on the elements of T_{n}

The above topological generating set T_{n} for P_{n} has an additional property. Each element generates a subgroup (topologically) which is fixed by the action of D_{n}.

If one conjugates by an element d of D_{n}, with entries d_{1}, \ldots, d_{n} along the diagonal, then

$$
d\left(I_{n}+E_{i j}\right) d^{-1}=\left(I_{n}+E_{i j}\right)^{d_{i} d_{j}^{-1}}
$$

In particular, since $\left(I_{n}+p E_{n 1}\right)=\left(I_{n}+E_{n 1}\right)^{p}$, one has

$$
d\left(I_{n}+p E_{n 1}\right) d^{-1}=\left(I_{n}+p E_{n 1}\right)^{d_{n} d_{1}^{-1}} .
$$

These facts about P_{n} and the action of D_{n} on that group is a

A refinement of the Burnside Basis Theorem

Suppose that Π is a pro- p group and that Δ is a finite abelian group such that every element of Δ has order dividing $p-1$. Suppose that Δ acts on Π. Let $\widetilde{\Pi}$ denote the Frattini quotient of Π, the maximal abelian quotient of Π which has exponent p. Then $\tilde{\Pi}$ is an \mathbf{F}_{p}-vector space with a linear action of Δ. Assume it is finite dimensional.

Lemma: If $v \in \widetilde{\Pi}$ and Δ acts on v by a character $\chi: \Delta \rightarrow \mathbf{F}_{p}^{\times}$, then there exists an element $\pi \in \Pi$ which is mapped to v by the map $\Pi \rightarrow \widetilde{\Pi}$ and such that

$$
\delta(\pi)=\pi^{\chi(\delta)}
$$

p-rational number fields

Shafarevich proved the following theorem in the 1960s.
Theorem Let $K=\mathbf{Q}\left(\mu_{p}\right)$. Assume that p is an odd, regular prime. Let M be the compositum of all finite p-extensions of K which are unramified except at the prime above p. Let $\Pi=\operatorname{Gal}(M / K)$. Then Π is a free pro-p group on $\frac{p+1}{2}$ generators.

The field M is very big in general. It contains $K\left(\mu_{p^{t}}\right)$ for all $t \geq 1$. It contains the field generated by the p^{t}-th roots of all units in that field. It contains the field generated by all the p^{t}-th roots of all units in all of those new fields. Etc.

In general, a number field K is said to be p-rational if
$\Pi=\operatorname{Gal}(M / K)$ is a free pro- p group.

The basic idea of the construction

Consider $K=\mathbf{Q}\left(\mu_{p}\right)$ and assume that $p \geq 3$ and is a regular prime. Let $\Delta=\operatorname{Gal}(K / \mathbf{Q})$.

1. If $\frac{p+1}{2} \geq n$, then one can construct a surjective homomorphism $\sigma_{0}: \Pi \rightarrow P_{n}$.
2. If σ_{0} is chosen carefully, then one can extend σ_{0} to a homomorphism

$$
\sigma: \operatorname{Gal}(M / \mathbf{Q}) \rightarrow D_{n} P_{n}
$$

3. Define $\rho=\sigma \otimes \chi_{p}$.

Then the image of ρ is an open subgroup of $G L_{n}\left(\mathbf{Z}_{p}\right)$.

The structure of $\mathrm{Ga} /(\mathrm{M} / \mathbf{Q})$

Let $K=\mathbf{Q}\left(\mu_{p}\right)$.
Recall the notation $\Delta=\operatorname{Gal}(K / \mathbf{Q})$ and $\Pi=\operatorname{Gal}(M / K)$. Let $G=G a l(M / \mathbf{Q})$.

We have an exact sequence

$$
1 \longrightarrow \Pi \longrightarrow G \longrightarrow \Delta \longrightarrow 1
$$

This sequence turns out to split and so we can identify Δ with a subgroup of G. Then G is a semidirect product and Δ acts on Π by conjugation.

The structure of $\operatorname{Gal}(M / \mathbf{Q})$

If p is regular, then the Frattini quotient $\widetilde{\Pi}$ can be identified with $G a l(L / K)$, where $L=K(\{p-$ th roots of units in $K\})$.

The action of Δ on $\widetilde{\Pi}$ is determined by the action of Δ on the units of K. The characters of Δ which occur in its action on $\tilde{\Pi}$ are

$$
\widehat{\Delta}^{\text {odd }} \cup\left\{\chi_{0}\right\}
$$

all with multiplicity 1.
Thus, one can choose a topological generating set for Π so that Δ acts on the generators by the above characters.

The construction of σ

Δ acts on Π. Under the assumption that p is a regular prime, the Δ-type for this action is $\widehat{\Delta}^{\text {odd }} \cup\left\{\chi_{0}\right\}$.

If we choose a homomorphism $\varepsilon: \Delta \rightarrow D_{n}$, then we have an action of Δ on P_{n}. The Δ-type of P_{n} is a set of n elements of $\widehat{\Delta}$, depending on ε. If one can arrange to have

$$
\Delta \text { - type of } P_{n} \leq \Delta \text { - type of } \Pi
$$

then we can define a surjective, Δ-equivariant homomorphism $\sigma_{0}: \Pi \rightarrow P_{n}$.

We can then extend σ_{0} to the semidirect product $G=\Delta \Pi$:

$$
\sigma: G \longrightarrow D_{n} P_{n}
$$

The choice of ε

If $\left[\frac{n}{2}\right] \leq \frac{p-1}{4}$, then one can choose

$$
\chi_{1}, \ldots, \chi_{n} \in \widehat{\Delta}^{\text {odd }} \cup\left\{\chi_{o}\right\}
$$

so that they are distinct and $\chi_{1} \cdots \chi_{n}=\chi_{0}$.
One can then define $\varepsilon: \Delta \rightarrow D_{n}$ by using characters $\varepsilon_{1}, \ldots, \varepsilon_{n}$ chosen so that

$$
\varepsilon_{1} / \varepsilon_{2}=\chi_{1}, \ldots, \varepsilon_{n} / \varepsilon_{1}=\chi_{n}
$$

The other cases

2. $n=3, p \equiv 1(\bmod 4)$ and $p<10,000$ (and even $p<3 \times 10^{9}$ if $p \equiv 1$ or $4(\bmod 5)$).

One applies the idea to $K=\mathbf{Q}\left(\mu_{5}\right)$. For $p \neq 5$, it turns out that $\Pi=G a l(M / K)$ is a free pro- p group (on 3 generators) if and only if $\frac{1+\sqrt{5}}{2}$ is not a p-th power in the completion of K at the prime(s) above p. This is true for all the primes that we've check (myself and Rob Pollack).
3. $p=3,4 \leq n \leq 29$;

One applies the idea to

$$
K=\mathbf{Q}(\sqrt{-1}, \sqrt{13}, \sqrt{145}, \sqrt{209}, \sqrt{269}, \sqrt{373})
$$

which turns out to be p-rational for $p=3$.
This example was found by Robert Bradshaw.

Thank you!

