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Introduction

This talk will be about representations of the absolute Galois group
of Q:

GQ = Gal(Q/Q) .

We will consider continuous representations

ρ : GQ −→ GLn(Zp)

where n ≥ 3 and Zp denotes the ring of p-adic integers. We will
be interested in constructing such representations so that the index

[GLn(Zp) : Im(ρ)]

is finite. Equivalently, this means that Im(ρ) is an open subgroup
of GLn(Zp).



The case n = 1

For n = 1, for any prime p, and for any t ≥ 0, the group of pt-th
roots of unity in Q

×
is isomorphic to Z/ptZ. We denote this group

by µpt . The group GQ acts on µpt . One can consider the inverse
limit of the µpt ’s as t → ∞. This is isomorphic to Zp and has a
continuous action of GQ. This gives a continuous representation

χp : GQ −→ GL1(Zp) .

The map χp is surjective.



The case n = 2

For n = 2, One obtains examples from the theory of elliptic curves.
Suppose that E is an elliptic curve defined over Q. Suppose that p

is any prime. For any t ≥ 0, the pt-torsion in the abelian group
E (Q) is isomorphic to Z/ptZ × Z/ptZ. It is denoted by E [pt ].

The Galois group GQ acts on E [pt ]. The p-adic Tate module for E

is defined to be the inverse limit of the groups E [pt ] as t → ∞. It
is a free Zp-module of rank 2. Thus, we get a continuous
representation

ρE ,p : GQ −→ GL2(Zp) .



Serre’s Theorem

There is a famous theorem of Serre which states that if
EndC(E ) ∼= Z, then Im(ρE ,p) has finite index in GL2(Zp).

Furthermore, under the same assumption, ρE ,p is surjective for all
but finitely many primes p (depending on E ).

The assumption that EndC(E ) ∼= Z means that E does not have
complex multiplications. The entire first page of Cremona’s table
of elliptic curves are such non-CM elliptic curves.



Some known results when n = 3

Representations ρ : GQ → GL3(Zp) with open image have been
constructed by Spencer Hamblen when p ≡ 8 (mod 21). The
approach uses deformation theory.

Surjective representations ρ : GF → GL3(Zp), where F = Q(
√
−3),

and for all but finitely many primes p ≡ 1 (mod 3), have been
constructed by Margaret Upton. The construction is based on the
action of GF on the p-adic Tate module of certain abelian varieties
whose endomorphism ring contains the integers of F .



More results for n ≥ 3.

I have managed to construct such representations ρ in the
following cases:

1. p is an odd, regular prime and
[

n
2

]
≤ p−1

4

In particular, the construction works if n = 3 and p is a regular
prime ≥ 5.

Definition: Recall that p is a regular prime if p doesn’t divide the
class number of Q(µp). Here µp denotes the p-th roots of unity.

All primes p < 100 are regular, except for p = 37, 59, and 67.



More results.

2. n = 3, p ≡ 1 (mod 4) and p < 10, 000

(and even p < 3 × 109 if p ≡ 1 or 4 (mod 5)).

3. p = 3, 4 ≤ n ≤ 29; p = 5, 4 ≤ n ≤ 13.

In principle, the construction should work for every pair (p, n)
where p is odd and n ≥ 3, except for (p, n) = (3, 3). It depends on
finding an abelian extension K of Q with certain properties.



Our approach

The approach that we will describe here is an algebraic number
theory approach and involves the structure of the Galois groups of
certain infinite extensions. The approach also involves some
observations about the structure of a Sylow pro-p subgroup of
SLn(Zp).

A Sylow p-subgroup of SLn(Fp) is the subgroup Un of upper
triangular, unipotent matrices. A Sylow pro-p subgroup of SLn(Zp)
is the subgroup of matrices whose image under reduction modulo p

is in Un. We denote this subgroup by Pn.

Let Dn denote the subgroup of the diagonal matrices in GLn(Zp)
whose entries are (p − 1)-st root of unity (in Z×

p .) Thus, Dn is a
finite subgroup of GLn(Zp) of order (p − 1)n.

The group Dn acts (as a group of automorphisms) on Pn by
conjugation.



More about the structure of Pn

The Sylow pro-p subgroup Pn of SLn(Zp) can be topologically
generated by the following set of n elements:

Tn =
{

In + E12, . . . , In + E(n−1)n

} ⋃ {
In + pEn1

}
.

In contrast, the congruence subgroup In + pMn(Zp) requires n2

topological generators. Its intersection with SLn(Zp) requires
n2 − 1 generators.



Why does Tn generate Pn?

A key lemma in proving that Pn is generated topologically by Tn is
the following. We let Mn(Fp)

(0) denote the matrices of trace 0.

Lemma: Let Un act on Mn(Fp)
(0) by conjugation. Then

Mn(Fp)
(0) is a cyclic Fp[Un]-module generated by En1.

One applies this lemma to the successive quotients

(
In + ptMn(Zp)

)/(
In + pt+1Mn(Zp)

)

for t ≥ 1, all of which can be identified with Mn(Fp) by the maps

In + ptA −→ A (mod pMn(Zp)) .



The action of Dn on the elements of Tn

The above topological generating set Tn for Pn has an additional
property. Each element generates a subgroup (topologically) which
is fixed by the action of Dn.

If one conjugates by an element d of Dn, with entries d1, ..., dn

along the diagonal, then

d
(
In + Eij

)
d−1 =

(
In + Eij

)did
−1
j .

In particular, since (In + pEn1) = (In + En1)
p, one has

d
(
In + pEn1

)
d−1 =

(
In + pEn1

)dnd
−1
1 .

These facts about Pn and the action of Dn on that group is a



A refinement of the Burnside Basis Theorem

Suppose that Π is a pro-p group and that ∆ is a finite abelian
group such that every element of ∆ has order dividing p − 1.
Suppose that ∆ acts on Π. Let Π̃ denote the Frattini quotient of
Π, the maximal abelian quotient of Π which has exponent p. Then
Π̃ is an Fp-vector space with a linear action of ∆. Assume it is
finite dimensional.

Lemma: If v ∈ Π̃ and ∆ acts on v by a character χ : ∆ → F×
p ,

then there exists an element π ∈ Π which is mapped to v by the

map Π → Π̃ and such that

δ(π) = πχ(δ) .



p-rational number fields

Shafarevich proved the following theorem in the 1960s.

Theorem Let K = Q(µp). Assume that p is an odd, regular

prime. Let M be the compositum of all finite p-extensions of K

which are unramified except at the prime above p. Let

Π = Gal(M/K ). Then Π is a free pro-p group on p+1
2 generators.

The field M is very big in general. It contains K (µpt ) for all t ≥ 1.
It contains the field generated by the pt-th roots of all units in that
field. It contains the field generated by all the pt-th roots of all
units in all of those new fields. Etc.

In general, a number field K is said to be p-rational if
Π = Gal(M/K ) is a free pro-p group.



The basic idea of the construction

Consider K = Q(µp) and assume that p ≥ 3 and is a regular
prime. Let ∆ = Gal(K/Q).

1. If p+1
2 ≥ n, then one can construct a surjective

homomorphism σ0 : Π → Pn.

2. If σ0 is chosen carefully, then one can extend σ0 to a
homomorphism

σ : Gal(M/Q) → DnPn .

3. Define ρ = σ ⊗ χp.

Then the image of ρ is an open subgroup of GLn(Zp).



The structure of Gal(M/Q)

Let K = Q(µp).

Recall the notation ∆ = Gal(K/Q) and Π = Gal(M/K ). Let
G = Gal(M/Q).

We have an exact sequence

1 −→ Π −→ G −→ ∆ −→ 1

This sequence turns out to split and so we can identify ∆ with a
subgroup of G . Then G is a semidirect product and ∆ acts on Π
by conjugation.



The structure of Gal(M/Q)

If p is regular, then the Frattini quotient Π̃ can be identified with
Gal(L/K ), where L = K ( {p − th roots of units in K} ).

The action of ∆ on Π̃ is determined by the action of ∆ on the
units of K . The characters of ∆ which occur in its action on Π̃ are

∆̂odd ∪ {χ0} ,

all with multiplicity 1.

Thus, one can choose a topological generating set for Π so that ∆
acts on the generators by the above characters.



The construction of σ

∆ acts on Π. Under the assumption that p is a regular prime, the
∆-type for this action is ∆̂odd ∪ {χ0}.

If we choose a homomorphism ε : ∆ → Dn, then we have an action
of ∆ on Pn. The ∆-type of Pn is a set of n elements of ∆̂,
depending on ε. If one can arrange to have

∆ − type of Pn ≤ ∆ − type of Π ,

then we can define a surjective, ∆-equivariant homomorphism
σ0 : Π → Pn.

We can then extend σ0 to the semidirect product G = ∆Π:

σ : G −→ DnPn .



The choice of ε

If
[

n
2

]
≤ p−1

4 , then one can choose

χ1, ..., χn ∈ ∆̂odd ∪ {χo}

so that they are distinct and χ1...χn = χ0.

One can then define ε : ∆ → Dn by using characters ε1, ..., εn

chosen so that

ε1/ε2 = χ1, . . . , εn/ε1 = χn .



The other cases

2. n = 3, p ≡ 1 (mod 4) and p < 10, 000

(and even p < 3 × 109 if p ≡ 1 or 4 (mod 5)).

One applies the idea to K = Q(µ5). For p 6= 5, it turns out that
Π = Gal(M/K ) is a free pro-p group (on 3 generators) if and only

if 1+
√

5
2 is not a p-th power in the completion of K at the prime(s)

above p. This is true for all the primes that we’ve check (myself
and Rob Pollack).



3. p = 3, 4 ≤ n ≤ 29;

One applies the idea to

K = Q(
√
−1,

√
13,

√
145,

√
209,

√
269,

√
373)

which turns out to be p-rational for p = 3.

This example was found by Robert Bradshaw.



Thank you!


