Reconstruction of penetrable obstacles in
acoustics

Sei Nagayasu* Gunther Uhlmann! Jenn-Nan Wang?

Abstract

We develop a reconstruction algorithm to determine penetrable ob-
stacles in a region in the plane from acoustic measurements made on
the boundary. This algorithm uses complex geometrical optics solu-
tions to the Helmholtz equation with polynomial-type phase functions.
We have also tested the algorithm with simulated data.

1 Introduction

Let D be an unknown obstacle with an unknown index of refraction subset of
a larger domain €2 with an homogeneous index of refraction. Assume that D is
penetrable. We send an acoustic wave from the boundary of 2. Suppose that
we are given all possible Cauchy data or the Dirichlet-to-Neumann measured
on 0Jf). The inverse problem we consider in this paper is to determine the
shape of D using the boundary measurements.

In this paper, we consider this problem in the plane, that is, we assume
D € Q C R% For simplicity, we suppose that both D and Q have C*
boundaries. Let vp € C*(D) satisfy yp > ¢, for some positive constant c,
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and denote ¥ := 1+ vpXxp, where yp denotes the characteristic function of
D. Let k > 0 and consider the steady state acoustic wave equation in 2 with
Dirichlet condition

v = f on ON. (1.1)

{v-(Wka%:o in Q,
In the case that 7 = 1, the problem (1.1) is the boundary value problem for
the Helmholtz equation

{ AUO + kZUO =01in Q, (12)

vo = f on ON.

Throughout the paper, we assume that k2 is not a Dirichlet eigenvalue of the
operator —V - (7Ve) and —A in Q. It is known that for any f € HY?(0%),
there exists a unique solution v to (1.1). Thus, we can define the Dirichlet-
to-Neumann map Ap : HY/2(0Q) — H~Y2(0Q) for (1.1) by

Apf = @

1/2
5 for f € H/*(09Q).

o0

The inverse problem consists of determining D from Ap. The domain D can
also be treated as an inclusion embedded in €2. The aim of this work is to
give a reconstruction algorithm for this problem. Note that the information
on the medium parameter vp inside D is not known a priori.

The main tool in our reconstruction method is the complex geometri-
cal optics (CGO) solutions with polynomial-type phase functions for the
Helmbholtz equation. This type of CGO solutions has been introduced in [17]
for general second order elliptic equations or systems having the Laplacian
as the principal part, which includes the Helmholtz equation. However, in
order to obtain more explicit forms in the lower orders of the CGO solutions,
we will not adopt the approach in [17]. Instead, we will take advantage of
the transformation between the harmonic functions and the solutions to the
Helmholtz equation in two dimensions found by Vekua [19] (also see [8]) to
construct the needed CGO solutions.

Having obtained the CGO solutions with polynomial phases for the Helmholtz
equation, we apply them to determine the shape of D by Ap. CGO solutions
have been found to be useful in detecting some geometrical information of
D in several inverse problems. For the inclusion problem in the static case,
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i.e., k = 0, there are several articles, and some of them include numerical
results, dealing with either the conductivity equation (the first equation of
(1.1) with k£ = 0) or the isotropic elasticity [1], [5], [6], [4], [16], [17], and [18].
This type of method was called the enclosure method by Ikehata. We refer
to his survey paper [7] for some of the early developments.

For the reconstruction of penetrable obstacles or inclusions in acoustics
by the enclosure type method, we mention the work [9] by Ikehata. In this
paper he considers the reconstruction of a penetrable polygon having homoge-
neous medium different from the background one by a single pair of Cauchy
data in two dimensions. Using CGO solutions with linear phases, he showed
that one can reconstruct the convex hull of the polygonal obstacle using a
single measurement. In our paper, we consider a general penetrable obstacle
and assume the medium inside of the penetrable obstacle is an unknown in-
homogeneous function. Using CGO solutions with polynomial-type phases,
we are able to reconstruct more information on the shape of the penetrable
obstacle from the Dirichlet-to-Neumann map. Especially, in theory, we can
completely reconstruct certain class of penetrable objects such as star-shaped
obstacles. For other related results, we would like to mention that Nakamura
and Yoshida [15] used CGO solutions with limiting Carleman weights intro-
duced in [11] to reconstruct some non-convex sound-hard obstacles from the
Dirichlet-to-Neumann map. The level set of the limiting Carleman weights
are circles (in two dimensions) or spheres (in three dimensions). Also, we
mention that the uniqueness of determining a penetrable obstacle by the
scattering amplitude at a fixed energy was proven by Isakov [10] and Kirsch,
Kress [12].

Unlike the static case, for the enclosure type method in the Helmholtz
equation, we need to analyze the effect coming from the term k2 due to the
loss of positivity in the equation. More precisely, we have to be able to bound
the L? norm of w := v — vy in © in terms of vy in D (see (3.16)) and on 9D
(see (3.19)). The estimate (3.16) is easier. Our main focus is on (3.19).
In the impenetrable case, this can be achieved using elliptic regularity with
smooth coefficient and the Sobolev embedding theorem (see [15]). However,
in the penetrable case, the coefficient is merely L>°. We do not have enough
smoothness on the solution to apply the Sobolev embedding theorem. The
main technical part of this work is to establish the needed estimate.

In section 2 we construct the CGO solutions to the Helmholtz equation
with polynomial phase functions and their properties. In section 3 we es-
tablish some identities and the estimates we need. In section 4 we prove



our main result on the determination of D from Ap under a “curvature as-
sumption” on dD on the intersection of the level sets of the real part of the
phases of the CGO with 0D (see Theorem 4.1). In section 5 we show that
the curvature assumption is satisfied for a large class of CGO solutions. In
section 7 we state the reconstruction algorithm. Finally in section 8 we test
this algorithm with simulated data.

2 CGO solutions

In this section we want to construct CGO solutions with polynomial phases
for the Helmholtz equation. We do this by combining the idea in [17] and the
transform introduced by Vekua (see (13.9) on page 58 in [19]). Let us first
introduce n(x) = ¢, ((x1 — z41) + (22 — I*72))N as the phase function, where
¢, € Csatisfies |c,| = 1, N is a positive integer, and z, = (2.1, 24 2) € Rg\ﬁ.
Without loss of generality we may assume that z, = 0 using an appropriate
translation. We put ng(z) := Ren(x). Note that

nr(x) = r¥ cos N(6 — 0,) for z = r(cos b, sinf) € R%
We now define an open cone

.= {T(COSQ, sinf) : 10 —6,| < QN}

with an opening angle 7/N (see Figure 1). It is clear that ng(z) > 0 for all
rzel.

Given any h > 0, V;,(z) := exp(n(z)/h) is a harmonic function. Following
Vekua [19], we define a map T}, on any harmonic function V(z) by

T @) = V)~ [ Vi) g okt T=) e
k|x|/ (1= $2)2) Jy (klls) ds

where J,, is the Bessel function of the first kind of order m. We now set
V() := T}, Vi (x). Then V¥ (z) satisfies the Helmholtz equation AV +k2V}F =
0 in R%. The function V}f is a CGO solution to the Helmholtz equation in I'
by the following lemma.
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Figure 1: The definition of I

Lemma 2.1. We can write
Vi (z) = exp <$hx)> (1+ Ro(z)) in T, (2.1)
where Ry(x) = Ro(x; h) satisfies

i T,

k2 2 N]{ZQ N+1 ]{32 )
Raloll < hp o S0 < FEE i
dng(z)” | Ox; Ang () 21g ()
Proof. Let x € I'. We note that

Y

ute) < el [ e (3 Re(n((1 = ) = (o)) ) (b1l ds
< k:2|2x|2 /01 exp (% Re(n((l — *)x) — n(m))) sds

since
! 1
Ry(x) = —k|x|/ exp <E <77((1 — s)x) — n(m))) Ji (k|z|s) ds (2.2)
0
and |J;(t)| <t/2 for t > 0. On the other hand, we can see that

Re(n((l — 32)36) — n(x)) = Re(—n(x)(l —(1- SQ)N))
= —nr(z) (1 - (1= s)") < —nr(z) s (2.3)

)



for any 0 < s < 1 using the formula
1—s*—(1-)"N=(1-5)(1—-(1—-5)""") >0 for any s € (0,1).

Hence, since ng(x) > 0 in I', we have

o)) < B [ e (3 Re(n((1 = 10) =) ) st

k%ﬁ/l <7M@§) k?|x]?
< exp | — sds < h )
- 2 0 P h dng ()

In a similar fashion we can obtain the estimate for dRy/0z; since we have

Hal [

VAa) = == | (1= )T (1= 1)) = Tn(a))
X exp ( <77((1 — *)zx) — ?7(:6))) Ji (k|z|s) ds
— Kz /01 exp (%(77((1 —s%)x) — n(x))) Jo(k|z|s) s ds

and |Jo(t)| <1 for any ¢t > 0. O

S S

From the above lemma, we conclude that V,f is a CGO solution to the
Helmholtz equation in I' N 2. We now extend it to the whole domain €2 by
using an appropriate cut-off. Let I := {x € " : nr(x) = 1/s} for s > 0. This
is the level curve of nr (see Figure 2). For ¢ > 0 small enough and #* > 0
large enough, we define the function ¢, € C*(R?) by

1 forze |J I, telod]
¢t($) _ 0<S<t+€/2
0 forzeR*\ |J I, te(0,#]

0<s<t+e

(see Figure 3) and
1026 (x)] < Cy for |a] <2, 2€Q, t€[0,]

for some positive constant Cy depending only on 2, N, t* and e. Next we
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Figure 2: A level curve of ng.
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Figure 3: The definition of ¢,



define the function V,; by

Vin() 1= dulz) exp (—

Then we know by Lemma 2
tives are as follows:

1 _
E) Vi(x) for z € Q.

.1 that the dominant parts of V; and its deriva-

(OforxGQ\ U ls,
0<s<t+te
Vinke) = £ exp (3(=4 +10) ) (@) + Su(al0) (24)
for x € QN U ls,
\ 0<s<t+e
rOforazEQ\ U ls,
0<s<t+e
Winle) = § o (5(~5 +10) ) @) Vo) + S@n) @29
forz € QN U ls
0<s<t+e

\

for t € (0, and h € (0, 1],
satisfy

where Syo(xz) = So(x;t, h) and S(z) = S(x;t, h)

|So(@)], [S(z)| < Cy forany x € Q@ | L, t€ (0,89, he(0,1]

0<s<t+e

with a positive constant Cy depending only on Q, N, tf, ¢ and k. Unfor-

tunately, the function V.,

does not satisfy the Helmholtz equation in €.

However, if we let vy, be the solution to the Helmholtz equation in €2 with
boundary value f;; := Vi 1|aq, then the error between V; j, and vy, p is expo-

nentially small as shown in

the following lemma.

Lemma 2.2. There exist constants Cy, C) > 0 and a > 0 such that

/

cy _ _
lvoen = Vinllaz@) < 706 alh < Coe=/M

for any h € (0,1], where the constants Cy and Cj depend only on 2, k,

N, t* and e; the constant
1/t—1/(t+¢/2).

a depends only on t' and €; and we set a; =



This lemma can be proved in the same way as Lemma 4.1 in [17]. So we
omit the details here.

For our inverse problem, the difference between the two Dirichlet-to-
Neumann maps Ap and Ay plays a crucial role. We define the functional
E(t, h) by

E(t,h) = /a (Ap = ) fin Fondo. (2.6)

Roughly speaking, for a fixed large IV, we can show that if DN (Uo <s<t ls) =0
then E(t,h) — 0 as h — +0; if DN (Uyeyeyls) # 0 then E(t,h) — +oo as
h — +0. We will state our main result more precisely in Theorem 4.1.

3 Some identities and estimates

In this section, we derive some identities and estimates for solutions to some
Dirichlet problems which are needed later. We denote C' > 0 a general
constant in this section. The constant C' depends only on €, D, vp and k.
When a constant depends on other data, we will denote the dependence by
writing as a subscript, for example C, the dependence of the constant on
q. For a fixed f € H'/?(09), let vy and v be the solutions to the Dirichlet
problems (1.2) and (1.1), respectively. As before, we put w = v — vy. Note
that w satisfies the Dirichlet problem

{ V- (VW) + kw= -V - ((§ — 1)Vu,) in Q, 65.1)
w = 0 on 0.
We first show an estimate for w.
Lemma 3.1. For any 2 < q < 4, we have
[w][Loe(e) < Call Vool o). (3.2)

Proof. Recall that k? is not a Dirichlet eigenvalue of —V - (7Ve) in Q. From
the well-posedness of the boundary value problem (3.1) (see Corollary 8.7 in
3], for example), we have

[l @) < CIE = DVl ) < C V0l 2y -



On the other hand, since W := w satisfies the Dirichlet problem

V- (FVW) = —k*w — V- ((F — 1)Vup) in Q,
W =0 on 0,

we have the estimate

”wHL“(Q) < Cq (”kZ@U”LW(sz) + ”(;? - 1)VU0”LQ(SZ))
< Gy (Jlwl|r2) + Vol apy)

by Theorem 8.16 in [3] and Holder’s inequality. Hence we get that

|wl| o) < Cq (Jwl L2y + [[Vvoll Lapy) < Cq (lwllmie) + Vol La(n))
< Cy (IVvoll 2oy + Vol o)) < Coll Vol La(n)

by using Holder’s inequality again. O
We next prove some useful identities.

Lemma 3.2. We have
/ (Ap — Ng)f fdo = Re/( — 1)Vu - Vg de. (3.3)
a0 Q

Proof. 1t is clear that
Ov
do = do =
aQGV(pU /75@0 /V
:/V- ﬁVv)@dx+/7Vv-V¢daz
Q Q
:—kz/vadx—i-/ﬁVv-V@dx
Q Q

for any ¢ € H'(2). Since v = vg = f on 09, the left-hand side of the identity
above has the same value whether we take ¢ = v or ¢ = vy and it is equal
to [,q Apf fdo. Thus we have

/ ADf?daz—kQ/vv_od:H/ﬁw-W—odx
[2)9] Q Q
:—k2/|v|2dx+/5|Vv|2dx€R.
Q Q
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The right-hand side of the identity above is real. Hence, by taking the real
part, we obtain

/ Apf fdo = —k2Re/vv_0dm+Re/'in-Vv_0dm. (3.4)
o0 Q Q

In the same way, we show that

[ narFar = —Re [ v +Re [ Vo Vimar - (39)
B 0 Q

since

31}0 o o .
pdo = | Avypdr+ [ Vv, -Vodx
0 v Q Q
:—kQ/andx-l—/VUo'V@dl'
0 0
for any ¢ € H'(Q). Now (3.3) follows easily from (3.4) and (3.5). O

The estimates (3.8) and (3.9) in the following lemma play an essential
role in our reconstruction algorithm.

Lemma 3.3.
[ (o= 207 o
o0
—/"?|Vw|2d$+k2/|w|2d$+/(”?—1)|Vvo|2dx, (3.6)
Q Q
/ (Ap — No)f T do
/|Vw|2daz k2/|w|2da:+/ —1)|Vo|* da. (3.7)

In particular, we have

/ (Ap — Ag ffda<k;2/|w|2dx+/ vp |Vvol? da, (3.8)
00

/ (Ap — Ay) ffda>/ e |Vvo|2dx—kz2/|w|2dx. (3.9)
o0 pl+p Q
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Proof. By multiplying the identity
0=V -FAVw) + V- ((F - 1)Vu) + kw

by w and integrating the result over €2, we get

O—/V ”wa wd$+/V v —1) Vvo)wdx+/k2wwdac

Q
/7|Vw| da:+/ v—wda
o0 OV

- ~ 0
—/(7—1)V00-dex+/ (”y—l)ﬂwda+k2/|w|2d1’
Q 0 v Q
——/§|Vw|2dx—/@'—1)VUO-dex+k2/|w|2dx
0 0 0
—/§|Vw|2dx—/(§—I)VUO-VEdac
0 0
+/(§— 1)|Vvo|2daz+k2/|w|2da:.
Q Q

Taking the real part of this identity and substituting the identity (3.3) im-
mediately leads to (3.6). The identity (3.8) is an easy consequence of (3.6).
Similarly, by multiplying the identity

0=V -((3—-1)V0v)+Aw + kw

by w and integrating the result over €2, we obtain

O—/V v—1) Vv)wd:p—l—/Aw@dx—i—/k:Qwde
0

Q

/( - 1)Vou- deaz—/|Vw|2dx+/k2|w|2dx
Q
Z—/(”v“—l)IWIde+/(“’—1)vu Vg dx

Q

/|Vw|2dx+k’2/|w|2dac

which implies (3.7). Finally, (3.9) follows from (3.7) and the formula
IVw|* + (7 — 1)|Vv|> =7 |Vuv|* = 2Re Vo - Vg + |[Vug|?

2
+ (1 _— :) |<7’U0|2.
Y

::)// Vv — :VUO
v

12



In view of (3.8) and (3.9), we need to estimate ||w||;2). To begin with,
we consider the boundary value problem

(5 k2p = in Q
{V (Vp) + k*p =w in Q, (3.10)

p =0 on 0.

Note that there exists a unique solution p € H(£2) to (3.10). We can derive
the following estimates for p.

Lemma 3.4. Let p be the solution to (3.10), then

Il 1) < Cllwl| L2y, (3.11)
1Pl () < Cllwllzz@). (3.12)

Furthermore, for any 2 < g <4 and any 0 < a < 1, we have
IPllee@) < Caa(Iwlzz@ + V00l zaco) ). (3.13)

Proof. The estimate (3.11) follows directly from the well-posedness of the
boundary value problem (3.10). On the other hand, we have

Ipllz~@) < Cl=k*p + 0|20 (3.14)

by Theorem 8.16 in [3] since P := p satisfies the Dirichlet problem

-(3VP) = —k*p +w in Q
{V (7VP) p+w in Q, (3.15)

P =0 on 0f).

Combining (3.14) and (3.11), we obtain (3.12). Finally, by virtue of Corol-
lary 7.3 in [13], we have

Iplloe@) < Call=k*p + | L=(0)
Then (3.13) follows from by this estimate, (3.12) and (3.2). O
We now prove the first upper bound on the L? norm of w.

Lemma 3.5. We have

/|w|2dx < c/ Vo2 da. (3.16)
Q D
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Proof. By the first equation of (3.10), we see that
/|w|2d:1: = / w(V - (YVp) + k2p> dx
Q Q
= —/Vw-ﬁVpdx%—kQ/wpdx
Q o)

:/Q<V. ﬁvw)+k2w>pda::—/gv- <(7—1)Vvo>pd37

= /(7 —1)Vug - Vpdx = / YpVuvy - Vpdz. (3.17)
Q D
Hence we get (3.16) by the Cauchy-Schwarz inequality and (3.11). O

From (3.8), (3.9) and (3.16), we immediately obtain

Corollary 3.6.

/ (Ap — Ao)f Fdo
o0

< C/|Vv0|2dx. (3.18)
D

Now we prove another bound on the L? norm of w. We first define

g = /
oD

for any xg € Qand 0 < a < 1.

31}0
o (x)

| — 2o|* do(x)

Lemma 3.7. For any xqg € Q, 0 <a <1 and 2 < q <4, we have
[l do < Coa( By + Leoall Veollzom) +llwolam)) - (319

Proof. By (3.17), we get

/|w|2daz = / YpVuvy - Vpdx
0 D

ov
:_/V.(VDVvo)pd:L‘jL/ ”yDa—Opda
D oD v

v

:—/VVD-Vvopdx—/7DAv0pdx+/ YD Opdcr
D D aD o

14



0
——/ VvD-Vvopdx—l—kQ/vaopdx—k/ vpﬂpda. (3.20)
D D oD ov

Hence it is enough to estimate each term of the right-hand side of (3.20).
We first show that we can estimate the first term as

/ Vb - Vugpdx
D

< Cllvoll 2y llwll L2 - (3.21)
Note that

/ Vvp - Vugpdx
D

ovp
= ‘—/vov-(pVﬂyD)dm—F/ o~ L pdo
D v

< C (ol 2y llpl o) + ool -+r200) Pl 1720 )
< C(llvoll 2oy + voll 2o ) 1Pl 300y
Therefore, using (3.11), we can obtain (3.21) if we show that

[voll-1720py < CllvollL2(p)- (3.22)
To derive (3.22), we remark that

11 ir-1/2(0p) < ClIY || Ha(D)

holds for ¢ € D'(D) satisfying ¢ € L*(D) and Ay € L*(D), where ||[¢| u, ()
is defined by [[91%, p) = 1¥1172(0) HII A% 2y (see, for example, Lemma 1.1
in [2]). Using this fact, we immediately obtain that

leollzz-1720m) < € (ool z2my + 100 z2py ) = € (lleollzzeoy + IIEoll o) ).

which is (3.22). To estimate the second term, we simply use (3.11) and obtain

/vaopd:r
D

We now estimate the last term of the right-hand side of (3.20). We have

< Cllvoll2myllpll 2oy < Cllvoll 2oy l|wll 20 (3.23)

| @ ‘2( ) (o) — () dor ()

0
+ ‘p(wo)/ %da

ov,
< Cq,a<||w||L2(n) + ||Vvo||Lq(D))f:co,a + Cllwl| 2@ / D 8—0 do
oD

15



by (3.13) and (3.12). On the other hand, using (3.22) and Holder’s inequality,

we can estimate
/ —Uoda—i-/vDAvodx—/Avaodm
) D D

/ %da
oD D
_ / 3’71)
oD

—Uoda—kQ/vaodx—/Avaodx
D D
< C(Iloli-1r20m) + Iollzaemy ) < Cllvollzzoy

ov

Consequently, we get

Ovo
d
ﬁup g

< c*q,a(nwumm + 190 e ) g + Cllwll gy lvoll 2oy (3:24)

Combining (3.20), (3.21), (3.23) and (3.24), we then have

0
/|w|2dx:—/ VVD-Vvopdx—i-k?/vaopdx—i-/ VD%pda
Q D D oD v

< Cllwo Lyl zz@) + Coa (llollzz@ + [ Vv0llan) ) L

SO

< &llwllfz + ?”UOH%Q(D)

o,

Cia
+ Elwllzq) + Z 2, o+ Coall Vol La(p)y Lg a-

The lemma follows by taking € > 0 small enough. (I

4 The main theorem and its proof

In this section, we prove our main theorem, Theorem 4.1, which is the key to
our reconstruction method. Here we denote the general constants by C, ¢ > 0.
The constants C' and ¢ depend only on Q, D, vp, k, N, c,, t* and . As in
Section 3, when a constant depends on other data, we denote the dependence
by subscript.

To begin, substituting v = vop, and f = fin (= vornlan) to (3.18) yields

|E(t,h)| < C’/|Vvo,t7h|2daz. (4.1)
D

16
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§=E(2)
b

Al

Figure 4: The coordinates transformation in defining a relative curvature.
On the other hand, applying estimate (3.19) to (3.9) for f = f; 5, we have
E(t,h) > c/ |Vvorn|® de (4.2)
D

b))
L*(D)

- ana (ItQ,h,a:O,a + Itahym():a”V/UO:tah ||LQ(D) + ||/ant7h|

forxg € Q2,2 < q¢<4and 0 < a < 1, where

It,h,zo,a = /
oD

Next we introduce a notion of relative curvature with respect to the level
curve of ng. Assume DNT # () and put ©p := sup,cprnr(z). Let zg €
{r €T :nr(x) = Op} NID. By simple translation and rotation 7', i.e. the
change of variables z = T'(x —xg), we can take the unit outer normal vector of
T(D—xg) at z = 0 as the vector (0,1). We now put H(z) := nr(T 'z +x0) —
©p, and apply the coordinates transformation (&1,&) = Z(2) := (21, H(2))
to a neighborhood of z = 0. The transformation = maps nr(x) = ©p near
xo to the line & = 0, and D near zy to a subdomain of the half space
{€ e R? : & < 0}. Let ¥ be the image of D near g by this transformation
(see Figure 4). We then call the curvature of ¥ at £ = 0 the relative curvature
to nr(z) = Op of OD at xy. We now can state our main theorem.

aUo,m

W(g;)‘ |z — @o|® do ().

Theorem 4.1. Assume DNT # (). Suppose that {z € T : nr(z) = Op}NoD
consists only of one point xy and the relative curvature to nr(x) = Op of 0D
at xg 1s not zero. Then there exist positive constants Cy, ¢; and hy such that
for any 0 <t < t* and 0 < h < hy the following holds:

17



(I) if 1/t > ©p then

Cle (2( 1 1 )) if 1
— X — —
Ben <] P PR\t Tt e P=ire/2
T gex g(———l—@) if <1
p CPA\ R\ TP t+e/2 P T

(IT) if 1/t < ©p then

2/, 1
E(t, h) 2 C1 eXp (ﬁ<_¥ + @D)) h_l/Q.

Remark 4.2. If DNT = () then we can prove

Cy 2, 1 1
Bt )| < ZLexp (2(-2
| (t’h”—h?eXp(h( t+t+5/2)>

in the same way as the proof of Theorem 4.1 (I) since VV,;, = 0 in D by
(2.5).

Remark 4.3. In the main theorem, Theorem 4.1, we impose some restriction
on the curvature of 0D at xy. However, in Section 5, we will show that the
curvature assumption is always satisfied as long as N is large enough.

Proof of Theorem 4.1. (I) By estimate (4.1), Lemma 2.2, and formula (2.5),
it is easy to see that

C o
[E(t, D) < CIVVinllFa) + Sge7*/"
C 2/ 1 C ourn
Sﬁexp<ﬁ<—¥+@p>>+ﬁe M for 0 < h<1.

Thus the estimates of E(t, h) in (I) is obvious.

(IT) In view of (4.2), it suffices to estimate [, |Vugn|* dz from below and
other remaining terms in the right side of (4.2) from above. Using Lemma 2.2
and (2.5), we can get that

[ Vvo,e.nl

2
L2(D)

1
> §HV‘/;5JLH%2(D) — IV (Vi = voun) 1720y

> 1 H%exp (%(_% i 77(:1:))) (6(2) V() + S(a)h)

2
. Og€f2a/h
L2(D")

18



2 o (o) o]
Al o
p(%< b)),
exp (%( % )) — Cle2/h, (4.3)

where we set D' := D N Uy yepyo s and D" := D N Uggepyepols. On the

other hand, by (2.4), (2.5), Lemma 2.2 and the Sobolev embedding theorem
(for two dimensions), we have

1 1 1
]t,h7$0704 S C E /BD exXp (E<—¥ + ﬁR(I))) |CL' — .fIfO|a dO'(Z') + CYe_a/h«7 (44)

1 1 1
Vo, bl Loy < C 5 Jlexp | - (-- + UR(fL’)) + Coe ", (4.5)
h h\ t La(D)
1 1 —a/h
loanllzzm) < C [lexp ( 5 (=5 +m(@) + Coe™ (4.6)
h\ t L2(D)
Therefore, our task now is to estimate
1/ 1 ?
exp | — <—— + nR(:U)) (4.7)
h t LQ(D//)
from below and
1 1
exp | — <—— + nR(x)> , (4.8)
h\ t La(D)

/aD exp <%<—% + 77R(ZE)>> |z — x0|® do(z) (4.9)

from above, where the index ¢ in (4.8) is ¢ = 2 (for (4.3) and (4.6)) or
2 < g <4 (for (4.5)).

We first look at (4.7). By translation and rotation with the orthogonal
matrix 7', we can assume that o = 0 and the unit outer normal vector of
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0D at xg = 01is (0,1). Then we can see that

1
(4.7) // eXp( <H(z)——+@D>> dz
T(D"—z0)
_ “ _1 2H(z /h
- (h< " @D ) /~/T(D”—xo dz

where we have used H(2) = nr(T 'z + x¢) — ©p. We now make the change
of variables (£1,&) = Z(2) := (21, H(2)). Notice that there exists a neigh-
borhood Uy of z = 0 such that the map £ = Z(z) is injective from Up to
=(Up) since we have det(0=/02)(0) = Nlxg|V~! # 0. In particular, there
exist positive constants a; and a* such that

ay < det (?9—,2 <d'in U, ie. 1 detg—f < 1 in Z(Uy).

Consequently, we have

// 62H(:/:)/h dz > // 62H(z)/h dz > l // 62§g/h df,
T(D"—x0) T (D" —z0)NUyo at Uo

where Uy := Z(T(D"—x0)NUp). We now parameterize the boundary U, near
0. We remark that the boundary dU, near 0 is the image of D near xy under
the coordinates transform given above. Therefore we can parameterize the
boundary 0Uy near 0 by & = [(£1) (we may choose a smaller neighborhood U
if needed), and express [70 near 0 as & < [(&1). Moreover, by the assumption
on the curvature of dD, there exist positive constants K, and K* such that

K&} < —1(&) < K for (&, 1(61)) € E(Uh).

Then for §; > 0 small enough (see Figure 5), we can estimate

26 /h sea
//ﬁo e 2 // al<s € d&ds

—~K#§2<€2<1(€1)

%5 /h
& / / al<s € dds

— K167 <&2<— K&}

_ 202/h /¢ d
I /KWT’Q &2 d&s

B3/2 2K%62 /h ) ;
_ —r _1/2 3/2
— W/o e "t/ dr > ch

20



&
&2 = 1(&)—

N

Uo

& = —K*¢F & = — K&}
Figure 5: The choice of 6; > 0.

for any 0 < h < 1. Summing up, we obtain

exp (% (—% + nR(fﬂ)))

for any 0 < h < 1.

Next, we estimate (4.8). It is enough to estimate the integral on some
neighborhood of xy. Indeed, when U,, is a neighborhood of z, there exists
8o > 0 such that D'\ U,, C {x € T : nr(x) < Op — & }. Then we obtain

1 1
exp (— <—— + T]R(x)))
h t Lq(D/\U:z:O)

1/ 1 -
<o (3(5+90) ) 1 i
< Cexp <%<—%+@D_52>> : (4.11)

Here we use the same notations as in estimating (4.7) (Denote Uy = T'(U,

2

‘ 2, 1
> b2 exp <E<_? v @D>) (4.10)

L2 (DII)

0
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03

&1 &1

& =16)—/ W

& = —K*¢ & = — K&
Figure 6: The choice of d3 > 0.

xo)). Using the similar arguments as above, we can derive

1, 1
exp (— —= +nr(2) )
@)
qr 1 H(2)/h
:exp(— ——+@D)// e dz
h ( t ) D’ﬁUzO)*wo)
< iexp <E ——+@D )// et/ q¢ (4.12)

where U := Z(T (D' NU,,) — ). Now we can take 5 > 0 such that
UcC{{eR?: || <ds, —K;303 <& < 1(&)} by choosing the neighborhood
Uy, of xy small enough (see Figure 6). Then we have

qé2/h qé2/h
//e d§<// €1]<55 e d€

—K363<&<1(&)

qé2/h 3/2
s

—Ky63<&<—Ky¢3

for any 0 < h < 1. Combining (4.11), (4.12), (4.13) yields

exp (%(—% +77R($))) !

. 1
< O <—<—— + @D>) (4.14)
for any 0 < h < 1.

q
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Lastly, we turn to (4.9). As before, it suffices to estimate the integral on
some neighborhood of zy. Thus we compute

1 1
exp | —( —= + nr(x) )|x—x |“do(x)
/BDHUIO <h< e ) "
1 1
=exp|—-(——+06 )/ eHE/h 212 do(2).
(h< t D> T((9DUz)—a0) 21" do(z)

Then by choosing a sufficiently small neighborhood U,, of xy, we have

A&/ 2% do(2)

/T((aDnUxO)—xo)

04
< C”/ e Kt/ | ™ dzy
—64
GEE / e—TT(a—l)/2 dr S Oah(a—i-l)/Q
Kti 0

for any 0 < h < 1 since

_ h(a+1)/2

K22 < —H(z2) < K22 for z € T(OD — x¢) close to 0.

Therefore we obtain

1/ 1 )
/aD exp (E <_Z + nR(x)>) |z — x0|* do(x)
1 1
(a+1)/2 -(_ =
< COuh exp (h< -+ @D)) (4.15)

for any 0 < h < 1.
Now by (4.2), (4.3), (4.4), (4.5), (4.6), (4.10), (4.14) and (4.15), we con-
clude that

X exp (%(—% + @D)) (4.16)

for any 0 < h < 1. It is easy to see that we can choose 0 < a9 < 1 and
2 < qo < 4 such that

(&%) 3 3 1
= —t+t— -z —1>—=
16 max{ 5 +2q0 5 @0 } 5
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Then (4.16) implies

E(t,h) > (ch™2 = Cyy 0ph®) exp (% (—% + @D))

> ch™1/? exp (%(—% =+ @D>)

for any 0 < h < 1. O

5 Remarks on the curvature assumption

In this section we would like to show that the curvature condition assumed
in Theorem 4.1 always holds provided the degree N of 7 is sufficiently large.
To this end, in order to indicate the dependence on c,, 0,, and N, we write
n(z;cy, N) = n(z) = c,(21 + ize)™ and similarly write ng(z) = nr(z; c., N).
Also, we denote

: T
(N, 0,) = {r(cose, sind) : |0 — 0,] < ﬁ} .
Recall that ng(z) = r" cos N(6 —0,) for z = r(cos 6, sinf) € R? and ng(x) >
0 when = € I'(N, 6,).

Lemma 5.1. Let ¢, € C satisfy |c.| =1, N be a positive integer and to > 0.
Assume that xqg is on the level curve nr(x;c., N) = 1/ty. Then there exist
c. € Cwith |c.| =1, 0, € R, a positive integer N' > N and a positive number
t' such that ng(x; ., N') = rN" cos N'(6 — 0.) and the following holds:

(i) The point xq is on the level curve ng(x;c,, N') = 1/t'.

(ii) If nr(z;c,N') > 1/t' and ©x € T'(N',0,) \ {xo} then nr(z;c.,N) >
1/to.

Proof. Without loss of generality, we can assume that ¢, = 1. Let 2y =
ro(cos by, sinfy). By the assumption, we have r) cos N0y = 1/ty and |0y| <
7/(2N). Now we choose a positive integer N’ > N such that |(N' — N)6 —
2k'w| < w/(2N) for some k' € Z. We put o’ := —(N' — N)by, 0. := —a'/N’,
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X2

~

R (x;d, Ny =1/t

0 K

nr(z; e, N) = 1/t

\g

Figure 7: Intersection of two level curves.

c, = exp(ia) and ' := 1/nr(xo; ¢, N'). Note that

1
nr(z; 1, N) > - is equivalent to r > rg

0

cos N,
cos N0

1/N
) for x € I'(N, 0),

it

cos(N'6y + o) YN
cos(N'0 + o)
for z € T(N',0.)

1
nr(x;c,, N') > 7 is equivalent to r > r (

and I'(N',0,) € I'(N,0). Thus it is enough to show that

cos Nop \ '/~ cos(N'0y + o) a ,
<COSNO> = cos(N'6 + o) for [0 = 6.] < 2N” 6706 (51)
We remark that (5.1) is equivalent to
»(0) < (bp) for |0 — 0] < 2N” 6 # 0Oy, (5.2)
where )
b(0) = (cos(N'0 + /)N
(cos NO)V/N

It is straightforward to check that

V' (0) = —(cos(N'0 + o)) "L (cos NO) VN =L sin(N' — N) (6 — ).
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Therefore, 1 is monotone increasing on the interval [0, — 7/(2N"), 6y] and
monotone decreasing on the interval [0y, 0, + 7/(2N")]. Hence (5.2) holds
and so does (5.1). O

Denote ©p(cy, N, T') := sup,c par 7r (7 ¢, N). We next show that we can
always assume that the relative curvature is not zero by taking N sufficiently
large.

Lemma 5.2. Let ¢, € C satisfy |c.| = 1, N be a positive integer. As-
sume that 0, satisfies nr(x;ce, N) = ¥ cosN(0 — 0,). Let 2y € {x €
[(N,0,) : nr(x;c, N) = Op(cy, N,T'(N,0,))} NOD. Then there exist ¢, € C
with |d,| = 1 and a positive integer N’ such that the relative curvature to
nr(x; c,, N') = Op(d, N ,I'(N",0.)) of 0D at xq is negative, where 0., satis-
fies nr(z; ¢, N') = rN cos N'(0 — 0.

it

Proof. We first calculate the relative curvature explicitly. As before, in the
new coordinates z = T'(x — xp), xo moves to the origin and the unit outer
normal of D at zg is transformed to (0,1). We parameterize the boundary
T(0OD — xy) near the origin by zo = m(z;). Note that m(0) = m/(0) = 0.
On the other hand, let H(z) := nr(T 'z + ) — ©p and use the coordinates
transformation & = Z(z) := (21, H(z)) to a small neighborhood of z = 0, then
we can parameterize the boundary Z(T (0D — xg)) by & = [(&;). Obviously,
we have I(z1) = H(z1,m(z1)). Recall that

0H OH O?H
—(0) =0, ——(0) = N|ao|"! = —N(N —1)|xo| 2 :
50 =0, 20 = Maol ™, T50) = ~N(N = Dlaol ()
So we have I'(0) = 0 and
0?H 0*H OH ,0*H

l//(o) —

922 (0) +2m/(0) D207, (0) + m”(O)a—ZQ(O) +m’(0) 922 (0)
= —N(N — 1)|zo| 2nr(20) + m" (0)N|zo|V 1.

In other words, the relative curvature to ng(z;c., N) = Op(c., N, T'(N,6,))
of 0D at xq is

—N(N = 1)]zo| ?nr(w0; ¢y N) 4+ m" (0)N |20V, (5.3)

Let tg := 1/Op(cy, N,T'(N,0,)). As above, we can take ¢, = 1 without loss
of generality. Now we want to compare the relative curvature to ng(z; 1, N) =
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1/tg with that to ng(x;c., N') = 1/t where 0., ., N' and t' were given
in Lemma 5.1. It should be noted that 1/t = ©p(c,, N, T'(N',0,)) and
xo € {x € (N, 0)) : nr(x; ., N') = ©p(c,, N, T'(N',0,))} N 9D. From (5.3)

the relative curvature to ng(x; 1, N) = 1/ty of 0D at xg = ro(cos by, sinby) is

— N(N = D)ol nr(0; 1, N) +m" (0)N|aoV
= —N(N — 1)ry 2 cos Ny +m"(0)Nry 1. (5.4)

In view of the definition of xy, we see that (5.4) is non-positive. So it is
negative, we need not do anything. Thus we assume that (5.4) is zero. Then
by (5.3) the relative curvature to ng(x;c,, N') = 1/t of 0D at xq is

— N'(N" = 1)|zo|2nr(z0; ., N') +m" (0) N ||V
= —N'(N' = 1)) "2 cos NOy +m" (0)N'rY'
= —N'(N' = N)rl¥' =% cos Ng, < 0.

The proof is completed. O

6 Reconstruction algorithm

In view of Theorem 4.1, we are able to reconstruct some part of 9D using
boundary measurements on 02 by looking into the asymptotic behavior of
E(t, h) for various t’s. More precisely, let

tp = sup {t € (0,t%) : lim E(t, h) = 0} .

It should be noted that E(t, h) depends on, besides h and ¢, €2, k, D, vp (see
(1.1)), ¢4, 24, N (appear in the phase function n(z)), €, t* (appear in the
cut-off function ¢,(z)). Thus tp depends on Q, k, D, vp , ¢, x., N, € and
th. If tp = t*, then DN Uocsess s = 0. On the other hand, if tp < tf, then
there exists a point xp € [, N OD.

By taking N arbitrarily large (the opening angle of T'(N,6,) becomes
arbitrarily small), we can reconstruct even more information of 9D. A point
xg on OD is said to be detectable if there exists a semi-straight line L starting
from xg such that L does not intersect 0D except xy. For example, if D is
star-shaped, every point of 0D is detectable. We can prove the following
corollary similarly to Corollary 5.4 in [17].
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Corollary 6.1. Fvery detectable point of 0D can be reconstructed from Ap.

Now we state our reconstruction algorithm.
Step 1. Pick a point z, € R?\ Q. Given N € N and ¢, € C satisfying |c,| = 1.
Choose the cone I' which intersects €).
Step 2. Fix ¢ > 0 small enough and #* > 0 large enough. Take t € (0,t*) such
that (Uo st ls) NQ # 0. Construct V), and determine the Dirichlet data
Jen = Vinloa. -
Step 3. Compute E(t, h) := fsuppft,h(AD — Ng) fin fopdo.
Step 4. If E(t, h) is arbitrarily small as h tends to zero, then increase ¢ and
repeat Steps 2 and 3; if E(t, h) is arbitrarily large as h tends to zero, then
decrease t and repeat Steps 2 and 3.
Step 5. Repeat Step 4 in order to get a good approximation of 0D in I'.
Step 6. Move the cone I' around z, by taking a different c,. Repeat Steps 2—
9.
Step 7. Choose a larger N, new ¢, and new cone ['. Repeat Steps 2-6.
Step 8. Pick a different z, and repeat Steps 1-7.

7 Numerical results

In this section, we demonstrate some numerical results of our method with
synthetic data. The numerical code used here is modified from that in [18].
We refer to [18] for more detailed description of the program. We consider a
rectangle domain

Q={(x1,29) : =1 <2y <1, —1.01 < 2y < —0.01}.

We will apply Dirichlet f;, = vonlon on 0. We also want to point out
that the Dirichlet condition f;j is localized in I' N 9€2. In the numerical

computation, we use f; 5 localized on {(z1,—0.01) : —1 < = < 1} (top
boundary), {(z1,—1.01) : =1 < x < 1} (bottom boundary) by choosing
vertex points z, on {xy = —1.02} and {xs = 0}, respectively. In other words,

we probe the region from the top and bottom boundaries of the domain. For
simplicity, we take N = 4 and k = 5. To improve the effectiveness of our
numerical method, we will use an approximation of f;;. To obtain such
approximate Dirichlet data, we shall study the asymptotic expansion of the
CGO solution th . We defer the derivation of the asymptotic expansion of
V,f to Appendix. We test our method on seven cases without and with noise.
The results are shown in Figure 8.
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8 Conclusions

In this work, we present an enclosure type reconstruction method for identi-
fying penetrable obstacles in acoustics in two dimensions. Our main tool is
the CGO solutions with polynomial phases for the Helmholtz equation. We
construct these types of solutions from the harmonic functions via a trans-
form introduced by Vekua. Doing so, we have a better description on the
lower order terms of the CGO solutions, which is useful in numerical compu-
tations. Our theory shows that we are able to reconstruct precise geometrical
information of some penetrable objects by the boundary measurements or the
Dirichlet-to-Neumann map. To prove the main theorem, it requires a delicate
analysis on solutions to the elliptic equation with discontinuous coefficients.

We also provide some numerical results based on our method. Since this
inverse problem is notoriously ill-posed, some numerical results in Figure 8
are sensitive to noise. On other hand, it has been formally justified in [14] that
the stability deteriorates when the object is further away from the boundary.
Some of the figures in Figure 8 clearly demonstrate this phenomenon. For
example, the figures in row seven show that the lower part of the inclusion
is better resolved than the top part. Here we can see that the lower part of
the inclusion is closer to the boundary. Due to ill-posedness, there are still
many challenging issues on the numerical computation for inverse problems.
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Appendix. Asymptotic expansion of the CGO
solutions

In this appendix, we prove an asymptotic expansion of the CGO solution V,f.

We adopt the notations of Section 1.

Lemma A.1. We can write

Vi (z) = exp (@) (1 - % h+ 0(h2)) in T NQ as h — 40,

More precisely, we have

Vi(x) = exp (M) (1 _ Rl h+ Ry (x) h) in T,

h ANn(z)
where Ry(x) = Ry(x; h) satisfies
k? Nngr(x)
< —
R0 < gy e (-2
K*N(N —1)]z|N+2 k4|t

h + hinT. Al
4ng (z)3 32ng(x)? (A1)
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Proof. By (2.1) and (2.2), it suffices to show that

B k'2|.1'|2
ANn(z)

and estimate (A.1). Using (2.2) and the property

1 .
Ji(1) = g+K1(T), where |K;(7)| < ET& for 7> 0,

Ro(w) = —’“2|2$|2 /Olexp (%(n(u ~ ) - n(@)) s ds

— kx| /01 exp (%(n((l —s?)z) — n(x))) Ki(k|z|s)ds. (A.3)

From (2.3), we can estimate the second term of the right-hand side of (A.3)
by

! 1
’—k‘|m|/ exp (E (n((l — s)z) — n(m))) Ky (k|x|s) ds
0
4 4 1 1
< k 1|:g| /o exp (E Re(n((l — s)z) — n(m))) s ds
k:4|x|4 1 1 ) , k’4|x|4 y: nr(x)/h

< —— ds = Trd
<5 /Oexp< hnR(x)s>s s 39 77R<I)2/0 e TTdr

On the other hand, setting s> = 7h, the integral of the first term on the
right-hand side of (A.3) can be written as

/oleXp (%(n((l — s)a) - n(:::))) sis=3 | e ) dr.

where



Now we compute

1/h 1/h
/ CD(h;T,x)dT:/ ( (0;7,2) /—CIDSTJ: ds)d
0 0

1/h
= /0 exp(—N7n(x)) dr

1/h
+ N(N / / / (1 —trs)N"2tdt ®(s; 1, 2) ds dr

1 exp(

1/h
+ N(N / / / —trs)N 2t dt B(s; T, x) ds dr

[ [ o i
%/l/h/ 72 exp <—— 1—(1—rs) >77R( )> Jsdr

1/h
%/ /0 T2 exp(—7nr(x)) dsdr  (by (2.3))

s o (52) (22 <

Putting all estimates together immediately yields this lemma. O

and

IN

We remark that we can derive more elaborate asymptotic expansion of

the CGO solutions in a similar way. For example, the asymptotic expansion
of V¥ up to h? is

Vi(z) = exp <M> [1— Ll ui

h ANn ()
1 (N = DR | Kl s 3
+N2n(a:)2 {— 1 + 32 }h +O(h )}
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