
RIGIDITY OF BROKEN GEODESIC FLOW ANDINVERSE PROBLEMSYAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNAbstra
t. Consider a broken geodesi
s α([0, l]) on a 
ompa
t Rie-mannian manifold (M, g) with boundary of dimension n ≥ 3. Thebroken geodesi
s are unions of two geodesi
s with the property thatthey have a 
ommon end point. Assume that for every broken geo-desi
 α([0, l]) starting at and ending to the boundary ∂M we knowthe starting point and dire
tion (α(0), α′(0)), the end point and dire
-tion (α(l), α′(l)), and the length l. We show that this data determinesuniquely, up to an isometry, the manifold (M, g). This result has ap-pli
ations in inverse problems on very heterogeneous media for situa-tions where there are many s
attering points in the medium, and arisesin several appli
ations in
luding geophysi
s and medi
al imaging. Asan example we 
onsider the inverse problem for the radiative transferequation (or the linear transport equation) with a non-
onstant wavespeed. Assuming that the s
attering kernel is everywhere positive, weshow that the boundary measurements determine the wave speed insidethe domain up to an isometry.AMS 
lassi�
ation: 35J25, 58J45.Keywords: Rigidity of Riemannian manifolds, broken geodesi
s, in-verse problems, radiative transfer.1. Introdu
tion.1.1. Main result. Let us 
onsider a 
ompa
t Riemannian manifold
(M, g) with boundary of dimension n ≥ 3. Let SM denote its unittangent bundle. The 
lassi
al boundary rigidity problem is the fol-lowing (see [13, 14, 17, 19, 30, 35, 36, 37, 40, 41℄): Assume that weknow the distan
es dist(x, y) of boundary points x, y ∈ ∂M . Can wedetermine the isometry type of the manifold (M, g)? Mi
hel [33, 34℄observed that in the 
ase of simple manifolds these distan
e fun
tionsalso determine the values of the bi
hara
teristi
 �ow at the boundary,the so-
alled s
attering relation or lens relation, that is,

L = {(x, ξ), (y, ζ), t) ∈ SM × SM × R : x, y ∈ ∂M,

(γx,ξ(t), ∂tγx,ξ(t)) = (y, ζ) for some t ≥ 0}where γx,ξ is the geodesi
 of (M, g) that leaves from x to dire
tion ξ at
t = 0. In other words, L gives the information when and where andin whi
h dire
tion a geodesi
, sent from the boundary, hits again the1



2 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNboundary. It was shown in [19℄ under some 
onditions (see also [2, 3℄)that the wave front set of the s
attering operator asso
iated to the waveequation for the Lapla
e-Beltrami operator of a smooth Riemannianmetri
 determines the s
attering relation. The natural 
onje
ture isthat for non-trapping manifolds the s
attering relation determines theisometry type of the manifold. If the manifold is trapping one 
an-not determine the metri
 up to isometry from the s
attering relation[15℄. In dimension larger than two this inverse problem is known to beuniquely solvable for pair of metri
s in an open and dense set and lo
allynear an open dense set of simple and a 
lass of non-simple manifolds[41℄, [43℄. However, it is known that in the general 
ase the s
atteringrelation does not determine the isometry 
lass of the manifold [15℄. Forre
ent progress on this problem see the survey papers [38, 42℄.In the 
ase of a very heterogeneous media with many s
atteringpoints inside the manifold one 
an obtain further information by look-ing at the propagation of singularities of waves going through the man-ifold. This is the broken s
attering relation or broken lens relation thatwe pro
eed to de�ne.A broken geodesi
 (or, a on
e broken geodesi
) is a path α = αx,ξ,z,η(t),where z = γx,ξ(s) ∈M for some s ≥ 0, η ∈ SzM , and
αx,ξ,z,η(t) =

{
γx,ξ(t), t < s,
γz,η(t− s), t ≥ s,(See Fig. 1.) In Riemannian geometry broken geodesi
s are 
onsiderede.g. in the 
lassi
al Ambrose theorem [4℄, whi
h says that the paralleltranslations of the 
urvature tensor along broken geodesi
s determineuniquely a simply 
onne
ted Riemannian manifold.
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Figure 1. Left: Propagation of singularities and mul-tiple s
attering for the radiative transfer equation.Right: A broken geodesi
 
orresponding the relation
((x0, ξ0), (x1, ξ1), t) ∈ R with t = s1 + s2.



RIGIDITY OF BROKEN GEODESIC FLOW 3We denote by ℓ(αx,ξ,z,η) ∈ R+ ∪ {∞} the smallest l > 0 su
h that
αx,ξ,z,η(l) ∈ ∂M . Denote by ν the interior unit normal ve
tor and by

Ω+ = {(x, ξ) ∈ SM : x ∈ ∂M, (ξ, ν)g > 0},

Ω− = {(x, ξ) ∈ SM : x ∈ ∂M, (ξ, ν)g < 0}the in
oming and outgoing boundary dire
tions respe
tively.The boundary entering and exiting points of broken geodesi
s de�nethe broken s
attering relation,
R = {((x, ξ), (y, ζ), t) ∈ SM × SM × R+ : (x, ξ) ∈ Ω+, (y, ζ) ∈ Ω−,

t = ℓ(αx,ξ,z,η), and
(αx,ξ,z,η(t), ∂tαx,ξ,z,η(t)) = (y, ζ) for some (z, η) ∈ SM}.Note that the broken s
attering relation does not 
ontain informationabout the point z where the broken geodesi
 αx,ξ,z,η 
hanges its dire
-tion. Our main result is:Theorem 1.1. Let (M, g) be a 
ompa
t 
onne
ted Riemannian mani-fold with a non-empty boundary of dimension n ≥ 3. Then ∂M and thebroken s
attering relation R determine the isometry type of the mani-fold (M, g) uniquely.We remark that this result doesn't assume any a-priori 
ondition onthe metri
 g or the manifold M . The di�
ulty in proving the resultlies in the possible 
ompli
ated nature of the broken geodesi
 �ow.The proof of the theorem above and the other results stated in theintrodu
tion are given in se
tions 2�3.Let us explain the main idea of the proof of Theorem 1.1. Our goalis to re
onstru
t the boundary distan
e representation of the mani-fold (M, g) in C(∂M), the spa
e of the 
ontinuous fun
tions on ∂M .This representation is obtained by mapping ea
h point x ∈ M to thefun
tion rx ∈ C(∂M) de�ned as rx(z) = distM(x, z). From this repre-sentation (M, g) 
an be determined 
onstru
tively up to an isometry[26, 27, 28℄.Let x0 ∈ M int and 
onsider the geodesi
s γx0,η0 , η0 ∈ Sx0

M startingfrom x0 and hitting the boundary at the point z0 = γx0,η0(t0). If t0 isnot too large and γx0,η0 is transversal to ∂M at z0, there is a smoothse
tion, ξ : U → SU, U being a neighborhood of z0 on ∂M , and asmooth fun
tion t : U → R+ with ξ(z0) = −γ̇x0,η0(t0), t(z0) = t0 su
hthat γz,ξ(z)(t(z)) = x0 (see the right Fig. 2). Observe that, in this 
ase,
((z, ξ(z)), (z′,−ξ(z′)), t(z) + t(z′)) ∈ R, for z, z′ ∈ U.(1)It is therefore natural to ask if, for the families {ξ(z), t(z)} satisfy-ing (1), the 
orresponding geodesi
s interse
t at the same point. ByDe�nition 2.3 we introdu
e a spe
ial 
lass of families {ξ(z), t(z)} withthe property (1) and show, see Theorem 2.6, that the 
orrespondinggeodesi
s do interse
t at one point. It is 
ru
ial that, 
f. (1), these
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an be found from the broken s
attering relation R. Usingthem, we show in Theorem 2.13 that the relation R determines theboundary distan
e representation {rx : x ∈M} of (M, g). Thus we 
anre
onstru
t the manifold (M, g) up to an isometry.In 
arrying out these 
onstru
tions for non-simple manifolds, we en-
ounter several te
hni
al di�
ulties. The shortest 
urves from x ∈ Mto a boundary point z ∈ ∂M , needed to �nd the boundary distan
erepresentation, are unions of geodesi
s inM and on ∂M . Thus, we needto �nd the distan
es between the boundary points both along ∂M andin M , where the dire
t appli
ation of the relation R is not possible.This is done, see Lemmata 2.10 and 2.11, by a proper approximationof a shortest path from z to x by a union of broken geodesi
s in Mstarting and ending at the boundary.1.2. Appli
ation: Radiative transfer equation. As mentioned ear-lier the broken s
attering relation 
an be determined by probing withwaves a very heterogeneous medium with many s
attering points andobserving at the boundary the e�e
ts. The strongest singularities of thewaves are the ones propagating through the medium without any re-�e
tion and this determines the s
attering relation. The next strongersingularities 
orrespond to the waves re�e
ting only on
e and this de-termines the broken s
attering relation at the boundary. This type ofsituation arises in geophysi
s due to the many dis
ontinuities in thesurfa
e of the earth that a
t as re�e
tors and in opti
al tomography,a novel medi
al imaging te
hnique that allows one to re
onstru
t thespatial distribution of opti
al properties of tissues by probing them bynear-infra-red photons [6, 7, 20, 21, 23℄. This 
an be formulated as aninverse problem for the radiative transfer equation and we 
onsider thisappli
ation in more detail below. For previous mathemati
al analysison the problem, see e.g. [8, 11, 12, 24, 25, 44℄. The broken geodesi
relation arises also in geophysi
al prospe
ting in imaging of the sub-surfa
e of the Earth. The so-
alled re�e
tion tomography method isbased on determining a metri
 from a subset of the broken s
atteringrelation [10, 16, 45℄. Thus Theorem 1.1 is dire
tly appli
able also forthis imaging method.To avoid arti�
ial di�
ulties on how to formulate the boundary valueproblem for the radiative transfer equation, we 
onsider a non-
ompa
t
omplete manifold (N, g) without boundary. The inverse problem westudy is to �nd the metri
 in a 
ompa
t subset M with smooth bound-ary using external measurements made in the set U = N \M .We say that the fun
tion u(t, x, ξ) de�ned on (t, x, ξ) ∈ [0,∞)×SN ,is a solution of the radiative transfer equation on N if
(Hu)(t, x, ξ) + σ(x, ξ)u(t, x, ξ) − (Su)(t, x, ξ) = 0,(2)
u(t, x, ξ)|t=0 = w(x, ξ).



RIGIDITY OF BROKEN GEODESIC FLOW 5Here H is the bi
hara
teristi
 �ow on the tangent bundle TN ,
Hu(t, x, ξ) =

∂u

∂t
+ ξi

∂u

∂xi
− ξiξjΓkij(x)

∂u

∂ξk
,where (x1, . . . , xn, ξ1, . . . , ξn) denotes lo
al 
oordinates on the tangentbundle TN 
orresponding to lo
al 
oordinates (x1, . . . , xn) of M and

ξj = gjkξk. The operator S, 
alled the s
attering operator, is
Su(t, x, ξ) =

∫

SxN

K(x, ξ, ξ′)u(t, x, ξ′) dSg(ξ
′).Here K ∈ C∞(SN×̇SN) is 
alled the s
attering kernel, SN×̇SN is theprodu
t bundle over N having �ber SxN × SxN over x ∈ N , and dSgis the standard volume on SxN . Finally, the fun
tion σ ∈ C∞(SN) is
alled the attenuation fun
tion. We denote the solution of (2) with theinitial value w ∈ C∞(SN) by u(t, x, ξ) = uw(t, x, ξ).For the results 
on
erning the radiative transfer equation we need afew more de�nitions. We say that the 
omplete manifold N is simple iffor any x, y ∈ N there is only one geodesi
 
onne
ting these points. Wesay that M ⊂ N is stri
tly 
onvex if all points in M 
an be 
onne
tedwith a geodesi
 segment lying in M and the se
ond fundamental formof ∂M is positive.We say that s
attering kernel K is positive in M int if

K(x, ξ, ξ′) > 0, for all x ∈M int and ξ, ξ′ ∈ SxN .Next we de�ne the external measurements. We assume that for any
w ∈ C∞

0 (SN), su
h that w(x, ξ) = 0 for x ∈ M we know solution
uw(t, x, ξ) for x ∈ U . In other words, we assume that we are given themeasurement map A : C∞

0 (SU) → C∞(R+ × SU),

Aw = uw|R+×SU .Note that the map A gives us the geodesi
 �ow in U and thus it deter-mines the metri
 gij(x) for x ∈ U . Also, it 
an be used to determinethe absorption σ|U .Theorem 1.2. Let N be a 
omplete simple manifold, M ⊂ N a
ompa
t and stri
tly 
onvex set with smooth boundary. Assume that
K(x, θ, θ′) ∈ C∞(SM×̇SM) is positive over M int and vanish for x 6∈
M .Moreover, assume that we are given the set U = N \M and the mea-surement map A. These data determine uniquely the broken s
atteringrelation of the manifold (M, g).2. Proof of Theorem 1.12.1. Auxiliary Lemmata. Let (M, g) be a 
ompa
t manifold withboundary, ∂M . In the following, we use an auxiliary smooth 
losed
ompa
t n�manifold (M̃, g̃) that 
ontains (M, g). We 
ontinue to use



6 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNnotation γx,ξ(t), (x, ξ) ∈ SM̃, for the geodesi
s on M̃ with γx,ξ(0) = xand γ′x,ξ(t) = ξ. All geodesi
s are parameterized by the ar
length. Wedenote by distfM(x, y) and dist(x, y) the distan
e fun
tions on M̃ and
M , respe
tively. To simplify notations, we denote

(x0, ξ0)Rt(x1, ξ1) if and only if (
(x0, ξ0), (x1,−ξ1), t

)
∈ R.On M̃ and M , we will use various 
riti
al distan
es along geodesi
s.We start with 
riti
al distan
es asso
iated with the Riemann exponen-tial map, expx,

expx : TxM̃ ≡ SxM̃ × R+ −→ M̃, expx(sξ) = γx,ξ(s),

ξ ∈ SxM̃, s ∈ R+. The 
ut lo
us distan
e along γx,ξ, denoted by
τR(x, ξ), is de�ned by

τR(x, ξ) = max{s > 0 : distfM(x, γx,ξ(s)) = s}.(3)The 
ut lo
us distan
e τR(x, ξ), (x, ξ) ∈ SM̃ determines the inje
tivityradius inj (M̃) of M̃ ,inj (M̃) = min
(x,ξ)∈SfM

τR(x, ξ).We say that the set
ωx = {y ∈ M̃ : y = γx,ξ(τR(x, ξ)), ξ ∈ SxM̃},is the 
ut lo
us with respe
t to x. The 
ut lo
us ωx 
onsists of twotypes of points. We say that a point y ∈ ωx is an ordinary 
ut lo
uspoint if there are ξ, η ∈ SxM̃ , η 6= ξ with

τR(x, ξ) = τR(x, η), γx,ξ(τR(x, ξ)) = γx,η(τR(x, η)) = y.Consider now the di�erential of expx at sξ that is denoted by d expx |sξ.We say that a point y = γx,ξ(s) is a 
onjugate point along γx,ξ, if thedi�erential d expx |sξ : TxM̃ → TyM̃ is degenerate. This is equivalentto the existen
e of a non-trivial Ja
obi �eld Y (t) along γ = γx,ξ([0, s])with the Diri
hlet boundary 
onditions Y (0) = 0 and Y (s) = 0. For
(x, ξ) ∈ SM̃ we de�ne the 
onjugate distan
e τc(x, ξ) ∈ R+ ∪ {∞} tobe

τc(x, ξ) = inf{s > 0 : d expx |sξ is not one-to-one}.Ea
h point y ∈ ωx is an ordinary 
ut lo
us point, a �rst 
onjugatepoint, or both.Next we dis
uss 
riti
al distan
es asso
iated with the boundary ex-ponential map, exp∂M ,
exp∂M : ∂M × R −→ M̃, exp∂M(z, s) = γz,ν(s), z ∈ ∂M,where ν = ν(z) is the unit interior normal ve
tor to ∂M at z. The pair

(z, s) de�nes the boundary normal 
oordinates in M̃ near ∂M .



RIGIDITY OF BROKEN GEODESIC FLOW 7The boundary 
ut lo
us distan
e, τb(z), z ∈ ∂M is given by
τb(z) = max{s > 0 : dist(γz,ν(s), ∂M) = s}.(4)The set of the 
orresponding points y = γz,ν(τb(z)) is 
alled the bound-ary 
ut lo
us,
ω∂M = {y ∈M : y = γz,ν(τb(z)), z ∈ ∂M}.The boundary 
ut lo
us 
onsists of two types of points. We say thata point y ∈ ω∂M is an ordinary boundary 
ut lo
us point if there are

z, w ∈ ∂M , z 6= w with
τb(z) = τb(w), γz,ν(z)(τb(z)) = γw,ν(w)(τb(w)) = y.Also, we say that a point y = γz,ν(z)(τb(z)) ∈ ωx is a fo
al point ifthe di�erential, d exp∂M |(z,τb(z)) : Tz∂M × R → TyM̃ is degenerate.Equivalently, t is a fo
al point if there is a non-trivial Ja
obi �eld Y (t)along γz,ν([0, s]) with Y (s) = 0 and Y ′(0) = WY (0), where W is theWeingarten map of ∂M at z. For z ∈ ∂M , we de�ne the fo
al distan
e,

τf (z) to be
τf (z) = inf{s > 0 : d exp∂M |(z,s) is not one-to-one}.Note that y ∈ ω∂M is an ordinary boundary 
ut lo
us point, a �rst fo-
al point, or both. Also, the fun
tions τR, τc, τb, and τf are 
ontinuous,e.g. [29℄.Comparing Ja
obi �elds Y (s) along the geodesi
 γz,ν([0, s]) with theDiri
hlet 
ondition Y (0) = 0 and the Robin 
ondition Y ′(0) = WY (0),we see that τf (z) < τc(z, ν). Due to the 
ompa
tness of ∂M there is

c0 > 0 su
h that
τc(z, ν) ≥ τf (z) + c0, z ∈ ∂M.In a similar manner, we 
an show that τR(z, ν) > τb(z), z ∈ ∂M.Indeed, assume the opposite, i.e., t = τR(z, ν) ≤ τb(z) for some z ∈ ∂M .Denote (y, η) = (γz,ν(t), −γ

′
z,ν(t)). By duality, τR(y, η) = τR(z, ν) = t.Let ε > 0 and xε = γz,ν(−ε) = γy,η(t+ ε). ThendistfM (xε, y) < t+ ε ≤ τb(z) + εand there is ηε ∈ Sxε

M̃ with y = γxε,ηε
(distfM(xε, y)). Denote by tε > 0the last time when γxε,ηε

(s) hits ∂M . If ε is su�
iently small, we seeby the short-
ut arguments that dist(y, ∂M) < τb(z). This 
ontradi
tsthe de�nition of τb in (4).Due to the 
ompa
tness of ∂M , by making c0 > 0 smaller if ne
es-sary,
τR(z, ν) ≥ τb(z) + c0, z ∈ ∂M.(5)Later we will 
onsider interse
tions of various geodesi
s on M . Inthese 
onsiderations we would like to avoid pathologi
al 
ases that mayhappen to long geodesi
s. The �rst 
ase we analyze is a self-interse
tionof a geodesi
.
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z0 zFigure 2. Left: Self-interse
tion of a normal geodesi
.Right: Geodesi
s 
orresponding to fo
using dire
tions.Lemma 2.1. Let γz,ν , z ∈ ∂M be the normal geodesi
 and
γz,ν(s+) = γz,ν(s−), s+ > s−,that is, γz,ν interse
ts itself. Then s+ + s− > 2τR(z, ν).Proof. Assume that

s+ + s− ≤ 2τR(z, ν).(6)Then s− < τR(z, ν). Let A = γz,ν(s−), B = γz,ν(τR(z, ν)) be points on
γz,ν , see Fig. 2, and denote by lBA = s+ − τR(z, ν) the length of the"long" geodesi
 γz,ν([τR(z, ν), s+]). Then, using de�nition (3) of τR,
s− = dist(z, A), τR(z, ν) − s− = dist(A,B), so that the length of thebroken geodesi
 γz,ν([0, s+]) ∪ γz,ν([0, s−]) from z to z is

s+ + s− = dist(z, A) + dist(A,B) + lBA + dist(A, z).Sin
e γz,ν([s−, τR(z, ν)]) is the unique minimal geodesi
 between itsendpoints, lBA > dist(A,B) = τR(z, ν) − s−. Therefore,
s+ + s− > s− + (τR(z, ν) − s−) + (τR(z, ν) − s−) + s− = 2τR(z, ν),whi
h 
ontradi
ts (6). 2In the sequel, distS is the Sasakian distan
e on, depending on the
ontext, TM̃ or SM̃ , see [39℄.Lemma 2.2. Let ε > 0, z ∈ ∂M . There is δ = δ(ε) > 0 su
h that if

(z1, ξ1)R2t (z2, ξ2), i.e. γz1,ξ1(t1) = γz2,ξ2(t2), t1 + t2 = 2t,with t < τR(z, ν) + δ and distS((zi, ξi), (z, ν)) < δ, i = 1, 2 then
|t− ti| < ε, i = 1, 2.Note that the 
onstant δ does not depend on z ∈ ∂M .Proof. Assume the opposite, i.e., an existen
e of points zk ∈ ∂M ,

(zki , ξ
k
i ) ∈ Ω+, k = 1, 2, i = 1, 2, . . . and a parameter ε > 0, su
h that

lim
k→∞

distS((zki , ξki ), (zk, νk)) = 0,
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γzk

1
,ξk

1
(tk1) = γzk

2
,ξk

2
(tk2), t

k
1 + tk2 = 2tk, lim sup

k→∞
(tk − τR(zk, νk)) ≤ 0,with tk1 − tk2 ≥ 2ε. Using 
ontinuity arguments and 
ompa
tness of ∂Mwe have that there is a subsequen
e k(p) with zk(p) → z, tk(p)1 → t+,

t
k(p)
2 → t−, and

γz,ν(t+) = γz,ν(t−), t+ + t− ≤ 2τR(z, ν), t+ − t− ≥ 2ε,whi
h 
ontradi
ts Lemma 2.1. 2Next we introdu
e auxiliary fun
tions µ1(z), µ2(z), and τM(z), z ∈
∂M with µ1(z) and µ2(z) to be determined from the broken s
atteringrelation. The fun
tion µ1(z) tells when a normal geodesi
s sent from
z ∈ M exits M . By the de�nition of the broken s
attering relation,
R, a point (z, ξ) ∈ Ω+ is in relation with itself, (z, ξ)Rt(z, ξ), if andonly if the geodesi
 γz,ξ((0, t/2]) on M̃ lies in M int. This makes itpossible to determine, for any γz,ξ, (z, ξ) ∈ Ω+, its ar
length to the�rst hitting point to ∂M . We denote this ar
length by µ1(z, ξ) and
µ1(z) = µ1(z, ν).The fun
tion µ2(z) is an approximation to τf (z). If we want todetermine τf (z) we 
an argue as follows: assume that s > τf (z). Thenthe normal geodesi
 γz,ν([0, s]) is no longer a shortest path from γz,ν(s)to ∂M and there are sequen
es zn → z, zn 6= z, sn → τf (z), tn → τf (z)su
h that

γz,ν(sn) = γzn,νn
(tn), νn = ν(zn).In terms of the relation R, these imply that

(z, ν)RTn
(zn, νn), Tn = tn + sn,(7) with sn → τf (z), tn → τf (z), zn → z, when n→ ∞.Therefore, it makes sense to try to �nd τf (z) using (7). However,there are two obsta
les. First, it may happen that τf (z) ≥ µ1(z).Se
ond, having (7) with zn → z, Tn → 2t, we want to 
on
lude that

sn → t, tn → t. To do so, we intend to use Lemma 2.2, whi
h requires
t ≤ τR(z, ν) whi
h is not known. To avoid these di�
ulties, we will notdetermine τf (z) but another fun
tion µ2(z) that is 
losely related to it.De�nition 2.3. Consider the set S(z) of those s ∈ (0, µ1(z)) for whi
hthere are sequen
es zn → z, zn ∈ ∂M zn 6= z, Tn → 2s su
h that

(zn, νn)RTn
(z, ν).(8)De�ne µ2(z) = inf S(z), if S(z) 6= ∅ and µ2(z) = µ1(z) otherwise.Observe that µ2 may be found from the broken s
attering relation.Lemma 2.4. Fun
tion µ2 : ∂M → R+ satis�es

min(µ1(z), τf (z), τR(z, ν)) ≤ µ2(z) ≤ min(µ1(z), τf (z)).(9)and τb(z) ≤ µ2(z).



10 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNProof. The right inequality in (9) follows from De�nition 2.3 and
onsiderations before it.To prove the left inequality of (9), let us assume that there is s <
min(τf (z), µ1(z), τR(z, ν)) whi
h satis�es (8). By Lemma 2.2, appli
a-ble due to Tn < 2τR(z, ν) for large n, we have

γzn,νn
(sn) = γz,ν(s

′
n), sn → s, s′n → s, zn → z, zn 6= z.(10)As s < τf (z), exp∂M is a lo
al di�eomorphism near (z, s), whi
h 
on-tradi
ts (10). This proves (9).Using de�nitions µ1 and τf , we see by using (5) that

τb(z) ≤ min(
1

2
µ1(z), τf (z), τR(z, ν(z))).This yields τb(z) ≤ µ2(z). 2Finally, we need a fun
tion τM(z) with τM(z) > τb(z) having theproperty that, for t < τM(z) the geodesi
s sent ba
k from a point

x = γz,ν(t) hit the boundary ∂M near z in a regular way. Namely, wede�ne
τM(z) = min (µ1(z), τR(z, ν(z))), z ∈ ∂M.As τb(z) ≤ 1
2
µ1(z) we see by (5) that τb(z) < τM(z).2.2. Family of interse
ting geodesi
s. In this se
tion we intend touse the broken s
attering relation to verify if a given family of geodesi
sinterse
t at one point.Let z0 ∈ ∂M , ν0 = ν(z0), and x0 = γz0,ν0(t0), 0 < t0 < τM(z0).Denote η0 = −γ′z0,ν0(t0). Clearly, η0 is the dire
tion of the reversegeodesi
, γx0,η0 from x0 to z0. By 
onsidering Ja
obi �elds along thisgeodesi
, we see that the exponential map, expx0

: Sx0
M̃ × R+ → M̃ ,is a lo
al di�eomorphism near (η0, t0).As t0 < τR(x0, η0) and γx0,η0(t0) hits ∂M normally, all geodesi
s γx0,ηhit ∂M transversally for η ∈ Sx0

M 
lose to η0. They determine smoothfun
tions z(η), t(η) su
h that γx0,η(t(η)) = z(η) ∈ ∂M . Inverting thesefun
tions and using transversality, we obtain, in a neighborhood U ⊂
∂M of z0 a smooth se
tion ξ(z) : U → SU and a fun
tion t(z) su
hthat

γz,ξ(z)(t(z)) = x0, z ∈ U.(11)In the following, our aim is to determine, using the broken s
atteringrelation R, whether, for a given triple {U, ξ( · ), t( · )} of a neighborhood
U ⊂ ∂M and fun
tions ξ(z) and t(z), there exists a point x0 ∈M su
hthat γz,ξ(z)(t(z)) = x0 for all z ∈ U .To this end, we noti
e that property (11) implies

(z, ξ(z))RT (z) (z0, ν0), (z, ξ(z))RT (z,z′) (z′, ξ(z′)), z, z′ ∈ U,(12)
T (z) = t(z) + t0, T (z, z′) = t(z) + t(z′),



RIGIDITY OF BROKEN GEODESIC FLOW 11for smooth ξ(z), t(z). In addition,
t(z0) = t0, dt(z)|z0 = 0, ξ(z0) = ν(z0),(13)where the last properties follow from the fa
t that γx0,η0 is normal to

∂M . Here, dt(z) = dzt(z) is the di�erential of the fun
tion t : U → R.These observations motivate the following de�nition:De�nition 2.5. Let z0 ∈ ∂M and t0 > 0. Consider a family F(z0, t0) =
{U, ξ( · ), t( · )} where U ⊂ ∂M is a neighborhood of z0, ξ : U → SMis a smooth se
tion, and t : U → R is a smooth fun
tion. We say that
F(z0, t0) is a family of fo
using dire
tions if ξ(z), t(z) satisfy 
ondi-tions (12) and (13). We then say that the geodesi
s γz,ξ(z), z ∈ U arethe geodesi
s 
orresponding to family F(z0, t0).Note that the broken s
attering relation R determines if given U ,
ξ(z), and t(z) form a family of fo
using dire
tions. Our prin
ipal te
h-ni
al result in this se
tion shows that the geodesi
s 
orresponding to afamily of fo
using dire
tions interse
t at a single point.Theorem 2.6. Let z0 ∈ ∂M, t0 < τM(z0), and F(z0, t0) be a familyof fo
using dire
tions. Then there is a neighborhood Ũ ⊂ U of z0 su
hthat

γz,ξ(z)(t(z)) = γz0,ν0(t0), for all z ∈ Ũ .Proof. The proof of this result is rather long and will 
onsist of severalsteps and auxiliary lemmata.Step 1. We start with an observation that (12) implies that, for any
z ∈ U , there are s(z), ŝ(z) ≥ 0 su
h that

x(z) = γz,ξ(z)(s(z)) = γz0,ν0(ŝ(z)), s(z) + ŝ(z) = T (z).As t0 < τR(z0, ν0), by Lemma 2.2 s(z) → t0, ŝ(z) → t0 when z → z0and
s(z0) = ŝ(z0) = t0.(14)Next we show that s(z), ŝ(z) are C∞-smooth near z0 and

ds(z)|z0 = dŝ(z)|z0 = 0.(15)To this end, 
onsider the fun
tion H(s, z),
H(s, z) = dist(γz0,ν0(s), z) + s− T (z), (s, z) ∈ (t0 − δ, t0 + δ) × U.As t0 < τR(z0, ν0), the fun
tion H(s, z) is C∞-smooth a neighborhoodof (t0, z0) and

H(t0, z0) = 0, ∂sH(t0, z0) = ∂sdist(γz0,ν0(s), z0)|t0 + 1 = 2.Making U smaller if ne
essary, the equation H(s, z) = 0 has a uniquesolution s = s̃(z) whi
h is C∞−smooth in U with s̃(z0) = t0. As also
s = ŝ(z) solves H(s, z) = 0, we see that ŝ(z) = s̃(z), z ∈ U . It thenfollows that s(z) = T (z) − ŝ(z) ∈ C∞(U).



12 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNLet us di�erentiate the identity H(ŝ(z), z) = 0 with respe
t to z at
z = z0. Due to (13) and the fa
t that γz0,ν0 is normal to ∂M ,
0 = dzH(ŝ(z), z)|z0 = dz ŝ |z0 · (∂sdist(γz0,ν0(s), z0)|s=t0 + 1) = 2dz ŝ |z0 .Thus, dz ŝ |z0 = 0 and also dzs|z0 = dz(T (z) − ŝ(z))|z0 = 0.Step 2. Consider the map E ∈ C∞(U ;SM),
E(z) = (x(z), η(z)) :=

(
γz,ξ(z)(s(z)), −γ

′
z,ξ(z)(s(z))

)
, E(z0) = (x0, η0).Lemma 2.7. The map dE|z0 : Tz0∂M → Tx0,η0SM has the form

dE|z0(v) = (0,Θv), v ∈ Tz0∂M,(16)where we identify Tx0,η0SM ≈ Tx0
M × Tη0(Sx0

M). Furthermore, Θ :
Tz0∂M → Tη0(Sx0

M) is bije
tive.Proof of Lemma 2.7. As x(z) = γz0,ν0(ŝ(z)), it follows from (15)that dx|z0 = 0, i.e., dE|z0 is of form (16). To show that Θ is bije
tive,observe that
expx(z)(s(z)η(z)) = z, z ∈ U.(17)Let us denote Exp(x, ξ) = expx ξ, (x, ξ) ∈ TM̃ . By di�erentiating bothsides of (17) with respe
t to z and using dx|z0 = 0, we obtain

dξExp|(x0,t0η0)

(
s(z0)Θζ + (ds|z0ζ)η(z0)

)
= ζfor any ζ ∈ Tz0∂M. Using that s(z0) = t0, ds|z0 = 0, we get

dξ expx0
|ξ=t0η0(t0Θζ) = ζ,whi
h implies that Θ : Tz0∂M → Tη0(Sx0

M) is bije
tive. 2Step 3. Our further 
onsiderations are based on the analysis of theinterse
tion of a single geodesi
 and the geodesi
s 
orresponding to afamily of fo
using dire
tions.Lemma 2.8. Let z0 ∈ ∂M and F(z0, t0) = {U, ξ( · ), t( · )}, t0 < τM(z0)be a family of fo
using dire
tions. Let γ(τ) be another geodesi
 in Mwhi
h interse
ts γz0,ν0,
γ(0) = γz0,ν0(r0), γ′(0) 6= ±γ′z0,ν0(r0), r0 < τM(z0).(18)Assume, in addition, that all geodesi
s γz,ξ(z) 
orresponding to F(z0, t0)interse
t γ near y0, i.e.,

γz,ξ(z)(r(z)) = γ(τ(z)),(19)where 0 < r(z) ≤ r1 < τM(z0) and |τ(z)| ≤ i1 < inj (M). Then r0 = t0.Proof of Lemma 2.8. Denote y0 = γz0,ν0(r0). First we show that
r(z) is 
ontinuous at z0. If this is not true, there would be anotherinterse
tion of γz0,ν0 and γ,

γz0,ν0(r
′) = γ(τ ′), r′ ≤ r1, r

′ 6= r0, |τ
′| < inj (M).



RIGIDITY OF BROKEN GEODESIC FLOW 13This leads to a 
ontradi
tion as both γ([0, τ ′]) and γz0,ν0([r0, r
′]) areunique minimal geodesi
s between their endpoints. Thus r(z) is 
on-tinuous at z0.To prove the 
laim, we assume that r0 6= t0. Our next goal is to showthat the map Ψ : U × R+ →M ,

Ψ(z, r) = expz(rξ(z))is a lo
al di�eomorphism near (z0, r0), see the right part of Fig. 3.Indeed, as t0, r0 < τR(z0, ν0), the map expx0
is a lo
al di�eomorphismnear (t0 − r0)η0, where x0 = γz0,ν0(t0), η0 = −γ′z0,ν0(t0). Thus,

d expx0
|(t0−r0)η0 : T(t0−r0)η0(Tx0

M) → Ty0Mis bije
tive. Using the de�nitions for s(z), E(z) = (x(z), η(z)) intro-du
ed earlier we have
Ψ(z, r) = γE(z)(s(z) − r) = expx(z)((s(z) − r)η(z)).By (14) and (15), ds(z)|z0 = 0 and s(z0) = t0, whi
h together with (16)imply that
dΨ|(z0,r0)(ζ, ρ) = d expx0

|(t0−r0)η0((t0 − r0)Θζ − ρη0)for ζ ∈ Tz0∂M and ρ ∈ R. Thus, by Lemma 2.7 and bije
tivity of
d expx0

|(t0−r0)η0 ,
dΨ|(z0,r0) : Tz0∂M × R → Ty0Mis bije
tive, i.e., Ψ is a lo
al di�eomorphism near (z0, r0).Now, let Σ be an (n − 1)−dimensional submanifold whi
h 
ontainsa part γ(−ε, ε) of γ near y0 and is transversal to γz0,ν0 at y0, see Fig. 3,the existen
e of su
h submanifold guaranteed by (18). Introdu
ing theboundary normal 
oordinates (w, n) asso
iated to Σ, with n = 0 on Σ,we rewrite Ψ in these 
oordinates as

Ψ(z, r) = (w(z, r), n(z, r)).By transversality, ∂n
∂r

(z0, r0) 6= 0. This implies that for any z near z0the equation n(z, r) = 0 for has a unique solution r = r̂(z). Moreover,
r̂(z0) = r0 and the fun
tion r̂(z) is smooth in a neighborhood of z0.Now r(z) and r̂(z) are 
ontinuous at z0 and they both solve theequation n(z, r) = 0. Thus, there is a neighborhood Ũ ⊂ U of z0 su
hthat r̂(z) = r(z) for z ∈ Ũ . As also Ψ is a lo
al di�eomorphism, wesee that if Ũ is small enough, then Ψ̃ : Ũ → Ψ̃(Ũ) ⊂ Σ, where Ψ̃(z) =
Ψ(z, r(z)), is a di�eomorphism of (n − 1)-dimensional submanifolds.On the other hand, 
ondition (19) implies that Ψ̃(Ũ) ⊂ γ(−ε, ε). As
γ(−ε, ε) is a one-dimensional submanifold of Σ, we get a 
ontradi
tionfor n ≥ 3. Thus, r0 = t0. 2Step 4. Let 0 < ε < 1

4
min(inj (M), τR(z0, ν) − t0) and 0 < δ < δ(ε)where δ(ε) is de�ned in Lemma 2.2. We 
hoose a neighborhood Ũ ⊂ U
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Figure 3. Left: Submanifold Σ 
ontains geodesi
 γ andis transversal to γz0,ν . Right: Geodesi
s 
orresponding to
F(z0, t0) almost interse
t at the point x0 = γz0,ν(t0) andde�ne 
oordinates near p = γz0,ν(r0).of z0 so that

|t(z) − t0| < ε and dS((z, ξ(z)), (z0, ν0)) < δ for z ∈ Ũ .By De�nition 2.5, there exist fun
tions s1(z, z
′), s2(z

′, z) > 0, z, z′ ∈

Ũ , su
h that
γz,ξ(z)(s1(z, z

′)) = γz′,ξ(z′)(s2(z
′, z)), s1(z, z

′) + s2(z
′, z) = t(z) + t(z′).By Lemma 2.2, these imply that

|t0 − s1(z, z
′)| < 2ε, |t0 − s2(z

′, z)| < 2ε.(20)Consider a geodesi
 γ(s) = γz′,ξ(z′)(s+ s2(z
′, z0)) for some �xed z′ ∈ Ũ ,

z′ 6= z0. It follows from (20) that Lemma 2.8 is appli
able to thefamily F(z0, t0) and the geodesi
 γ with r1 = τR(z0, ν0) − 2ε, i1 = 2ε.Thus, γz′,ξ(z′) and γz0,ν0 interse
t at x0 = γz0,ν0(t0). As z′ ∈ Ũ \ {z0} isarbitrary, all geodesi
s 
orresponding to family F(z0, t0) with a startingpoint z′ ∈ Ũ interse
t in x0. 2Later on we will need the following modi�
ation of Lemma 2.8 whi
hdo not require that all geodesi
s of F(z0, t0) interse
t γ near y0.Lemma 2.9. Let z0 ∈ ∂M and F(z0, t0) = {U, ξ( · ), t( · )}, t0 < τM(z0)be a family of fo
using dire
tions. Let γ(τ) be another geodesi
 in Mwhi
h interse
ts all geodesi
s γz,ξ(z) 
orresponding to F(z0, t0),
γz,ξ(z)(r(z)) = γ(τ(z)),where 0 < r(z) ≤ r1 < τM(z0) and |τ(z)| ≤ L, where L > 0 is arbitrary.Assume, in addition, that h(z) = r(z) + τ(z) is 
ontinuous. Then

γz,ξ(z)(t(z)) = γ(h(z0) − t0) when z is su�
iently 
lose to z0, i.e., allgeodesi
s interse
t at the same point.



RIGIDITY OF BROKEN GEODESIC FLOW 15Proof. We �rst show that there are only a �nite number of interse
-tions of γz0,ν0((0, r1)) with γ([−L,L]). Let τ1, . . . , τN ∈ [−L,L] and
r1
0, . . . , r

N
0 ∈ (0, r1) de�ne the points of the interse
tion,

γz0,ν(z0)(r
j
0) = γ(τj).As all geodesi
s in balls of radius inj (M) are shortest and rj0 ≤ r1 with

γz0,ν0([0, r1]) being the shortest between its endpoints,
N ≤

[
2Linj (M)

]
+ 1,where [t] denotes the integer part of t ∈ R.Let 0 < ε < 1

2
inj (M) and U(ρ) = ∂M∩B(z0, ρ), where B(z0, ρ) ⊂Mis the ball with 
enter z0 and radius ρ. Then there is ρ0 > 0 su
h that
min

1≤j≤N
|r(z) − rj0| < ε, for z ∈ U(ρ0).Indeed, otherwise there is a sequen
e zn → z0 with r(zn) → r̃ <

τR(z0, ν(z0)) and τ(zn) → τ̃ , |τ̃ | ≤ L, su
h that
γz0,ν0(r̃) = γ(τ̃), r̃ 6= rj0, j = 1, . . . , N,whi
h is a 
ontradi
tion.For 0 < ρ < ρ0, denote

Vj(ρ) = {z ∈ U(ρ) : γz,ξ(z)(r) = γ(τ), r(z) + τ(z) = h(z), |r − rj0| ≤ ε}.Sets Vj(ρ) are relatively 
losed in U(ρ) and, therefore, measurable on
∂M . As ⋃N

j=1 Vj(ρ) = U(ρ), we see that for some j the set Vj(ρ) hasnon-zero (n − 1)-dimensional measure. However, if rj0 6= t0, the same
onsiderations as in the proof of Lemma 2.8, by repla
ing r0 by rj0 andusing a relatively open neighborhood Ũ ⊂ Vj(ρ) of z0, show that the set
Vj(ρ) has (n− 1)−dimensional measure equal to 0 when ρ > 0 is smallenough. This shows that there are j and ρ > 0 su
h that rj0 = t0 and
U(ρ) \ Vj(ρ) has (n− 1)−dimensional measure equal to 0. Thus Vj(ρ)is dense in U(ρ). As ε > 0 is arbitrary, the 
ontinuity of the geodesi
�ow shows that γz0,ξ0(t0) = γ(h(z0)− t0). Together with Theorem 2.6this 
ompletes the proof. 2In the following we say that two geodesi
s µ(t) and µ̃(t) 
oin
ide if
µ(t1) = µ̃(t2) and µ′(t1) = ±µ̃′(t2) for some t1, t2 ∈ R. Note that this isequivalent to µ(t) = µ̃(a+ t) or µ(t) = µ̃(a− t) for all t in a non-emptyopen interval and a ∈ R.2.3. Re
onstru
tion of the boundary 
ut lo
us distan
e.Lemma 2.10. The boundary, ∂M , and the broken s
attering relation,
R, determine the boundary 
ut lo
us distan
e τb(z), z ∈ ∂M .



16 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNProof. We re
all that for t0 < τb(z0) the point z0 in the unique pointof ∂M 
losest to x0 = γz0,ν0(t0). On the 
ontrary, when t0 > τb(z0)there is another point w ∈ ∂M with dist(γz0,ν0(t0), w) < t0. What ismore, 
onsiderations in the beginning of Se
tion 2.2 show the existen
eof a family F(z0, t0) of fo
using dire
tions for t0 < τM(z0). Re
all that
τb(z0) < τM(z0).Thus, when τb(z0) < t0 < τM(z0), there is a family F(z0, t0) =
{U, ξ(· ), t(· )} of fo
using dire
tions, a point w ∈ ∂M, w 6= z0, and
s0 < t0 su
h that

(z, ξ(z))Rt(z)+s0 (w, ν(w)), z ∈ U.(21)Our next aim is to show that when t0 < τb(z0), there are no w ∈ ∂Mand F(z0, t0) satisfying (21) with s0 < t0.Assuming the opposite, there is a neighborhood U ⊂ ∂M of z0 anda fun
tion r(z) with
γz,ξ(z)(r(z)) = γw,ν(w)(t(z) − r(z) + s0), z ∈ U.(22)Next we prove that

r0 = lim sup
z→z0

r(z) ≤ t0.(23)Assume that (23) is not true. Then there is a sequen
e zn → z0 with
r(zn) → r0 > t0. By the 
ontinuity of the exponential map, it followsfrom (22) that γz0,ν0(r0) = γw,ν(w)(t0 − r0 + s0). Thus, by the triangleinequality,dist (w, γz0,ν0(t0))

≤ dist(w, γw,ν(w)(t0 − r0 + s0)) + dist(γz0,ν0(r0), γz0,ν0(t0))
≤ (t0 − r0 + s0) + (r0 − t0) ≤ s0 < t0,whi
h 
ontradi
ts the de�nition (4) of τb. Thus (23) is valid.Therefore, by making U smaller if ne
essary, we have

r(z) < τM(z0), z ∈ U.Assume �rst that geodesi
s γz0,ν0 and γw,ν(w) do not 
oin
ide. ApplyingLemma 2.9 with γ(τ) = γw,ν(w)(t0 +s0− r0 + τ) and L = 2t0, we obtain
γz0,ν0(t0) = γw,ν(w)(s0). As s0 < t0 this 
ontradi
ts with the de�nitionof τb. If γz0,ν0 and γw,ν(w) 
oin
ide, 
ondition w 6= z0 implies that
γz0,ν(z0)(t0+s0) = w. Then we would have dist(x0, ∂M) ≤ dist(x0, w) ≤
s0 < τb(z0), that is not possible.Finally, by Lemma 2.4 the relation R determines the fun
tion µ2(z)satisfying τb(z) ≤ µ2(z). Let J(z0) be the set of those t0 ∈ [0, µ2(z0)]for whi
h there are w ∈ ∂M , s0 < t0, and F(z0, t0) satisfying (21).If τb(z0) < µ2(z0), we see that (τb(z0), µ2(z0)) ⊂ J(z0). Thus we 
andetermine τb(z0) by setting τb(z0) = inf J(z0) if J(z0) 6= ∅ and τb(z0) =
µ2(z0) otherwise. 2



RIGIDITY OF BROKEN GEODESIC FLOW 172.4. Boundary distan
e representation of (M, g). Next we 
on-stru
t of isometry type of manifold (M, g) by showing that the brokens
attering relation, R, determines the boundary distan
e representation
R(M) of (M, g) that is the set

R(M) = {rx : x ∈M} ⊂ C(∂M),where rx : ∂M → R are the boundary distan
e fun
tions
rx(z) = dist(x, z), z ∈ ∂M.It is well-known, e.g. [5, 27, 28℄ that the set R(M) possesses a naturalstru
ture of a Riemannian manifold with the map

R : M → R(M), R(x) = rx(·),being an isomorphism. What is more, this metri
 stru
ture 
an beidenti�ed just from the knowledge of the set R(M). An additional ad-vantage of dealing with R(M) is the existen
e of a stable pro
edure to
onstru
t a metri
 approximation, in the Gromov-Hausdor� topology,to (M, g) given an approximation to R(M) in the Hausdor� topologyon L∞(∂M), [26℄. To 
onstru
t R(M), we assume that the fun
tion
τb is already known. We start with �nding dist∂M on ∂M whi
h isinherited from (M, g). We de�ne that dist∂M(z1, z2) = ∞ when z1 and
z2 lie on di�erent 
omponents of ∂M .Lemma 2.11. The boundary, ∂M , and the broken s
attering relation,
R, determine, for any z1, z2 ∈ ∂M , the distan
e dist∂M(z1, z2) along
∂M .Proof. It is enough to 
onsider the 
ase when z1 and z2 are in thesame 
omponent of ∂M .Using boundary normal 
oordinates, we see that there is ε0 > 0 and
c0 > 0 su
h that

|dist(y1, y2) − dist∂M(y1, y2)| ≤ c0ε
3/2,(24)if dist∂M(y1, y2) ≤ ε3/4, ε < ε0. Let x2 = γy2,ν2(ε
5/4). Making ε0 > 0smaller if ne
essary, we see that there is a unique shortest geodesi
 in

M , γy1,ξ1 , with (y1, ξ1) ∈ Ω+, from y1 to x2. Moreover, using againboundary normal 
oordinates, we see that
|dist(y1, x2) + dist(x2, y2) − dist∂M(y1, y2)| ≤ c1ε

5/4.(25)Let µ = µ([0, l]) be a shortest geodesi
 of ∂M from z1 to z2. Let
N ∈ Z+, ε = l/N and yj = µ(εj), j = 0, . . . , N . De�ne xj = γyj ,νj

(ε5/4)and asso
iate with ea
h j = 1, . . . , N a broken geodesi
 αj whi
h is theunion of the geodesi
 from yj−1 to xj and from xj to yj. Inequality (25)implies that if N → ∞, then
|dist∂M(z1, z2) −

N∑

j=1

(dist(yj−1, xj) + dist(yj, xj)) | ≤ c2ε
1/4 → 0,(26)



18 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNMotivated by this, de�ne for N ∈ Z+ and ε = 1/N

dN(z1, z2) = inf
N∑

j=1

sj,where the in�mum is taken over the points yj ∈ ∂M , j = 0, 1, . . . , N, y0 =
z1, yN = z2, whi
h satisfy the following 
ondition: For any j = 0, . . . , N−
1, there are ηj ∈ Syj

M, (νj, ηj)g > 0 and positive sj < ε3/4 su
h that
(
(yj, ηj), (yj+1, ν(yj+1)), sj

)
∈ R, j = 0, 1, . . . , N − 1.Using (24) we see that dN(z1, z2) ≥ dist∂M(z1, z2) − c3ε

1/2. On theother hand, as we saw in (26), there are yj, ηj, and sj su
h that
|dist∂M(z1, z2) − dN(z1, z2)| ≤ c4ε

1/4 = cN−1/4 → 0, when N → ∞.Thus we get thatdist∂M(z1, z2) = lim
N→∞

dN(z1, z2).
2Next we determine the distan
e between boundary points with re-spe
t to the metri
 g in M .Lemma 2.12. The boundary, ∂M , and the broken s
attering relation,

R, determine the distan
e fun
tion dist(x1, x2) for x1, x2 ∈ ∂MProof. By [1℄, for any x1, x2 ∈ ∂M a shortest path 
onne
ting them isa C1−path. Let x(s), s ∈ [0, l], l = dist(x1, x2), x(0) = x1, x(l) = x2 besu
h a shortest path, parameterized by the ar
length, that 
onne
ts x1to x2 in M . Moreover, by [1℄ it holds that if x(s) ∈M int for s ∈ (a, b),then x((a, b)) is a shortest geodesi
 between x(a) and x(b) in M .Clearly, the set of s ∈ [0, l] su
h that x(s) ∈ M int is open. By (24),for any ε > 0 there are a �nite number points ai, i = 1, . . . , p, ap+1 = l,and bi, i = 1, . . . , p with 0 ≤ a1 < b1 ≤ a2 · · · < bp ≤ ap+1 = l su
h that
zi = x(ai), yi = x(bi) ∈ ∂M anddist(x1, x2) ≤ dist∂M(x1, z1) +(27)

+

(
p∑

i=1

dist(zi, yi) + dist∂M(yi, zi+1)

)
≤ dist(x1, x2) + εand there are shortest paths γzi,ηi

([0, li]) in M of length li = bi − aifrom zi to yj that satisfy γzi,ηi
((0, bi − ai)) ⊂M int. Next we will relate(27) to the broken geodesi
 relation. Re
all that relation R involvedbroken geodesi
s that start and end non-tangentially to the boundary.Be
ause of this, we 
onsider for tangential ηi the ve
tor ξi = (1 −

h)1/2ηi + h1/2ν(zi) ∈ Szj
M . If ηi is non-tangential, we set ξi = ηi.When h > 0 is small enough and si < li is su�
iently 
lose to li,



RIGIDITY OF BROKEN GEODESIC FLOW 19we have that γzi,ξi((0, si]) ⊂ M int, and the 
losest boundary point to
γzi,ξi(si), denoted ỹi, satis�esdist(γzi,ξi(si), ỹi) <

ε

p
, dist∂M(ỹi, yi) <

ε

p
.Indeed, 
onsider the 2−dimensional plane Π ⊂ Tzi
M spanned by νiand ηi and the 
orresponding 2−dimensional surfa
e U = expzi

(ξ), ξ ∈
Π, |ξ| < a. As U is transversal to ∂M at zi, by making a smaller,
U ∩ ∂M is a smooth 
urve λ through zi. In normal 
oordinates in M̃near zi, γzi,ηi

is a radius tangential to λ at 0 with no more interse
tionswith λ. Thus, if h > 0 is su�
iently small, γzi,ξi(s) ∩ ∂M = ∅ for
0 < s < a and, making h smaller if ne
essary, further for 0 < s ≤ si.Consider the broken geodesi
 from zi to ỹj whi
h is the union of thegeodesi
 from zi to γzi,ξi(si) and from γzi,ξi(si) to ỹj. It has the length
ti ≤ li + ε/p and non-tangential starting and ending dire
tions. Thus
(zi, ξi)Rti(ỹi, ν). These 
onsiderations show thatdist(x1, x2) = inf

(dist∂M(x1, z1) + (

p∑

i=1

ti + dist∂M(ỹi, zi+1))

)where the in�mum is taken over ti > 0, zi, ỹi ∈ ∂M , and dire
tions
ξi, ζi su
h that zp+1 = x2 and the relations (zi, ξi)Rti(ỹi, ζi) are valid.
2Theorem 2.13. The boundary, ∂M , and the broken s
attering rela-tion, R, determine the set R(M) ⊂ C(∂M).Proof. Let ω∂M be the boundary 
ut lo
us onM . AsM \ω∂M is denseinM , it is su�
ient to �nd R(M \ω∂M). Re
all that, for x0 ∈M \ω∂M ,we have x0 = γz0,ν0(t0), where t0 = dist(x0, ∂M) < τb(z0) and z0 isthe unique boundary point 
losest to x0. Using the broken s
atteringrelation R, we intend to determine, for any w0 ∈ ∂M , D(z0, t0, w0) :=dist(x0, w0).Let x(s) be a shortest path from x0 to w0 parametrized by the ar-
length. Denote by w = x(s0) the �rst point where x(s) is in ∂M .Clearly, dist(x0, w0) = s0 + dist(w,w0), s0 ≥ t0.(28)By [1℄, the path x([0, s0]) is a geodesi
 in M . We denote η = −x′(s0)so that x0 = γw,η(s0). As t0 ≤ τb(z0) < τM(z0), there is a family offo
using dire
tions F(z0, t0) = {U, ξ( · ), t( · )} su
h that for s1 = s0,
w1 = w, and η1 = η we have

(w1, η1)Rs1+t(z) (z, ξ(z)), z ∈ U.(29)After these preparations we will show that
D(z0, t0, w0) = inf(dist(w0, w1) + s1)(30)



20 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNwhere in�mum is taken over w1 ∈ ∂M , η1 ∈ Sw1
M , and s1 ≥ t0 su
hthat there is a fo
using sequen
e F(z0, t0) = {U, ξ( · ), t( · )} satisfying(29).Formula (28) shows that the in�mum on the right side of (30) is lessor equal to D(z0, t0, w0). Thus to prove (30), it is enough to show thatif w1, η1, and s1 satisfy (29) then ρ = dist(w0, w1) + s1 ≥ dist(x0, w0).Assume now that (29) is valid. Then, for some r(z), τ(z), r(z) +

τ(z) = s1 + t(z), we have that γz,ξ(z)(r(z)) = γ(τ(z)).Keeping aside the trivial 
ase when the geodesi
s γz0,ν0 and γw1,η1
oin
ide, 
onsider �rst the 
ase when lim sup r(z) = r > t0 as z → z0.Denoting γz0,ν0(r) = x1, we then havedist(w1, x0) ≤ dist(w1, x1) + dist(x1, x0)

≤ (s1 + t0 − r) + (r − t0) ≤ s1,yielding ρ ≥ dist(w0, w1) + dist(w1, x0) ≥ dist(w0, x0). If, however,
lim supz→z0 r(z) = r ≤ t0, we are in the situation of Lemma 2.9, whi
hshows that

γz0,ν0(t0) = γ(s1),yielding again that ρ ≥ dist(w0, x0). 2As the set R(M) 
an be naturally endowed with a di�erential stru
-ture and a Riemannian metri
 so that is be
omes isometri
 to (M, g),see e.g. [27, 28℄, we have �nished the proof of Theorem 1.1. 23. Proofs for the radiative transfer equation.3.1. Notations. Let X be a manifold with dimension n and Λ1 ⊂
T ∗X\0 be a Lagrangian submanifold. Let (x1, . . . , xn) = (x′, x′′, x′′′) belo
al 
oordinates of X with x′ = (x1, . . . , xd1), x′′ = (xd1+1, . . . , xd1+d2),
x′′′ = (xd1+d2+1, . . . , xn), and φ(x, θ), θ ∈ R

N be a non-degeneratephase fun
tion that parametrizes Λ1. We say that a distribution u ∈
D′(X) is a Lagrangian distribution asso
iated with Λ1 and denote u ∈
Im(X; Λ1), if it 
an lo
ally be represented as

u(x) =

∫

RN

eiφ(x,θ)a(x, θ) dθ,where a(x, θ) ∈ Sm+n/4−N/2(X × R
N \ 0), see [18, 22, 32℄.Let S1 ⊂ X be a submanifold of 
odimension d1. We denote its
onormal bundle by N∗S = {(x, ξ) ∈ T ∗X \ 0 : x ∈ S, ξ ⊥ TxS}. If

S1 = {x′ = 0} in lo
al 
oordinates, Λ1 = N∗S1 and u ∈ Im(X; Λ1),then lo
ally
u(x) =

∫

Rd1

eix
′·θ′a(x, θ′) dθ′, a(x, θ′) ∈ Sµ(X × R

d1 \ 0)where µ = m− d1/2 + n/4. We denote Iµ(X;S1) = Im(X;N∗S1) andsay that Iµ(X;S1) is the spa
e of the 
onormal distributions in the
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e X asso
iated with submanifold S1. We note that Iµ(X;S1) ⊂
Lploc(X) for µ < −d1(p− 1)/p, 1 ≤ p <∞, see [18℄.Also, we denote by Ip,l(X; Λ1,Λ2) the spa
e of the distributions uin D′(X) asso
iated to two 
leanly interse
ting Lagrangian manifolds
Λ1,Λ2 ⊂ T ∗X \ 0, see [18, 32℄. Let S1 and S2 be submanifolds of Mof 
odimensions d1 and d1 + d2, respe
tively, and S2 ⊂ S1. If in lo
al
oordinates S1 = {x′ = 0}, S2 = {x′ = x′′ = 0}, and Λ1 = N∗S1,
Λ2 = N∗S2, then the distribution u ∈ Ip,l(X; Λ1,Λ2) 
an be lo
allyrepresented as

u(x) =

∫

Rd1+d2

ei(x
′·θ′+x′′·θ′′)a(x, θ′, θ′′) dθ′dθ′′,where a(x, θ′, θ′′) belongs to the produ
t type symbol 
lass Sµ′,µ′′(X ×

(Rd1 \ 0) × R
d2) 
ontaining symbols a ∈ C∞ that satisfy

|∂γx∂
α
θ′∂

β
θ′′a(x, θ

′, θ′′)| ≤ CαβγK(1 + |θ′| + |θ′′|)µ−|α|(1 + |θ′′|)µ
′−|β|for all x ∈ K, multi-indexes α, β, γ, and 
ompa
t sets K ⊂ X. Above,

µ = p+ l − d1/2 + n/4 and µ′ = −l − d2/2.By [18, 32℄, mi
rolo
ally away from Λ1 ∩ Λ2,
Ip,l(Λ0,Λ1) ⊂ Ip+l(Λ0 \ Λ1) and Ip,l(Λ0,Λ1) ⊂ Ip(Λ1 \ Λ0).Thus the prin
ipal symbol of u ∈ Ip,l(Λ0,Λ1) is well de�ned on Λ0 \Λ1and Λ1 \ Λ0.3.2. Born series. In the sequel, we denote the distan
e on (N, g) bydist(x, y). Let γx,ξ(t) be the geodesi
 on (N, g) with the initial point xand the initial dire
tion ξ ∈ SxN . Denote

γx,ξ = {γx,ξ(t) ∈ N : t ∈ R},

ηx,ξ = {(γx,ξ(t), γ̇x,ξ(t)) ∈ SN : t ∈ R},

η+
x,ξ = {(γx,ξ(t), γ̇x,ξ(t)) ∈ SN : t ∈ R+}.The measurement operator A 
an be extended to distributions w sup-ported in SU . In the following we 
onsider u 
orresponding to the ini-tial value w0(x, ξ) = δ(x0,ξ0)(x, ξ), x0 ∈ U . We assume that γx0,ξ0(R+)interse
ts the stri
tly 
onvex manifold M ⊂ N . To analyze the 
or-responding solution, let us denote the spe
i�
 geodesi
 on whi
h theleading order singularities propagate by γ0 = γx0,ξ0 . Also, we denotethe 
orresponding spray in SN by η0 = ηx0,ξ0 .Let u0(t, x, ξ) be the solution of the equation (2) with S being zero,that is, Hu0 + σu0 = 0, u0|t=0 = w0. Then u0(t) = c0(x)δη0(t)(x, ξ),

t > 0 where c0(x) is a non-vanishing smooth fun
tion. To simplifynotations, we 
onsider the equation for all t ∈ R, obtaining
u0(t, x, ξ) = c0(x)δη0(t)(x, ξ), (t, x, ξ) ∈ R × SN.



22 YAROSLAV KURYLEV, MATTI LASSAS, AND GUNTHER UHLMANNIn the following we analyze the higher order terms in the Born series,that is,
uj = QSuj−1, j ≥ 1,where Q is de�ned by v = QF where

Hv + σv = F in R+ × SN, v|t=0 = 0.(31)We note that there are C1, C2 > 0 so that the solution uw of equation(2) satis�es
|uw(t, x, ξ)| ≤ C1e

C2t‖w‖L∞(SN), t ≥ 0.(32)To analyze the singularities of u, let us take the Lapla
e transform Lin time t and 
onsider û(k, x, ξ) = (Lu(· , x, ξ))(k). By (32) the Lapla
etransform is well de�ned for k ∈ C, Re k > C2. In the following, we
onsider k �rst as a parameter, and denote û(x, ξ) = û(k, x, ξ). Then
(k + Ĥ)û+ σû− Sû = w0 in (x, ξ) ∈ SN,where w0(x, ξ) = δ(x0,ξ0)(x, ξ) and

Ĥv(x, ξ) = ξj
∂v

∂xj
(x, ξ) − ξlξjΓmlj (x)

∂v

∂ξm
(x, ξ).The operator Ĥ+k+σ has a right inverse Q̂k : C∞
0 (SN) → C∞(SN),

k ∈ C given by
(Q̂kv)(x, ξ) =

∫ 0

−∞

h(−s, x,−ξ, k)v(γx,ξ(s), γ̇x,ξ(s)) ds(33)where v ∈ C∞
0 (SN) and h(s, x, ξ, k) is the solution of the di�erentialequation

∂sh(s, x, ξ, k) + (k + σ(γx,ξ(s), γ̇x,ξ(s)))h(s, x, ξ, k) = 0,(34)
h(s, x, ξ, k)|s=0 = 1.In (33) we have h(−s, x,−ξ, k) = h(−s, γx,ξ(s), γ̇x,ξ(s), k) as

h(s, x, ξ, k) = e−ksexp(−∫ s

0

σ(γx,ξ(s
′), γ̇x,ξ(s

′))ds′
)
.(35)The operators Q and Q̂k satisfy Q̂k(LF (k)) = L(QF )(k).The Born series in the frequen
y domain is û(k) = û0(k) + ûsc(k),where ûsc(k) = û1(k)+û2(k)+. . . , ûj(k) = (Luj)(k). Here, ûj = Q̂kSûjand û0 = Q̂kw0. Below, we need to 
onsider also the Born iterationstarting at a general w′

0 ∈ Hs
loc(SN), that is,

ŵ(k) =
∞∑

j=0

ŵj(k), where ŵ0(k) = w′
0, ŵj+1(k) = QSŵj(k).(36)Let B0 = B(x0, R) ⊂ N be su
h a ball that the s
attering kernel

K(x, ξ, ξ′) is supported in SB0×̇SB0. Let φ ∈ C∞
0 (N) be supportedin B = B(x0, R + 1) and φ(x) = 1 in B0. Sin
e N is simple we see



RIGIDITY OF BROKEN GEODESIC FLOW 23that if (x, ξ) ∈ SB then γx,ξ(t) 6∈ B for |t| > 2(R + 1). Thus, when
v ∈ Hs

comp(SB) and (x, ξ) ∈ SB, we 
an write
(φQ̂k(φv))(x, ξ) =

∫ 0

−∞

eks
′

q(s′, x, ξ)v(γx,ξ(s
′), γ̇x,ξ(s

′)) ds′where q(s′, x, ξ) is smooth and supported in [−2(R+1), 0]×SB. UsingHölder's inequality for s ∈ N we 
an see that
‖φQ̂k(φv)‖Hs(SN) ≤

C(s)Re k ‖v‖Hs(SN), Re k > 0, v ∈ Hs(SN),where C(s) > 0 is independent of k and v. Using interpolation we ob-tain this for s ∈ R+. We observe then that (Q̂kS)j+1v = Q̂kS(φQ̂kφS)jvand that Q̂k : Hs
comp(SN) → Hs

loc(SN) is 
ontinuous. Using this wesee that for any s ≥ 0 there is C3(s) su
h that for Re k > C3(s)the Born series (36) 
onverges in the Sobolev spa
e Hs
loc(SN) when

w′
0 ∈ Hs

loc(SN).3.3. Properties of the 
ompositions of the operators S and Q̂k.Lemma 3.1. We 
an write S = S1S2,
Sjf(x, ξ) =

∫

SxN

Kj(x, ξ, ξ
′)f(x, ξ′) dSg(ξ

′), j = 1, 2where Kj(x, ξ, ξ
′) ∈ C∞

0 (SN×̇SN).Proof. Interpreting x as a parameter and 
onsidering SxN as the
(n− 1)-sphere Sn−1, we de�ne Kx : L2(Sn−1) → L2(Sn−1) by

Kxf(ξ) =

∫

Sn−1

K(x, ξ, ξ′)f(ξ′) dS(ξ′).As the kernel K(x, ξ, ξ′) is smooth, we see that for all α ∈ N
n and

l,m ∈ N there is a 
onstant cαlm su
h that
sup
x∈M

‖∇α
x(1 − ∆ξ)

mK(x, ξ, ξ′)‖Cl(Sn−1×Sn−1) < cαlm,(37)where ∆ξ is the Lapla
e-Beltrami operator of the (n− 1)-sphere Sn−1.Let am > 0 be numbers su
h that 0 < am < e−m
2

min(1, c−1
αlm) for all

α, l with max(|α|, l) ≤ m. Then the operator
B =

∞∑

m=0

am(1 − ∆ξ)
mde�nes an unbounded non-negative selfadjoint operatorB : L2(Sn−1) →

L2(Sn−1) having an inverse J = B−1 that 
an be extended to a smooth-ing operator D′(Sn−1) → C∞(Sn−1). Moreover, by (37) we see that forany x the operator Lx = BKx de�nes a smoothing operatorD′(Sn−1) →
C∞(Sn−1) and its S
hwartz kernel Lx(ξ, ξ′) is a C∞-smooth in all vari-ables (x, ξ, ξ′). Thus we prove the assertion by de�ning K2(x, ξ, ξ

′) =
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Lx(ξ, ξ

′) and K1(x, ξ, ξ
′) = χ(x)J(ξ, ξ′), where J(ξ, ξ′) is the S
hwartzkernel of J and χ ∈ C∞

0 (N) satis�es χ(x) = 1 for all x ∈M . 2The terms in the Born series 
an be written as
ûj(k) = Q̂kS1G

j−1S2û0(k), j ≥ 1where G = S2Q̂kS1. To analyze the operator G we 
onsider �rst the
ase where K(x, ξ, ξ′) is equal to the 
onstant 1. Denote by Sc theoperator 
orresponding to the 
onstant s
attering kernel K(x, ξ, ξ′) =
1. For this purpose, we introdu
e operators T = π∗ : L2(SN) → L2(N)and T ∗ = π∗ : L2(N) → L2(SN), that is,

Tu(x) = c−1
n

∫

SxN

u(x, ξ)dSg(ξ), T ∗v(x, ξ) = v(x),where cn = vol(SxN).Lemma 3.2. Let Z = SN × SN , L0 = {(x, ξ, y, η) ∈ Z : x = y}, and
Σ0 = N∗L0. The S
hwartz kernels of Gc and G satisfy

Gc(x, ξ, y, η) ∈ I−1(Z;L0) = Ir(Z; Σ0),(38)
G(x, ξ, y, η) ∈ Iρ(Z; Σ0)(39)where r = −(n+ 1)/2, ρ = r + ε, and ε > 0.Proof. Clearly, TT ∗ = I and Sc = T ∗T . Thus we have Sc = Sc1S

c
2where Sc1 = Sc2 = Sc. In the lo
al 
oordinates Sc has the S
hwartzkernel

Sc(x, ξ, x′, ξ′) = δ(x− x′) ∈ I0(Z;L0) = Im1(Z; Σ0),where m1 = (1 − n)/2. To analyze G = S2Q̂kS1, we �rst 
onsider theoperator
Gc = Sc2Q̂kS

c
1 = T ∗TQ̂kT

∗T.Denote Q̃k = TQ̂kT
∗ : L2(N) → L2(N) and let v ∈ C∞

0 (N). Then,using (33) and the assumption that the manifold N is simple, we have
(TQ̂kT

∗v)(x) =

∫

SxN

∫ 0

−∞

h(−s, x,−ξ, k)v(γx,ξ(s)) dsdSg(ξ)(40)
=

∫

N

[h(−s(x, y), x,−ξ(x, y), k)j(x, y)]v(y) dVg(y),where s(x, y) ∈ (−∞, 0] and ξ(x, y) ∈ SxN are de�ned by exp−1
x (y) =

s(x, y)ξ(x, y), and j(x, y) = det(d expx |y)
−1 is the Ja
obian determi-nant where d expx |y is the di�erential of the map expx evaluated at y.Sin
e (N, g) is simple, the kernel b(x, y) := h(s(x, y), x, ξ(x, y), k)j(x, y)is smooth outside the diagonal and behaves near the diagonal as

b(x, y) ∼ e−(k+σ) dist(x,y)(dist(x, y))1−n.Using (40) we see that Q̃k is a pseudodi�erential operator of order (−1)(for a similar argument see [40℄).
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hwartz kernel Q̃k(x, x
′) ∈ I−1(N ×N ; diag (N ×N)) of Q̃ 
anbe written as

Q̃k(x, x
′) =

∫

Rn

ei(x−x
′)·θa(x, x′, θ)dθ, a ∈ S−1(N ×N × R

n \ 0).The same expression de�nes a fun
tion Q̃k(x, ξ, x
′, ξ′) := Q̃k(x, x

′) ∈

I−1(SN×SN ;L0). This fun
tion is the S
hwartz kernel ofGc = T ∗Q̃kTand thus we see that the �rst part of the assertion, the formula (38) issatis�ed.Next we 
onsider the S
hwartz kernel of G, that is, G(x, ξ, y, η). As
G = S2Q̂kS1, we 
an, roughly speaking, 
onsider G(x, ξ, y, η) as the
oe�
ient 
orresponding to the 
ombination of a s
attering at y wheredire
tion (y, η) 
hanges to (y, θ), propagation from y to x along geodesi

γy,θ, and a s
attering at x where dire
tion 
hanges to (x, ξ). In rigorousterms, we observe that kernel of G 
an be written as a produ
t

G(x, ξ, y, η) = Gc(x, ξ, y, η)J(x, ξ, y, η)(41)where (using the Riemannian normal 
oordinates at x)
J(x, ξ, y, η) = K2(x, ξ,

y − x

|y − x|
)K1(y,

x− y

|x− y|
, η).Now K1(x, z/|z|, ξ) and K2(x, ξ, z/|z|) are homogeneous fun
tions ofdegree zero in z, and we see that by [18, formula (1.2)℄

K2(x, ξ,
y − x

|y − x|
), K1(y,

x− y

|x− y|
, η) ∈ I−n(Z;L0).We note that as K1 and K2 are elements of I−n(Z;L0) ⊂ Lploc(SN),for all 1 ≤ p <∞, the pointwise produ
t K1K2 is well de�ned.Now we 
an write G as the produ
t of K1, K2, and Gc. To analyzethis produ
t, we need the following lemma extending results of [18℄ forless regular 
onormal distributions.Lemma 3.3. Let X be a manifold of dimension n and L be a sub-manifold with 
odimension d. Assume that A ∈ I−d(X;L) and B ∈

Iµ(X;L), µ < 0. Then the pointwise produ
t AB ∈ Iµ+ε(X;L) for any
ε > 0.Proof. Let (z′, z′′) be lo
al 
oordinates of X su
h that L = {z′ = 0}.By [22℄, A and B 
an be written as

A(z) =

∫

Rd

eiz
′·θa(z′′, θ) dθ, B(z) =

∫

Rd

eiz
′·θb(z′′, θ) dθ,where a(z′′, θ) ∈ S−d(Rn−d × R

d \ 0) and b(z′′, θ) ∈ Sµ(Rn−d × R
d \ 0).Then the produ
t C(z) = A(z)B(z) is given by

C(z) =

∫

Rd

eiz
′·θc(z′′, θ) dθ, c(z′′, θ) =

∫

Rd

a(z′′, θ − θ̃) b(z′′, θ̃) dθ̃,
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omputations shows that
|c(z′′, θ)| ≤ C

∫

Rd

(1 + |θ − θ̃|)−d(1 + |θ̃|)µ dθ ≤ C ′(1 + |θ|)µ+ε,with ε > 0. Indeed, de
omposing the domain of integration as R
d =

B(θ, 1
2
|θ|) ∪B(0, 1

2
|θ|) ∪ (Rd \ (B(θ, 1

2
|θ|) ∪B(0, 1

2
|θ|))), we see that

|c(z′′, θ)| ≤ C1|θ|
µ log |θ| + C2|θ|

−d|θ|d+µ(1 + δµ,−d log |θ|) + C3|θ|
µ

≤ C ′(1 + |θ|)µ+ε,where |θ| > 1 and δµ,−d is one if µ = −d and zero otherwise. Thederivatives of c(z′′, θ) 
an be estimated in similar way, and we obtainthat c(z′′, θ) ∈ Sµ+ε(Rn−d × R
d \ 0). 2The loss of ε in smoothness in Lemma 3.3 happens for instan
e when

A = B = â(x) ∈ I−1(R; {0}), where a(θ) = (1 − φ(θ))θ−1
+ where

φ ∈ C∞
0 (R) is one near θ = 0. Then, the symbol c(θ) of the produ
t

AB behaves like c(θ) ∼ cθ log θ when θ → ∞.Now we 
an �nish the proof: Applying Lemma 3.3 for the produ
t(41) we obtain (39). This proves Lemma 3.2. 2The previous result says, roughly speaking, that G is like a ΨDO oforder (−1) when ξ and η are 
onsidered as parameters.Next we 
onsider powers of G. Next, Σ′
0 denotes the 
anoni
al rela-tion 
orresponding to the Lagrangian manifold Σ0. We see that Σ′

0×Σ′
0interse
ts 
leanly T ∗SN×diag (T ∗SN×T ∗SN)×T ∗SN with the ex
ess

d = (n− 1). Thus using [47, Thm VIII.5.2℄, we see that
G2 = G ◦G ∈ I2ρ+d/2(Z; Σ0) = Iρ2(Z; Σ0),where ρ2 = −(n+ 3)/2 + 2ε with any ε > 0. Iterating the operator G,we see that

Gj ∈ Iρj(Z; Σ0) = I−j+ε(Z;L0), ρj = −
n− 1

2
− j + ε, ε > 0.3.4. Singularities of the terms in the Born series. In the follow-ing, let Λ0 = N∗Y0 and Λ1 = N∗Y1, where

Y0 = {(γ0(t), γ̇0(t)) ∈ SN : t ∈ R}, Y1 = {(x, ξ) ∈ SN : x ∈ γ0(R)}.Moreover, let P = P (x, ξ,Dx, Dξ) = Ĥ + k,
har (P ) = {(x, ξ, x̃, ξ̃) ∈ T ∗(SN) : ξix̃i − ξiξjΓkij(x)ξ̃k = 0},where (x̃, ξ̃) are the dual variables 
orresponding to (x, ξ) ∈ SN . Let
Ξ(x, ξ, x̃, ξ̃) be the bi
hara
teristi
 of P (x, ξ,Dx, Dξ) (i.e. the integral
urve of the Hamilton ve
tor �eld of P in T ∗(SN) \ 0) starting from
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(x, ξ, x̃, ξ̃) ∈ T ∗(SN). Then the �ow-out 
anoni
al relation generatedby 
har (P ) is

Λ′
P = {(x, ξ, x̃, ξ̃; y, ζ, ỹ, ζ̃) ∈ (T ∗(SN) \ 0) × (T ∗(SN) \ 0) :

(x, ξ, x̃, ξ̃) ∈ 
har (P ), (y, ζ, ỹ, ζ̃) ∈ Ξ(x, ξ, x̃, ξ̃)}.The �ow-out of Λ1 in 
har (P ) is the Lagrangian manifold Λ2 ⊂ T ∗SN \
0 satisfying Λ′

2 = Λ′
P ◦ Λ′

1.Lemma 3.4. We have
û0(k, x, ξ) = c0(x, k)δη0(x, ξ) ∈ Ir0(SN ; Λ0),where c0(x, k) is a smooth non-vanishing fun
tion and r0 = (2n−3)/4.For j ≥ 1,̂

uj(k) ∈ Irj ,−
1

2 (SN ; Λ1,Λ2), rj = −j +
1

4
+ εδj≥2, ε > 0,(42)where δj≥2 is one if j ≥ 2 and zero otherwise.Proof. For the zeroth term in the Born series the 
laim is true byde�nition. Next we analyze the higher order terms. Clearly,

S2û0(k, x, ξ) = K2(x, ξ, η(x))(S
cû0)(k, x, ξ),where η(x) ∈ SxN de�nes a smooth ve
tor �eld su
h that if x = γ0(s)then η(x) = γ̇0(s). A simple 
omputation shows that Λ′

0×Σ′
0 interse
tsdiag(T ∗SN × T ∗SN) × (T ∗SN) transversally. Now S2 ∈ I0(SN ×

SN ;L0) = Im1(SN ×SN ; Σ0), where m1 = (1−n)/2 and by [22, Thm25.2.3℄ S2 
an be 
onsidered as a 
ontinuous operator
S2 : Ir0(SN ; Λ0) → Is(SN ; Λ1),where s = r0 +m1 and Λ′

1 = Λ′
0 ◦Σ′

0. A simple 
omputation shows that
Λ′

1◦Σ′
0 = Λ′

1, and that Λ′
1×Σ′

0 interse
ts diag(T ∗SN×T ∗SN)×(T ∗SN)
leanly with ex
ess e = (n−1). Thus we have by [22, Thm 25.2.3℄ that
GjS2û0(k) ∈ Iρj+s+e/2(SN ; Λ1).Again, as Λ′

1 ◦Σ′
0 = Λ′

1, and Λ′
1 ×Σ′

0 interse
ts diag(T ∗SN ×T ∗SN)×
(T ∗SN) 
leanly with ex
ess e, we see that sin
e S1 ∈ Im1(Z; Σ0),

S1G
jS2û0(k) ∈ Iρj+r0+2m1+e(SN ; Λ1) = Iρj+r0(SN ; Λ1).(43)To analyze ûj(k) = Q̂kS1G

j−1S2û0(k), we observe that the operator
P = Ĥ + ik is a �rst order operator of real prin
ipal type. As Q̂k is itsparametrix, it follows from [32℄ that the S
hwartz kernel

Q̂k ∈ I
1

2
−1,− 1

2 (Z; ∆T ∗Z ,ΛP ),(44)where ∆′
T ∗Z is the diagonal of T ∗Z×T ∗Z and Λ′

P ⊂ T ∗(Z) is the �ow-out 
anoni
al relation generated by 
har (P ). Now N∗Y1 interse
ts
har (P ) transversally. Hen
e we obtain (42) by [18, Prop. 2.1℄. 2
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ipal symbol of the singularity. For any s > 0 there is j0su
h that ûj0(k) ∈ Hs
loc(SN). Using the 
onvergen
e of the Born series(36), we see that the series ûj0(k) + ûj0+1(k) + ûj0+2(k) + . . . 
onvergesin Hs

loc(SN).Next we 
onsider how to �nd the geodesi
 γ0 in U . To this end weobserve using T ûj(k) = TGj−1S2û0(k) and arguing as in the proof ofLemma 3.2 that T û(k) = T û0(k) + T ûsc(k) ∈ I0(N ; γ0) and T û0(k) ∈
I0(N ; γ0) have the same non-vanishing prin
ipal symbol. Thus T û(k)in U determines U ∩ γ0.Moreover, the above 
onvergen
e of the Born series in Sobolev spa
esand (42) yield that û1(k) and ûsc(k) = û1(k) + û2(k) + . . . are bothelements in Ir1,− 1

2 (SN ; Λ1,Λ2) and they have the same prin
ipal symbolon Λ2 \ Λ1. Motivated by this, we 
onsider next û1(k).Using the above notations, we see that
Sû0(k, x, ξ) = K(x, ξ, η(x))h(dist(x, x0), x0, ξ0, k)c1(x)δγ0(x)is in I0(SN ;Y1), where c1(x) is a smooth non-vanishing fun
tion. More-over, the operator Q̂k has the S
hwartz kernel (44) that away from thediagonal has the form

Q̂k(x, ξ, x
′, ξ′) = h(dist(x, x′), x′, ξ′, k)δη+

x′,ξ′
(x, ξ),where h is de�ned in (34). Thus, in (x, ξ, x′, ξ′) ∈ Z \ L0, the kernel of

Q̂k has the form
Q̂k(x, ξ, x

′, ξ′) =∫

RN

eiψ(x,ξ,x′,ξ′,θ)[h(dist(x, x′), x′, ξ′, k)q(x, ξ, θ)] dθ mod C∞(Z)where ψ(x, ξ, x′, ξ′, θ) is a non-degenerate phase fun
tion parameteriz-ing the Lagrangian ΛP and q(x, ξ, θ) ∈ S−1/2+(4n−2)/4−N/2(Rn×R
n−1 ×

R
N \ 0) has a non-vanishing prin
ipal symbol.Let us use in SN \ η0 lo
al 
oordinates S : (x, ξ) 7→ (sj(x, ξ))

2n−1
j=1having the property that if γx,ξ(R−) interse
ts the geodesi
 γ0(R+) then

s1 = s1(x, ξ) is the unique value su
h that
γx,ξ(R−) ∩ γ0(R+) = γ0(s1),and s2(x, ξ) = dist(γ0(s1(x, ξ)), x). By [18, Prop. 2.1℄,

û1(k) = Q̂kSû0(k) ∈ Ir1,−
1

2 (SN ; Λ1,Λ2)and û1(k, x, ξ) in (x, ξ) ∈ SN \ η0 has in the above lo
al 
oordinatesthe form
û1(k, x, ξ) =

∫

RN

eiφ(x,ξ,θ)[a(x, ξ, k)p(x, ξ, θ)] dθ mod C∞(SN),

a(x, ξ, k) = h(s1, x0, ξ0, k)K(γ0(s1), ζ, γ̇0(s1))h(s2, γ0(s1), ζ, k)where φ(x, ξ, θ) is a non-generate phase fun
tion parametrizing theLagrangian manifold Λ2, s1 = s1(x, ξ), s2 = s2(x, ξ), ζ = ζ(x, ξ) =



RIGIDITY OF BROKEN GEODESIC FLOW 29
−γ̇x,ξ(−s2(x, ξ)) is the dire
tion of x from γ0(s1) and p(x, ξ, θ) is a sym-bol with a non-vanishing prin
ipal symbol. Note that on Λ2 \ Λ1 theprin
ipal symbol of a(k, x, ξ)p(x, ξ, θ) is non-vanishing on the 
onormalbundle of the submanifold

K = {(x, ξ) ∈ SN : γx,ξ(R−) ∩ γ0(R+) ∩M int 6= ∅}.By (35),
a(x, ξ, k) = e−k(s1+s2)K(γ0(s1), ζ, γ̇0(s1)) b0(x, ξ),(45)where s1 = s1(x, ξ), s2 = s2(x, ξ), ζ = ζ(x, ξ), and b0(x, ξ) is non-vanishing and independent of k.Now we are ready prove unique solvability of the inverse problem.Proof of Theorem 1.2. First we note that have found already theset γ0 ∩U . Thus we know the set W := SN \ (SM ∪ η0). By observingthe singularities of û(k) at W , we 
an �nd the 
onormal bundle ofthe manifold K ∩ U . Thus by observing û(k) at W we 
an �nd allpoints (x, ξ) ∈ W su
h that there is a broken geodesi
 from (x0, ξ0)to (x, ξ) with a breaking point in M int. Moreover, we 
an �nd theprin
ipal symbol of û(k) on N∗K ∩W in some lo
al 
oordinates. By(45), observing the asymptoti
s of the prin
ipal symbol on N∗K ∩Wwhen k → ∞, we 
an �nd the fun
tion dist(x0, γ0(s1))+dist(γ0(s1), x),

s1 = s1(x, ξ) on (x, ξ) ∈ W . Here γ0(s1) ∈ M int is the point at whi
hthe broken geodesi
 from (x0, ξ0) to (x, ξ) breaks, that is, the brokengeodesi
 
hanges its dire
tion.Using the 
ontinuity of the geodesi
 �ow, we 
an �nd all (x, ξ) ∈
SN \ SM that are in the broken s
attering relation R with (x0, ξ0)and moreover, in su
h 
ase we 
an �nd the broken geodesi
 distan
edist(x0, γ0(s1)) + dist(γ0(s1), x). This proves the result and even more:The singularities of the S
hwartz kernel of the operator G determinethe broken s
attering relation R. 2A
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