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1 Introduction

In the paper [U] we surveyed some of the most important developments motivated by Calderón’s beautiful
paper [C1] up to Calderón’s 75th anniversary conference. As we describe in this note, his only article on
inverse problems has continued to have a crucial impact in the field.

In this section we recall the problem which was considered by Calderón in the 40’s when he was an engineer
working for the Argentinian state oil company “Yacimientos Petroĺıferos Fiscales” (YPF). Parenthetically
Calderón said in his speech accepting the “Doctor Honoris Causa” of the Universidad Autónoma de Madrid
that his work at YPF had been very interesting but he was not well treated there; he would have stayed at
YPF otherwise ([C2]). It goes without saying that the bad treatment of Calderón by YPF was very fortunate
for Mathematics!

Calderón’s motivation was geophysical prospection, in particular oil exploration, using electrical methods.
The question is whether one can determine the conductivity of the subsurface of the Earth by making
voltage and current measurements at the surface. The problem of determining the electrical properties of
a medium by making voltage and current measurements at the boundary has also raised the interest of
the medical imaging community and is known as Electrical Impedance Tomography (EIT). One exciting
potential application is the early diagnosis of breast cancer. The conductivity of a malignant breast tumor
is typically 0.2 mho which is significantly higher than normal tissue which has been typically measured at
0.03 mho. See the book [Ho] and the issue of Physiological Measurement [HIMS] for applications of EIT to
medical imaging and other fields.

Let Ω ⊆ Rn, n ≥ 2, be a bounded domain with smooth boundary (many of the results we will describe are
valid for domains with Lipschitz boundaries). The electrical conductivity of Ω is represented by a bounded
and positive function γ(x). In the absence of sinks or sources of current the potential u ∈ H1(Ω) with given
boundary voltage potential f ∈ H 1

2 (∂Ω) is a solution of the Dirichlet problem

div(γ∇u) = 0 in Ω,
u
∣∣
∂Ω

= f.
(1.1)

The Dirichlet to Neumann (DN) map, or voltage to current map, is given by

Λγ(f) =
(
γ
∂u

∂ν

) ∣∣∣
∂Ω
, (1.2)
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where ν denotes the unit outer normal to ∂Ω.
The inverse problem is to determine γ knowing Λγ . Using the divergence theorem we have

Qγ(f) :=
∫

Ω

γ|∇u|2dx =
∫
∂Ω

Λγ(f)f dS (1.3)

where dS denotes surface measure and u is the solution of (1.1). In other words Qγ(f) is the quadratic form
associated to the linear map Λγ(f), i.e., to know Λγ(f) or Qγ(f) for all f ∈ H 1

2 (∂Ω) is equivalent. The form
Qγ(f) measures the energy needed to maintain the potential f at the boundary. Calderón’s point of view
was to find enough solutions u ∈ H1(Ω) of the conductivity equation div(γ∇u) = 0 so that |∇u|2 is dense in
an appropriate topology in order to find γ in Ω. Notice that the DN map (or Qγ) depends non-linearly on γ.
Calderón considered the linearized problem at a constant conductivity. A crucial ingredient in his approach
is the use of the harmonic complex exponential solutions:

u = ex·ρ, where ρ ∈ Cn with ρ · ρ = 0. (1.4)

Sylvester and Uhlmann constructed in dimension n ≥ 2 complex geometrical optics (CGO) solutions
of the conductivity equation for C2 conductivities similar to Calderón’s [SU1,2]. This can be reduced to
constructing solutions in the whole space (by extending γ = 1 outside a large ball containing Ω) for the
Schrödinger equation with potential

q =
∆
√
γ

√
γ
. (1.5)

Using this transformation one can reduce the inverse problem, for smooth enough conductivities, to study
the DN map associated to the solution of the Dirichlet problem for the Schrödinger equation (assuming that
zero is not a Dirichlet eigenvalue)

(∆− q)u = 0, u|∂Ω = f,

defined by

Λq(f) =
∂u

∂ν
.

Let −1 < δ < 0. Let ρ be as in (1.4) and |ρ| large. The solutions of

(∆− q)u = 0

constructed in [SU1,2] have the form
u = ex·ρ(1 + ψq(x, ρ)) (1.6)

with ψq(·, ρ) ∈ L2
δ(Rn). Moreover ψq(·, ρ) ∈ H2

δ (Rn) and for 0 ≤ s ≤ 2 there exists C = C(n, s, δ) > 0 such
that

‖ψq(·, ρ)‖Hs
δ
≤ C

|ρ|1−s
. (1.7)

Here L2
δ is an appropriate weighted L2 space and Hs

δ is the corresponding weighted Sobolev space.
These solutions were used in [SU1] to show in dimension n ≥ 3 that the DN map Λγ determines uniquely

the conductivity. This was the first breakthrough for the non-linear problem in dimension n ≥ 3 and led to
several other developments (again see [U]). In two dimensions A. Nachman showed in [N] that the solutions
can be constructed for the Schrödinger equation with a potential of the form (1.5) for all non-zero complex
frequencies. This combined with the ∂ method allowed Nachman to prove that C2 conductivities in two
dimensions could be uniquely determined by the DN map. This was extended to Lipschitz conductivities in
[BrU].

This summarizes the basic unique identifiability results for Calderón’s problem. We now turn to recent
developments.
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2 Improvement in smoothness assumptions

Astala and Päivärinta [AP], in a seminal contribution, have recently extended the result of [N] and [BrU]
significantly by proving that any L∞ conductivity in two dimensions can be determined uniquely from the
DN map. The proof again relies on CGO solutions. This is done by transforming the conductivity equation
to a quasi-regular map. Let D be the unit disk in the plane. Then we have

Lemma 2.1 Assume u ∈ H1(D) is real valued and satisfies the conductivity equation on D. Then there
exists a function v ∈ H1(D), unique up to a constant, such that f = u+ iv satisfies the Beltrami equation

∂f = µ∂f, (2.1)

where µ = (1− γ)/(1 + γ).
Conversely, if f ∈ H1(D) satisfies (2.1) with a real-valued µ, then u = Re f and v = Im f satisfy

∇ · γ∇u = 0 and ∇ · 1
γ
∇v = 0, (2.2)

respectively, where γ = (1− µ)/(1 + µ).

Let us denote κ = ||µ||L∞ < 1. Then (2.1) means that f is a quasi-regular map. The function v is called
the γ-harmonic conjugate of u and it is unique up to a constant.

Astala and Päivärinta consider the µ-Hilbert transform Hµ : H1/2(∂Ω) → H1/2(∂Ω) that is defined by

Hµ : u
∣∣
∂Ω

7→ v
∣∣
∂Ω

and show that the DN map Λγ determines Hµ and vice versa.
Below we use the complex notation z = x1 + ix2. Moreover, for the equation (2.1), it is shown that for

every k ∈ C there are complex geometrical optics solutions of the Beltrami equation that have the form

fµ(z, k) = eikzMµ(z, k), (2.3)

where

Mµ(z, k) = 1 +O
(

1
z

)
as |z| → ∞. (2.4)

More precisely, they prove that

Theorem 2.1 For each k ∈ C and for each 2 < p < 1 + 1/κ the equation (2.1) admits a unique solution
f ∈W 1,p

loc (C) of the form (2.3) such that the asymptotic formula (2.4) holds true.

In the case of non-smooth coefficients the function Mµ growths sub-exponentially in k. Astala and
Päivärinta introduce the “transport matrix” to deal with this problem. Using a result of Bers connecting
pseudoanalytic functions with quasi-regular maps they show that this matrix is determined by the Hilbert
transform Hµ and therefore the DN map. Then they use the transport matrix to show that Λγ determines
uniquely γ. See [AP] for more details.

It is conjectured that in three dimensions or higher the best result on smoothness for unique identifiability
from the DN map should be for Lipschitz conductivities. At the writing of this paper the best regularity result
assumes 3/2 derivatives on the conductivity ([PPU], [BrT]). These results were proven by also constructing
CGO solutions similar to (1.6).

In [GLU1] it is shown by also constructing CGO solutions that conormal potentials which are more singu-
lar than L

n
2 are uniquely determined by the DN map. As a corollary the determination of the conductivity

from the DN map result of [GLU1] holds for C1+ε, ε > 0 conormal conductivities.
In dimension n ≥ 3 the smoothness assumptions for the identifiability results for first order perturbations

of the Laplacian [To], including the magnetic Schrödinger operator, were improved considerably in [Sa].
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3 The local problem in dimension n ≥ 3

Substantial progress has been made on the local problem, that is whether from measuring the DN map on
an open subset of the boundary one can determine the conductivity in the interior.

The paper [BuU] used the method of Carleman estimates with a linear weight to prove that, roughly
speaking, knowledge of the DN map in “half” of the boundary is enough to determine uniquely a C2 conduc-
tivity. In [K] the regularity assumption on the conductivity was relaxed to C1+ε, ε > 0. Stability estimates
for the uniqueness result of [BuU] were given in [HW]. Stability estimates for the magnetic Schrödinger
operator with partial data in the setting of [BuU] can be found in [Tz].

The [BuU] result was substantially improved in [KSU]. The latter paper contains a global identifiability
result where it is assumed that the DN map is measured on any open subset of the boundary for all functions
supported, roughly, on the complement. We state below more precisely the result.

Let x0 ∈ Rn \ ch (Ω), where ch (Ω) denotes the convex hull of Ω. Define the front and the back faces of
∂Ω by

F (x0) = {x ∈ ∂Ω; (x− x0) · ν ≤ 0}, B(x0) = {x ∈ ∂Ω; (x− x0) · ν > 0}.

The main result of [KSU] is the following:

Theorem 3.1 With Ω, x0, F (x0), B(x0) defined as above, let q1, q2 ∈ L∞(Ω) be two potentials and assume
that there exist open neighborhoods F̃ , B̃ ⊂ ∂Ω of F (x0) and B(x0)∪ {x ∈ ∂Ω; (x− x0) · ν = 0} respectively,
such that

Λq1u = Λq2u in F̃ , for all u ∈ H 1
2 (∂Ω) ∩ E ′(B̃). (3.1)

Then q1 = q2.

The proof of this result uses Carleman estimates for the Laplacian with limiting Carleman weights
(LCW). The Carleman estimates allow one to construct, for large τ , a larger class of CGO solutions for the
Schrödinger equation than previously used. These have the form

u = eτ(φ+iψ)(a+ r), (3.2)

where ∇φ · ∇ψ = 0, |∇φ|2 = |∇ψ|2 and φ is the LCW. Moreover a is smooth and non-vanishing and
‖r‖L2(Ω) = O( 1

τ ), ‖r‖H1(Ω) = O(1). Examples of LCW are the linear phase φ(x) = x · ω, ω ∈ Sn−1, used
previously, and the non-linear phase φ(x) = ln |x − x0|, where x0 ∈ Rn \ ch (Ω) which was used in [KSU].
Any conformal transformation of these would also be a LCW.

The local DN map for the magnetic Schrödinger operator was studied in [DKSU] and [KS]. We also
mention that in [GrU] (resp. [IU]) CGO approximate solutions are concentrated near planes (resp. spheres)
and obtained some local results related to the local DN map. For further application of these solutions see
the next section.

4 Determination of cavities and inclusions

The CGO solutions have the property that they grow exponentially in a direction where the inner product
of the real part of the complex phase with the direction is strictly positive, they are exponentially decaying
if this inner product is negative and oscillatory if the inner product is zero. This was exploited by Ikehata
in [I] to give a reconstruction procedure from the DN map of a cavity D with strongly convex C2 boundary
∂D inside a conductive medium Ω with conductivity 1 such that Ω \D is connected. We sketch some of the
details here. We define the DN map ΛD by

ΛD(f) :=
∂u(f)
∂ν

|∂Ω, (4.1)
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where u(f) ∈ H2(Ω) is the solution to 
∆u = 0 in Ω \D,
∂u
∂ν |∂D = 0,
u|∂Ω = f ∈ H3/2(∂Ω)

(4.2)

and ν is the unit normal of ∂D. If D = ∅, we denote ΛD by Λ0. Let ω, ω⊥ be unit real vectors perpendicular
to each other. For τ > 0, consider the Calderón harmonic functions

v(x, τ, ω, ω⊥) = e−tτeτx·(ω+iω⊥). (4.3)

Note that this function grows exponentially in the half space x · ω > t and decays exponentially in the half
space x · ω < t. For t ∈ R, define the indicator function by

Iω,ω⊥(τ, t) :=
∫
∂Ω

((ΛD − Λ0)v|∂Ω)v|∂Ω dS. (4.4)

We also define the support function hD(ω) of D by

hD(ω) := supx∈Dx · ω. (4.5)

Ikehata characterizes the support function in terms of the indicator function. More precisely we have

hD(ω)− t = lim
τ→∞

Iω,ω⊥(τ, t)
2τ

. (4.6)

Hence, by taking many ω’s, we can recover the shape of D. See [I], [IS] for more details and references,
including numerical implementation of this method.

Using methods of hyperbolic geometry similar to [IU] it is shown in [IIsNSU] that one can reconstruct
inclusions from the local DN map using CGO solutions that decay exponentially inside ball and grow ex-
ponentially outside, these are called complex spherical waves. A numerical implementation of this method
has been done in [IIsNSU]. The construction of complex spherical waves can also be done using the CGO
solutions constructed in [KSU]. This was done in [UW1] in order to detect elastic inclusions, and in [UW2]
to detect inclusions in the two dimensional case for a large class of systems with inhomogeneous background.

5 Anisotropic conductivities

Anisotropic conductivities depend on direction. Muscle tissue in the human body is an important example
of an anisotropic conductor. For instance cardiac muscle has a conductivity of 2.3 mho in the transverse
direction and 6.3 in the longitudinal direction. The conductivity in this case is represented by a positive
definite, smooth, symmetric matrix γ = (γij(x)) on Ω.

Under the assumption of no sources or sinks of current in Ω, the potential u in Ω, given a voltage potential
f on ∂Ω, solves the Dirichlet problem

n∑
i,j=1

∂
∂xi

(
γij ∂u∂xj

)
= 0 on Ω

u|∂Ω = f.
(5.1)

The DN map is defined by

Λγ(f) =
n∑

i,j=1

νiγij
∂u

∂xj

∣∣∣
∂Ω

(5.2)
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where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is the solution of (5.1). The inverse
problem is whether one can determine γ by knowing Λγ . Unfortunately, Λγ doesn’t determine γ uniquely.
This observation is due to L. Tartar (see [KV] for an account).

Let ψ : Ω → Ω be a C∞ diffeomorphism with ψ
∣∣∣
∂Ω

= Id where Id denotes the identity map. We have

Λγ̃ = Λγ (5.3)

where

γ̃ =
(

(Dψ)T ◦ γ ◦ (Dψ)
|detDψ|

)
◦ ψ−1. (5.4)

Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and the composition in (5.4) is to
be interpreted as multiplication of matrices.

We have then a large number of conductivities with the same DN map: any change of variables of Ω that
leaves the boundary fixed gives rise to a new conductivity with the same electrical boundary measurements.
The question is then whether this is the only obstruction to unique identifiability of the conductivity. It
is known that this is the case in two dimensions for C3 conductivities. This is done by reducing the
anisotropic problem to the isotropic one by using isothermal coordinates [Sy] and using Nachman’s result
[N]. The regularity was improved in [SuU] to Lipschitz conductivities using the techniques of [BrU] and to
L∞ conductivities in [ALP] using the results of [AP].

In the case of dimension n ≥ 3, as was pointed out in [LeU], this is a problem of geometrical nature and
makes sense for general compact Riemannian manifolds with boundary.

Let (M, g) be a compact Riemannian manifold with boundary. The Laplace-Beltrami operator associated
to the metric g is given in local coordinates by

∆gu =
1√

det g

n∑
i,j=1

∂

∂xi

(√
det ggij

∂u

∂xj

)
(5.5)

where (gij) is the matrix inverse of the matrix (gij). Let us consider the Dirichlet problem associated to (5.5)

∆gu = 0 on Ω, u
∣∣∣
∂Ω

= f. (5.6)

We define the DN map in this case by

Λg(f) =
n∑

i,j=1

νigij
∂u

∂xj

√
det g

∣∣∣
∂Ω

(5.7)

The inverse problem is to recover g from Λg.
We have that

Λψ∗g = Λg (5.8)

where ψ is a C∞ diffeomorphism of M which is the identity on the boundary. As usual ψ∗g denotes the pull
back of the metric g by the diffeomorphism ψ.

In the case that M is an open, bounded subset of Rn with smooth boundary, it is easy to see ([LeU])
that for n ≥ 3

Λg = Λγ (5.9)

where
(gij) = (det γkl)

1
n−2 (γij)−1, (γij) = (det gkl)

1
2 (gij)−1. (5.10)
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In the two dimensional case there is an additional obstruction since the Laplace-Beltrami operator is
conformally invariant. More precisely we have

∆αg =
1
α

∆g

for any function α, α 6= 0. Therefore we have that for n = 2

Λα(ψ∗g) = Λg (5.11)

for any smooth function α 6= 0 so that α|∂M = 1.
Lassas and Uhlmann ([LU]) proved that (5.8) is the only obstruction to unique identifiability of the

conductivity for real-analytic manifolds in dimension n ≥ 3. In the two dimensional case they showed that
(5.11) is the only obstruction to unique identifiability for smooth Riemannian surfaces. Moreover these
results assume that Λg is measured only on an open subset of the boundary. We state the two basic results.

Let Γ be an open subset of ∂M . We define for f , supp f ⊆ Γ

Λg,Γ(f) = Λg(f)
∣∣∣
Γ
.

Theorem 5.1 (n ≥ 3) Let (M, g) be a real-analytic compact, connected Riemannian manifold with bound-
ary. Let Γ ⊆ ∂M be real-analytic and assume that g is real-analytic up to Γ. Then (Λg,Γ, ∂M) determines
uniquely (M, g).

Theorem 5.2 (n = 2) Let (M, g) be a compact Riemannian surface with boundary. Let Γ ⊆ ∂M be an open
subset. Then (Λg,Γ, ∂M) determines uniquely the conformal class of (M, g).

Notice that these two results don’t assume any condition on the topology of the manifold except for
connectedness. An earlier result of [LeU] assumed that (M, g) was strongly convex and simply connected
and Γ = ∂M in both results. Theorem 5.1 was extended in [LTU] to non-compact, connected real-analytic
manifolds with boundary.

In two dimensions the invariant form of the conductivity equation is given by

divg(β∇g)u = 0 (5.12)

where β is the conductivity and divg (resp. ∇g) denotes divergence (resp. gradient) with respect to the
Riemannian metric g. This includes the case considered by Calderón with g the Euclidean metric, the
anisotropic case by taking (gij = γij and β =

√
det g). It was shown in [SuU] for bounded domains of

Euclidean space that the isometric class of (β, g) is determined uniquely by the DN map associated to
(5.12).

6 Mathematics of invisibility

There has recently been considerable interest in the scientific community, and also the popular press, on the
possibility of making objects “invisible”, seemingly realizing science fiction dreams with a long history. In
particular there were two recent articles in Science (Pendry, et al, [PSS] and Leonhardt[L]) which discussed
theoretical “cloaking” devices. These would shield an enclosed object from detection by electromagnetic
(EM) waves. In principle, such devices could be constructed using “metamaterials”, a catchall phrase coined
in the early 2000’s, which refers to composites which have physical properties, especially those having to do
with the propagation of EM radiation, very different from their constituent materials.

The prescriptions for cloaking devices made of such materials described by Pendry, et al, turn out to be
special cases of mathematical constructions of anisotropic conductivities that were given in 2003 in [GLU2,3]
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for dimensions three and higher, using identical singular transformations - for example, the anisotropic
conductivity that has the same boundary information as the homogeneous, isotropic conductivity 1 that is
given in spherical coordinates (r, θ, φ) in [PSS] was described and rigorously justified earlier in [GLU2,3]. The
anisotropic conductivities in these counterexamples are quite pathological - they exhibit perfect insulation
in some directions and (in some cases) perfect conduction in others. The counterexamples of [GLU2,3], as
well as the constructions of [PSS, L], involve conductivities that are not bounded below and/or above.

Also in 2003 in [GLU1] examples were constructed of very singular potentials that, when changed inside
an interior surface, cannot be distinguished from the original by measurements at an outer boundary of
solutions of the corresponding Schroedinger equations, interpreted necessarily in a weak, variational sense.
Therefore, in theory, it is possible to construct a potential wall such that no particles can “tunnel” through
it, using an analogy with quantum mechanics. Thus exterior observers can make no conclusion about the
existence of objects or structures inside this wall. Making another analogy with quantum mechanics, in this
nest the Schrödinger cat could live happily ever after.

We remark that the invisibility is actually on the level of the actual (distribution) solutions to the
underlying PDEs, i.e., the conductivity or Schrödinger equations (at least at zero frequency), which [PSS, L]
do not address. In fact, the constructions in [GLU2,3] work for more general classes of examples and can
be constructed also for the vector Helmholtz equations at non-zero energy, and for Maxwell’s equations
[GKLU1]. The latter paper also includes an analysis of what happens inside the cloaked region in particular
the case of internal currents. A construction of electromagnetic wormholes which act as invisible tunnels has
been given in [GKLU2,3].

7 The boundary rigidity problem and the DN map

The boundary rigidity problem is that of determining the Riemannian metric of a compact Riemannian
manifold with boundary (M, g) by measuring the lengths of geodesics joining points on the boundary. The
information is encoded in the distance function dg between boundary points. This problem also arose in
geophysics in determining the substructure of the Earth by measuring the travel times of seismic waves. The
Riemannian metric in the isotropic case is given by

ds2 =
1

c2(x)
dx2 (7.1)

where c(x) denotes the wave speed.
Herglotz [H] considered the case where M is spherically symmetric and the sound speed is smooth and

depends only on the radius. Under the condition that d
dr (

r
c(r) ) > 0, i.e. there are no regions of low velocities,

they gave a formula to find c(r) from the lengths of geodesics. The anisotropic case has also been of interest
since it has been shown that the inner core of the Earth exhibits anisotropic behavior [Cre].

We have similarly to the invariance discussed in the previous section, that dψ∗g = dg for any diffeomor-
phism ψ : M → M that leaves the boundary pointwise fixed, i.e., ψ|∂M = Id If this is the only obstruction
the manifold is said to be boundary rigid.

It is easy to see that not all Riemannian manifolds are boundary rigid since the boundary distance
function only takes into account the minimizing geodesics (first arrival time of waves) and not all geodesics.
Some a-priori restriction is needed on the manifold. The most usual restriction assumed is simplicity of the
manifold.

Definition 7.1 A manifold (M,g) is simple if given any two points in M can be joined by a unique minimizing
geodesic and the boundary is strictly convex.

Michel conjectured that all simple manifolds are boundary rigid [Mi]. This has been proved by Gromov
for simple subsets of Euclidean space [Gr], by Michel [Mi] for strict simple subsets of the hemisphere in two
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dimensions and is a consequence of the work of Besson, Courtois and Gallot for symmetric spaces of negative
curvature [BCG]. These are all cases of constant curvature. For the case of variable curvature Croke [Cro]
and independently Otal [O] proved that two dimensional surfaces of negative curvature are boundary rigid.
Stefanov and Uhlmann showed that boundary rigidity holds for a generic class of simple manifolds [SteU].
Pestov and Uhlmann have shown the validity of the conjecture in general in the two dimensional case [PU1].
The result is:

Theorem 7.1 Two dimensional compact, simple Riemannian manifolds with boundary are boundary rigid.

The main lemma in the proof states that, under the assumptions of the theorem, the boundary distance
function determines the DN map associated to the Laplace-Beltrami operator. In other words dg1 = dg2
implies that Λg1 = Λg2 . By Theorem 5.2, there exists a diffeomorphism ψ : M −→ M , ψ|∂M = Id and a
function β 6= 0, β|∂M = 1 such that g1 = βψ∗g2. Mukhometov’s theorem [Mu] implies that β = 1 showing
that g1 = ψ∗g2 proving Theorem 7.1.

The proof of [PU1] also gives a constructive method to determine the sound speed in the case that the
(simple) metric is of the form (7.1). It is shown in [PU2] that if we know dg we can determine

SX,h[ρ] =
∫
M

(X,∇h)ρ(x)dx (7.2)

where ρ(x) = 1
c2(x) , h is a harmonic function, and the vector field X is an arbitrary Cauchy-Riemann vector

field. More precisely its contravariant components satisfy the Cauchy-Riemann equations

∂X1

∂x1
=
∂X2

∂x2
,

∂X1

∂x2
+
∂X2

∂x1
= 0.

Finding ρ is then reduced to finding enough holomorphic vector fields u and harmonic functions h so that
the product of the gradients is dense in an appropriate space. This is very similar to the question considered
by Calderón originally. We use as in [C1] complex exponential solutions.

We choose
X1 = ζ2e

x·ζ , X2 = ζ1e
x·ζ , h = ex·σ (7.3)

with complex vectors ζ = (ζ1, ζ2), σ = (σ1, σ2) ∈ C2; ζ · ζ = σ · σ = 0 with σ 6= −ζ. We remark that we can
write any ζ ∈ C2; ζ · ζ = 0, in the form

ζ = η + ik, with η, k ∈ R2 satisfying |k| = |η|, k · η = 0.

Substituting (7.3) into (7.2) we obtain:

SX,h[ρ] = (ζ2σ1 + ζ1σ2)
∫
M

ρ(x)ex·(ζ+σ)dx. (7.4)

Therefore we get
SX,h[ρ]

(ζ2σ1 + ζ1σ2)
=

∫
M

ρ(x)ex·(ζ+σ)dx. (7.5)

Now by taking the limit

lim
σ→−ζ

SX,h[ρ]
(ζ2σ1 + ζ1σ2)

=
∫
M

ρ(x)e2ix·kdx (7.6)

we recover the Fourier transform of ρ and therefore ρ.

9



References
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[KSU] C.E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Annals of
Math., 165(2007), 567-591.

[KS] K. Knudsen and M. Salo, Determining nonsmooth first order terms from partial boundary measure-
ments, Inverse Problems and Imaging, 1(2007), 349-369.

[K] K. Knudsen, The Calderón problem with partial data for less smooth conductivities, Comm. Partial
Differential Equations, 31(2006), 57–71.

[KV] R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at
the boundary, in Inverse Problems, edited by D. McLaughlin, SIAM-AMS Proceedings, 14(1984),
113-123.

[LTU] M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian
manifolds with boundary, Communications in Analysis and Geometry, 19(2003), 207-221.

[LU] M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann
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[PPU] L. Päivärinta, A. Panchenko and G. Uhlmann, Complex geometrical optics for Lipschitz conductiv-
ities, Revista Matematica Iberoamericana, 19(2003), 57-72.

[PSS] J. Pendry, D. Schurig and D. Smith, Controlling electromagnetic fields, Science, 312(2006), 1780–
1782.

[PU1] L. Pestov and G. Uhlmann, Two dimensional simple Riemannian manifolds with boundary are
boundary distance rigid, Annals of Math., 161(2005), 1089-1106.

[PU2] L. Pestov and G. Uhlmann, The boundary distance function and the Dirichlet-to-Neumann map,
Mathematical Research Letters, 11 (2004), 285-298.

[Sa] M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm.
PDE, 31(2006), 1639-1666.

[SW] M. Salo and J.-N. Wang, Complex spherical waves and inverse problems in unbounded domains,
Inverse Problems 22(2006), 2299–2309.

[SteU] P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, Journal
AMS, 18(2005), 975-1003.

[SuU] Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems,
19(2003), 1001-1010.

[Sy] J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43(1990),
201–232.

[SU1] J. Sylvester and G. Uhlmann, Global uniqueness for an inverse boundary value problem, Ann. Math.,
125(1987), 153–169.

[SU2] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in
electrical prospection, Comm. Pure Appl. Math., 39(1986), 92–112.

[To] C. Tolmasky, Exponentially growing solutions for nonsmooth first-order perturbations of the Lapla-
cian, SIAM J. Math. Anal., 29(1998), 116–133

[Tz] L. Tzou, Stability estimates for coefficients of magnetic Schrödinger equation from full and partial
measurements, to appear Comm. PDE.

[U] G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in
“Harmonic Analysis and Partial Differential Equations”, University of Chicago Press (1999), 295-
345, edited by M. Christ, C. Kenig and C. Sadosky.

[UW1] G. Uhlmann and J.-N. Wang, Complex spherical waves for the elasticity system and probing of
inclusions, SIAM J. Math. Analysis, 38(2007), 1967–1980.

[UW2] G. Uhlmann and J.-N. Wang, Reconstruction of discontinuities in systems, preprint (2006).

12


