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Abstract. We consider the reconstruction of elastic inclusions
embedded inside of a planar region, bounded or unbounded, with
isotropic inhomogeneous elastic parameters by measuring displace-
ments and tractions at the boundary. We probe the medium with
complex geometrical optics solutions having polynomial-type phase
functions. Using these solutions we develop an algorithm to re-
construct the exact shape of a large class of inclusions including
star-shaped domains and we implement numerically this algorithm
for some examples.

1. Introduction

The purpose of this paper is several fold. First, we provide numerical
evidence for the algorithms developed in [12] and [13] for determining
elastic inclusions embedded in an inhomogeneous background. Second
we extend, and simplify, the object identification result in [9] from
the conductivity equation on an infinite slab to the elasticity system.
Third we also develop a numerical algorithm for the case of the infinite
slab and we test it numerically. Our main method is to use complex
geometrical optics (CGO) solutions with general phases constructed in
[13] to treat the inverse problems.

We consider the problems in the plane. Let Ω be an open domain in
R2 with smooth boundary ∂Ω which is not necessarily bounded. The
domain Ω is filled with an inhomogeneous, isotropic, elastic medium
characterized by the Lamé parameters λ(x) and µ(x). Assume that
λ(x) ∈ C2(Ω), µ(x) ∈ C4(Ω) and the following inequalities hold

µ(x) > 0 and λ(x) + 2µ(x) > 0 ∀ x ∈ Ω (strong ellipticity).
(1.1)
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We consider the static isotropic elasticity system without sources

Lu := ∇ · (λ(∇ · u)I + 2µS(∇u)) = 0 in Ω. (1.2)

Here and below, S(A) = (A + AT )/2 denotes the symmetric part of
the matrix A ∈ C2×2. Equivalently, if we denote σ(u) = λ(∇ · u)I +
2µS(∇u) the stress tensor, then (1.2) becomes

∇ · σ = 0 in Ω.

On the other hand, since the Lamé parameters are differentiable, we
can also write (1.2) in the non-divergence form

µ∆u + (λ + µ)∇(∇ · u) +∇λ∇ · u + 2S(∇u)∇µ = 0 in Ω. (1.3)

Recently, a framework of constructing CGO solutions with general
phases for systems with the Laplacian as the leading part was proposed
by the first two authors [13]. The elasticity system (1.2) is among the
systems considered in [13]. To simplify the presentation, we will not
go over the development of CGO solutions and their important role in
inverse problems. For more details, we refer to [10, 11] and references
therein.

To really appreciate the usefulness of CGO solutions with general
phases, we shall study the inverse problem with an unbounded back-
ground domain. Ikehata in [5] considered the inverse conductivity prob-
lem in an infinite slab where the location of an inclusion is reconstructed
by infinitely many boundary measurements. In [5], he used Calderón

type harmonic functions [1], i.e., ex·(ω+iω⊥) with ω ∈ Sn−1. These func-
tions are not integrable on hyperplanes. To remedy this, he introduced
Yarmukhamedov’s Green function to construct a sequence of harmonic
functions with finite energy that approximate the Calderón type func-
tion on a bounded part of the slab and are arbitrarily small on an
unbounded part of the slab.

In [9] the authors used complex spherical waves rather than Calderón
type functions for the object identification problem in the slab. The
most obvious advantage is that they do not need Yarmukhamedov’s
Green function to ”localize” complex spherical waves since these solu-
tions decay faster than any given polynomial order on infinite hyper-
planes. In this work, we extend the result in [9] to the elasticity system
(1.2). We also simplify some arguments in [9]. Likewise, we consider
the object identification problem in an infinite strip. As in [13], we
will use CGO solutions with phases being complex polynomials. For
these solutions, the probing fronts are confined in a suitable cone. By
increasing the degree of the polynomial, one can shrink the opening



RECONSTRUCTION OF INCLUSIONS 3

angle of the cone and, therefore, squeeze the probing fronts. We re-
mark that the probing fronts of complex spherical waves are spheres or
circles. In other words, we are able to determine more information of
the unknown object using CGO solutions with polynomial phases.

For the reconstruction of the unknown object in two dimensions, we
would like to mention an interesting result by Ikehata in [6] where he
introduced the Mittag-Leffler function in his method. The numerical
implementation of [6] was carried out by Ikehata and Siltanen in [7].
However, the approach with the Mittag-Leffler function can not be
applied to the isotropic elasticity system even when the medium is
homogeneous.

This paper is organized as follows. In Section 2, we show how to
construct CGO solutions with general phases for the elasticity system.
In Section 3, we apply these CGO solutions to study the reconstruction
of inclusions by boundary measurements and give a numerically feasible
algorithm. In Section 4, we provide some computational results with
simulated data.

2. CGO solutions with general phases for the elasticity
system

In this section we recall the construction of CGO solutions to (1.2)
outlined in [13]. To do so, we first reduce the system to the one with
the Laplacian as the leading part. We will use the reduced system

derived by Ikehata (see for instance [4], [10]). Let

(
w
g

)
satisfy

∆

(
w
g

)
+ A(x)

( ∇g
∇ · w

)
+ Q(x)

(
w
g

)
= 0, (2.1)

where

A(x) =

(
2µ−1/2(−∇2 + ∆)µ−1 −∇ log µ

0 λ+µ
λ+2µ

µ1/2

)

and

Q(x) =

(−µ−1/2(2∇2 + ∆)µ1/2 2µ−5/2(∇2 −∆)µ ∇µ

− λ−µ
λ+2µ

(∇µ1/2)T −µ∆µ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := µ−1/2w + µ−1∇g − g∇µ−1 (2.2)

satisfies (1.3).
Now let Ω0 be a suitable subdomain of Ω and ρ(x) = ϕ(x)+ iψ(x) be

conformal in Ω0. Moreover, we assume that ρ(x) is a diffeomorphism



4 UHLMANN, WANG, AND WU

in Ω0. Then we can find U(x) satisfying (2.1) in Ω0 with

U(x) =

(
w
g

)
= e(ϕ+iφ)/h(L + R) (2.3)

for some three-dimensional vectors L and R, where L is independent
of h and R satisfies

‖∂αR‖L2(Ω0) ≤ Ch1−α, ∀ |α| ≤ 2. (2.4)

Our method of constructing U(x) in the form (2.3) goes as follows. Let
(y1, y2) be the new coordinates defined by y1 = ϕ(x) and y2 = ψ(x).
In the new coordinates (y1, y2), (2.1) is transformed into

∆

(
w̃
g̃

)
+ Ã(y, D)

(
w̃
g̃

)
+ Q̃(y)

(
w̃
g̃

)
= 0, (2.5)

where Ã(y, D) is a first order differential operator. Using the Carleman
technique or the method of intertwining operators [8], one can construct
CGO solutions to (2.5) with linear phases, namely,

Ũ(y) =

(
w̃
g̃

)
= e(y1+iy2)/h(L̃ + R̃).

Then to get (2.3), we simply make a change of coordinates y → x,
i.e. U(x) = Ũ(y(x)) (see [13] for more details). The key idea in this
approach is that the Laplacian is invariant under conformal mappings.
Hence, if we take u as the form (2.2), then u is a CGO solution to
(1.2) in Ω0. We want to remark that L is a non-zero vector satisfying

a Cauchy-Riemann type equation. Denote L =

(
`
d

)
with ` ∈ C2 and

d ∈ C1. Generically, we can assume that both ` and d do not vanish in
Ω0 (see [12, Remark 3.1 and 4.1]).

Due to the conformality of ρ, ϕ and ψ are harmonic functions in Ω0.
Conversely, given any ϕ harmonic in Ω0 with ∇ϕ 6= 0 in Ω0, we can
find a harmonic conjugate ψ of ϕ in Ω0 so that ρ = ϕ+ iψ is conformal
in Ω0. The freedom of choosing ϕ plays a key role in our reconstruction
method for the object identification problem. Actually, we will mainly
focus on level curves of ϕ. As in [13], we choose ρ(x) to be complex
polynomials.

Pick a point x0 /∈ Ω̄. It is no restriction to assume x0 = 0. We now
consider ϕN = Re(cNxN) for N ≥ 2, where cN ∈ C with |cN | = 1. In
the polar coordinates, ϕN(r, θ) = rN cos N(θ − θN) for some θN deter-
mined by cN . We observe that ϕN > 0 in some open cone ΓN with
an opening angle π/N . Now assume that ΓN ∩ Ω 6= ∅. The complex
function ρN(x) = cNxN = ϕN + iψN is clearly conformal in Ω. For
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solving the inverse problem, we want to shrink the opening angle of ΓN

by taking N → ∞. However, there are two serious problems in doing
so. On one hand, ϕN is periodic in the angular variable, which means
that it is positive in some other cones with the same opening angle
which also intersect Ω when N is large. This property of ϕN prohibits
us from using corresponding CGO solutions with large N to the ob-
ject identification problem. On the other hand, the complex function
ρN(x) fails to be injective in the whole domain Ω when N is large. To
overcome those difficulties and construct useful CGO solutions in the
whole domain Ω, we shall carry out the construction described above
in

Ω0 = ΓN ∩ Ω

and extend the constructed solutions to Ω by cut-off functions. From
now on, we assume that Ω0 is bounded.

We first note that ρN is conformal in Ω0 and is bijective from Ω0

onto ρN(Ω0). We denote

UN,h(x) =

(
wN,h

gN,h

)
= e(ϕN+iψN )/h(L + R)

solving (2.1) in Ω0. That is,

uN,h = µ−1/2wN,h + µ−1∇gN,h − gN,h∇µ−1

satisfies (1.2) in Ω0. Now to get solutions of (1.2) in the whole domain
Ω, we use a cut-off technique. For s > 0, let ls = {x ∈ ΓN : ϕN = s−1}.
This is the level curve of φN in ΓN . Let 0 < t < t0 such that

(∪s∈(0,t)ls) ∩ Ω 6= ∅
and choose a small ε > 0. Define a cut-off function φN,t(x) ∈ C∞(R2)

so that φN,t(x) = 1 for x ∈ (∪s∈(0,t+ε/2)ls) ∩ Ω and is zero for x ∈
Ω̄ \ (∪s∈(0,t+ε)ls). We now define

uN,t,h(x) = φN,te
−t−1/huN,h

for x ∈ (∪s∈(0,t+ε)ls) ∩ Ω. So uN,t,h can be regarded as a function in Ω
which is zero outside of Ω0. We now take fN,t,h = uN,t,h|∂Ω. We remark
that fN,t,h can be used as the boundary data in the inverse problem.
An obvious reason of using fN,t,h is that they are local and so we only
need to collect Neumann data over the support of fN,t,h when we study
the object identification problem with boundary measurements. Note
that since Ω0 is bounded, we can see that uN,t,h ∈ H1(Ω) and therefore

fN,t,h ∈ H1/2(∂Ω).
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The function uN,t,h is not a solution to the elasticity equation in Ω.
However, we shall show that the difference between uN,t,h and the true
solution to the elasticity equation with the same Dirichlet condition as
uN,t,h is exponentially small. Precisely, let us consider the boundary
value problem: {

LwN,t,h = 0 in Ω

wN,t,h = fN,t,h on ∂Ω.
(2.6)

Then we can show that

Lemma 2.1. There exists a unique solution wN,t,h to (2.6). Moreover,
there exist C > 0 and ε′ > 0 such that

‖uN,t,h − wN,t,h‖H1(Ω) ≤ Ce−ε′/h (2.7)

Proof. Denote ũN,t,h = uN,t,h − wN,t,h. Then ũN,t,h satisfies{
LũN,t,h = gN,t,h in Ω,

ũN,t,h = 0 on ∂Ω,

where gN,t,h = LuN,t,h. Note that LuN,h = 0 in (∪s∈(0,t0)ls) ∩ Ω and
∂xj

φN,t(x) for j = 1, 2 are supported in

(∪s∈(t+ε/2,t+ε)ls) ∩ Ω.

So gN,t,h is supported in (∪s∈(t+ε/2,t+ε)ls) ∩ Ω and we have that

‖gN,t,h‖L2(Ω) ≤ C ′e−ε′/h (2.8)

for some C ′ > 0 and ε′ > 0. Now the lemma follows from the first Korn
inequality and the Lax-Milgram theorem. ¤

3. Reconstruction of inclusions

We will use the special solutions constructed in the previous section
to study the inverse problem of reconstructing embedded inclusions.
Here we follow the presentation given in [12]. Assume that Ω is either
a bounded domain or an infinite strip. Also, let 0 /∈ Ω̄ and Ω =
{(x1, x2) : x1 ∈ R, a < x2 < b < 0} if Ω is a strip. Now consider D an
open subset of Ω with Lipschitz boundary satisfying that D ⊂⊂ Ω and
Ω \ D is connected. Suppose that λ0(x) ∈ C2(Ω) and µ0(x) ∈ C4(Ω)
satisfy the strong convexity condition, i.e.,

3λ0(x) + 2µ0(x) > 0 and µ0(x) > 0 ∀ x ∈ Ω. (3.1)

It is obvious that (3.1) implies (1.1). On the other hand, we assume

that λ̃(x), µ̃(x) be two essentially bounded functions such that either

µ̃ ≥ 0 and 3λ̃ + 2µ̃ ≥ 0 a.e. in D
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or

µ̃ ≤ 0 and 3λ̃ + 2µ̃ ≤ 0 a.e. in D.

Furthermore, suppose that λ = λ0 + χDλ̃ and µ = µ0 + χDµ̃ satisfy
(3.1) a.e. in Ω, where χD is the characteristic function of D. Therefore,
for any f ∈ H1/2(∂Ω), there exists a unique (weak) solution u to

{
LDu = 0 in Ω

u = f on ∂Ω.
(3.2)

Here the elastic operator LD is defined in terms of λ and µ. As before,
we can prove the well-posedness of (3.2) by combining the first Korn
inequality and the Lax-Milgram theorem. The arguments remain valid
even when Ω is an infinite strip. The Dirichlet-to-Neumann map related
to LD is now defined as

ΛD : f → σ(u)n|∂Ω

where n is the unit outer normal of ∂Ω and for x ∈ ∂Ω

σ(u) = λ(∇ · u)I + 2µS(∇u) = λ0(∇ · u)I + 2µ0S(∇u).

Now assume that all parameters are known except λ̃, µ̃, and D.
The inverse problem is to determine D by ΛD. Here we will provide a
reconstruction algorithm to this inverse problem. We begin with some
useful integral inequalities. Let Λ0 be the Dirichlet-to-Neumann map
related to L0, where L0 is the elastic operator defined in terms of λ0

and µ0. Assume that u0 is the solution of

{
L0u0 = 0 in Ω

u0 = f on ∂Ω.
(3.3)

Then one can derive the following inequalities

∫

D

{ 3λ0 + 2µ0

3(3λ + 2µ)

(
3λ̃ + 2µ̃

)|∇ · u0|2 + 2
µ0

µ
µ̃|S(∇u0)− ∇ · u0

3
I|2}dx

≤ 〈(ΛD − Λ0)f, f〉

≤
∫

D

3λ̃ + 2µ̃

3
|∇ · u0|2 + 2µ̃|S(∇u0)− ∇ · u0

3
I|2}dx (3.4)

(see [3, Proposition 5.1]).
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We are now at a position to discuss the inverse problem. First of all,
we give an appropriate jump condition across ∂D:

for y ∈ ∂D, there exists a ball Bε(y) such that one of
the following conditions holds:



µ̃ > ε, 3λ̃ + 2µ̃ ≥ 0

µ̃ = 0, λ̃ > ε

µ̃ < −ε, 3λ̃ + 2µ̃ ≤ 0

µ̃ = 0, λ̃ < −ε

, ∀ x ∈ Bε(y) ∩D.
(3.5)

Now let wN,t,h be the solution of (3.3) with the Dirichlet condition
f = fN,t,h. To construct the inclusion D, we rely on the quantity

E(N, t, h) = 〈(ΛD − Λ0)fN,t,h, fN,t,h〉.

Clearly, this quantity is completely determined by the boundary data
localized in ΓN ∩∂Ω. This localization property is of great value in ac-
tual applications, especially when Ω is an infinite strip. Now E(N, t, h)
satisfies the integral inequality (3.4) with u0 being replaced by wN,t,h,
i.e.

∫

D

{ 3λ0 + 2µ0

3(3λ + 2µ)

(
3λ̃ + 2µ̃

)|∇ · wN,t,h|2 + 2
µ0

µ
µ̃|S(∇wN,t,h)− ∇ · wN,t,h

3
I|2}dx

≤ E(N, t, h)

≤
∫

D

3λ̃ + 2µ̃

3
|∇ · wN,t,h|2 + 2µ̃|S(∇wN,t,h)− ∇ · wN,t,h

3
I|2}dx. (3.6)

Argued as in [12] and [13], we can prove the following important
behaviors of E(N, t, h).

Theorem 3.1. Let t > 0 and Dt = {x ∈ ΓN : ϕN ≥ t−1}. Assume
that one of the jump conditions (3.5) holds. Then we have:
(i) if Dt ∩ D̄ = ∅ then there exist C1 > 0, ε1 > 0, and h1 > 0 such that
E(N, t, h) ≤ C1e

−ε1/h for all h ≤ h1;
(ii) if Dt∩D 6= ∅ then there exist C2 > 0, ε2 > 0, and h2 > 0 such that
E(N, t, h) ≥ C2e

ε2/h for all h ≤ h2.

Proof. The proof here relies on the integral inequalities (3.6). Re-
placing wN,t,h in (3.6) by uN,t,h and taking into account of (2.7) leads
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to ∫

D

{ 3λ0 + 2µ0

3(3λ + 2µ)

(
3λ̃ + 2µ̃

)|∇ · uN,t,h|2 + 2
µ0

µ
µ̃|S(∇uN,t,h)− ∇ · uN,t,h

3
I|2}dx

+O(e−ε′/h)

≤ E(N, t, h)

≤
∫

D

3λ̃ + 2µ̃

3
|∇ · uN,t,h|2 + 2µ̃|S(∇uN,t,h)− ∇ · uN,t,h

3
I|2}dx + O(e−ε′/h).(3.7)

Recall that

uN,t,h(x) = φN,te
−t−1/huN,h

= φN,te
−t−1/h{µ0

−1/2wN,h + µ−1
0 ∇gN,h − gN,h∇µ−1

0 },

where

(
wN,h

gN,h

)
solves (2.1) in Ω with Lamé parameters λ0 and µ0. We

now write

wN,h = e(ϕN+iψN )/h(` + r) and gN,h = e(ϕN+iψN )/h(d + s).

Through tedious but straightforward computations, the leading terms
of ∇ · uN,t,h and S(∇uN,t,h) are respectively

e(ϕN−t−1+iψN )/hµ
−1/2
0 (1− λ0 + µ0

λ0 + 2µ0

)
∇ϕN + i∇ψN

h
· `

and

e(ϕN−t−1+iψN )/hµ−1
0

1

h2
∇(ϕ + iψ)⊗∇(ϕ + iψ)d

(see [12]).
Assume that the first assumption of (3.5) holds. Then the leading

terms of two integrals in (3.7) come from S(∇uN,t,h) and are determined
by

1

h4
e2(ϕN−t−1)/h((∇ϕN)2 + (∇ψN)2)2|d|2. (3.8)

On the other hand, if the second assumption of (3.5) holds, then the
leading terms in those integrals in (3.7) come from ∇ · uN,t,h and are
governed by

2

h2
e2(ϕN−t−1)/h(∇ϕN)2|`|2. (3.9)

Now the statement (i) and (ii) follow directly from (3.7) and (3.8) or
(3.9). The other two cases of (3.5) are treated similarly. ¤

In view of Theorem 3.1, we are able to reconstruct some part of ∂D
by looking into the asymptotic behavior of E(N, t, h) for various t’s.
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More precisely, let

tD,N := sup{t ∈ (0,∞) : lim
h→0

E(N, h, t) = 0}
then if tD,N = ∞ we have ΓN ∩D = ∅. On the other hand, if tD,N < ∞
then there exists a pD,N ∈ DtD,N

∩ ∂D.
By taking N arbitrarily large (the opening angle of ΓN becomes

arbitrarily small), we can reconstruct even more information of ∂D. A
point p on ∂D is said to be detectable if there exists a semi-straight
line L starting from p such that L does not intersect ∂D except p. For
example, if D is star-shaped, every point of ∂D is detectable.

Corollary 3.2. Every detectable point of ∂D can be reconstructed from
ΛD.

We refer to [13] for a proof of this corollary. To end this section, we
give an algorithm of our reconstruction method.

Step 1. Pick a point x0 /∈ Ω̄ (but close to Ω̄). Given N ∈ N and choose
the cone ΓN which intersects Ω.

Step 2. Start with t > 0 such that Dt ∩ Ω 6= ∅. Construct uN,t,h and
determine the Dirichlet data fN,t,h = uN,t,h|∂Ω.

Step 3. Compute E(N, t, h) =
∫
supp (fN,t,h)

(ΛD − Λ0)fN,t,h · fN,t,hds.

Step 4. If E(N, t, h) is arbitrarily small, then increase t and repeat Step
2 and 3; if E(N, t, h) is arbitrarily large, then decrease t and
repeat Step 2 and 3.

Step 5. Repeat Step 4 to get a good approximation of ∂D in ΓN .
Step 6. Move the cone ΓN around x0 by taking a different cN in ϕN =

Re(cNxN). Repeat Step 2–5.
Step 7. Choose a larger N and a new cone ΓN . Repeat Step 2–6.
Step 8. Pick a different x0 and repeat Step 1–7.

4. Numerical results

4.1. Preliminaries. In this section, we provide some computational
results based on our method. We shall demonstrate numerical results
for two cases – Ω is a rectangle and Ω is an infinite strip. In both cases,
we assume that the background parameters λ0, µ0 satisfy λ0(x) ≡ λ > 0
and µ0(x) ≡ µ > 0 for all x ∈ Ω. For such λ0 and µ0, we can construct
special solutions uN,h satisfying L0uN,h = 0 quite explicitly. In other
words, we do not need to go through the general procedures given
in Section 2. More precisely, for λ0, µ0 given here, the corresponding
matrices A and Q in (2.1) are reduced to

A(x) =

(
0 0
0 ζ

)
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and
Q(x) ≡ 0,

where ζ = λ+µ
λ+2µ

µ1/2 > 0. Therefore, (2.1) can be written as
{

∆w = 0,

∆g + ζ∇ · w = 0.
(4.1)

To construct special solutions for (4.1), we first choose

w = e(ϕ+iψ)/hw0,

where w0 = ∇ϕ + i∇ψ. To simplify the notations, we denote ϕ = ϕN

and ψ = ψN . To check that w satisfies the first equation of (4.1), we
note that

∆ϕ + i∆ψ = 0 and (∇ϕ + i∇ψ)2 = 0. (4.2)

Therefore, from (4.2) we obtain

∆w = ∆(e(ϕ+iψ)/hw0)

= ∆e(ϕ+iψ)/hw0 + 2∇(e(ϕ+iψ)/h) · ∇w0 + e(ϕ+iψ)/h∆w0

=
2

h
e(ϕ+iψ)/h(∇ϕ + i∇ψ) · ∇w0 + e(ϕ+iψ)/h∇(∆ϕ + i∆ψ)

=
1

h
e(ϕ+iψ)/h∇(∇ϕ + i∇ψ)2

= 0.

Furthermore, due to (4.2), we observe that

∇ · w = 0.

Thus, we simply choose g ≡ 0 and the second equation of (4.1) holds.
In other words,

uN,h = e(ϕN+iψN )/h(∇ϕN + i∇ψN)

satisfies L0uN,h = 0. Thus, our simulated (exact) Dirichlet condition is
given by

fN,t,h = φN,te
−t−1/he(ϕN+iψN )/h(∇ϕN + i∇ψN)|∂Ω.

To indicate the dependence of ϕN and ψN on the vertex point of the
associated cone, in what follows, we will write ϕN = ϕN(x, x0) and
ψN = ψN(x, x0), where x0 stands for the vertex point.

We now describe our reconstruction strategies. The same procedures
were also used in [2] and [13]. In our program, in order to show the nu-
merical results more efficiently without using excessive computational
time, we fix N = 4 and probe the region Ω by moving the vertex point
of the probing cone with θ4 = 0 (i.e., without rotating the probing
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cone). Hence, we first design M different probing cones based on M
different vertex points. Remind that each cone is congruent to the
cone with vertex at the origin and opening angle π/4. We then take
appropriate h1 and h2 with h1 > h2 and choose a suitable number of
probing fronts determined by tj for j = 1, · · · , J with tj < tj+1. In
each probing cone Γm (m = 1, · · · ,M) given above, we construct the
Dirichlet data f supported in the intersection of Γm and the bottom
boundary of ∂Ω for every hk and tj, k = 1, 2, j = 1, · · · , J . We now
evaluate Ej,k := E(N, tj, hk) and determine tn such that

En+1,2 > En+1,1. (4.3)

Then the region Rm defined by

Rm = {x ∈ Γm : ϕN(x, x0) ≤ t−1
n }

is the estimated largest region in Γm which does not contain the in-
clusion. So the region R := ∪M

m=1Rm is the estimated largest region
with absence of inclusion with a given sweeping scheme. We would
like to point out that condition (4.3) is our rule of thumb in deter-
mining whether the level curve ϕN(x, x0) = t−1 intersects the inclusion
in our numerical experiments. It is not equivalent to Theorem 3.1,
but based on the reasoning that E(N, t, h) is exponentially decaying
when ϕN(x, x0) = t−1 stays away from the inclusion and exponentially
growing when ϕN(x, x0) = t−1 intersects the inclusion.

To show the effect of noise to our method, we add appropriate noise
to the simulated data. We consider the form of noise given in [2]. To
be precise, let η : [−1, 1] 7→ C be a random function defined by

η(s) =
32∑

k=−32

(ak + ibk)e
iksπ/2,

where ak, bk ∼ N (0, 1) are normally distributed random numbers. The
number 32 in η is chosen to roughly model a collection of 32 electrodes
on the bottom boundary of Ω. Measurement noise is modeled by ΛDf
by ΛDf + cη with

c =
A‖ΛDf‖∞
‖η‖∞ ,

where A > 0. Finally, we would like to point out that in our simulation,
a big chunk of computational time is used to obtain the simulated data.
This is the forward problem. Once having the simulated data, the in-
verse procedure is rather trivial. In order to obtain desired accuracy
on the simulated data and be able to adapt to different shapes of in-
clusions, we use the finite element method (FEM) to solve the forward
problem. In our FEM program, we perform the grid refinement near
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the boundary and the inclusion to ensure the accuracy of the simulated
data (see Figure 4.1 for example).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 4.1. Example of our FEM meshes.

4.2. Ω is a rectangle. In our numerical computations, we take the
domain

Ω = {(x1, x2) : −1 < x1 < 1,−1.01 < x2 < −0.01}.
We shall use the Dirichlet data localized on {(x1,−0.01) : −1 < x < 1}
(top boundary) {(x1,−1.01) : −1 < x < 1} (bottom boundary). To
this end, we choose vertex points from {x2 = −1.02} and {x2 = 0},
respectively. Let x0 = (x0,1, x0,2) denote the vertex point and we write

ρ4(x, x0) := ϕ4(x, x0) + iψ4(x, x0) = ((x1 − x0,1) + i(x2 − x0,2))
4.

Thus, the probing fronts are level curves of ϕ4. In Figure 4.2, we show
some probing fronts with nonzero Dirichlet condition on the bottom.
To set up the Dirichlet condition, we ignore the cut-off function φN,t

and take

fN,t,h|∂Ω =

{
e(ρ4(x,x0)−t−1)/h∇ρ4(x, x0), for (x1, x2) ∈ ∂Ωobs,

0, ∂Ω \ ∂Ωobs,

where ∂Ωobs is determined by x0. For example, if x0 = (0, 0), then

∂Ωobs = {(x1, x2) : −1.01×tan(
π

8
) < x1 < 1.01×tan(

π

8
), x2 = −1.01}.
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Figure 4.2. Probing fronts of our numerical method.
In this figure, the nonzero Dirichlet condition is on the
bottom boundary.

In the following figures, we show our reconstruction method for three
cases with different inclusions. As we mentioned above, due to compu-
tational costs, we only provide numerical results obtained by putting
nonzero Dirichlet condition on either the top or the bottom bound-
aries. In conventional expression, we describe the elastic medium by
the Young’s modulus E and the Poisson ratio ν. The relation between
(E, ν) and (λ, µ) is given by

λ =
Eν

1− ν2
and µ =

E

2(1 + ν)
.

In our simulations, we take (E, ν) = (6× 106, 0.45) for the background
medium (gray area) and (E, ν) = (6×107, 0.45) inside of the inclusions
(black area).

We now want to make some remarks on the figures showing above.
Since we are only probing the region from the top and the bottom
boundaries, we are unable to resolve the inclusion-free near the left
and the right boundaries. Thus, the area on near those boundaries are
black. Moving the nonzero Dirichlet condition fN,t,h to those places will
certainly improve the resolution of the inclusion. But we need to pay
the price of at least double the computational cost. We believe that
showing the figures obtained by probing from the top and the bottom
is sufficient to demonstrate the essential ideas of our method.

4.3. Ω is a strip. Here we assume Ω = {(x1, x2) : −∞ < x1 <
∞, −1.01 < x2 < −0.01}. In order to get the simulated data in
this case, we need to impose appropriate artificial boundary conditions
in the x1 direction. We now rewrite elasticity system (1.2) or (1.3) into(

λ + 2µ 0
0 µ

)
∂2

1u +

(
0 λ + µ

λ + µ 0

)
∂1∂2u +

(
µ 0
0 λ + 2µ

)
∂2

2u = 0.

(4.4)
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Figure 4.3. The first column represents the actual lo-
cation of the inclusion. The second column is the numer-
ical reconstruction with noiseless simulated data. The
third column is the numerical reconstruction with noisy
data with A = 0.01%. All gray areas are inclusion-free
regions.

The characteristic polynomial related to (4.4) is

P (ξ) :=

(
λ + 2µ 0

0 µ

)
ξ2
1 +

(
0 λ + µ

λ + µ 0

)
ξ1ξ2 +

(
µ 0
0 λ + 2µ

)
ξ2
2 ,

which is a symmetric quadratic matrix polynomial. Motivated by the
factorizations of symmetric quadratic matrix polynomials, by some
computations, we can see that

P (ξ) = (Iξ1 −BT ξ2)

(
λ + 2µ 0

0 µ

)
(Iξ1 −Bξ2)

with

B =

(
0 −1
1 0

)
.

Therefore, system (4.4) can be factored into

(I∂1 −BT ∂2)

(
λ + 2µ 0

0 µ

)
(I∂1 −B∂2)u = 0. (4.5)

In view of (4.5), on any artificial boundary x1 = a, we impose condition

∂1u(a, x2)−B∂2u(a, x2) = 0. (4.6)

Explicitly, in our numerical simulation, we truncate the infinite strip
Ω into a rectangle considered in section 4.2. For example, in case of
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x0 = (0, 0), we impose the boundary condition as follows:



u = e(ρ4(x,x0)−t−1)/h∇ρ4(x, x0) (x1, x2) in ∂Ωobs,

∂1u(1, x2) = B∂2u(1, x2) for − 0.01 < x2 < −1.01,

∂1u(−1, x2) = B∂2u(−1, x2) for − 0.01 < x2 < −1.01,

u = 0 elsewhere.

(4.7)

We will indicate how to implement boundary condition (4.7) in the
FEM method in the appendix. The computational results for the strip
case with noiseless and noisy data are given in Figure 4.4.
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Figure 4.4. The first column represents the actual lo-
cation of inclusions. The second column is the numerical
reconstruction with noiseless simulated data. The third
column is the numerical reconstruction with noisy data
with A = 0.01%. All gray areas are inclusion-free re-
gions.

4.4. Ill-posedness. Supported by numerical evidence, it is widely be-
lieved that when the unknown object is far away from the bound-
ary, the determination problem by boundary measurements is more
ill-posed than the case where the object is near the boundary. The
following figures give further examples of this interesting phenomenon.
In Figure 4.5, we can see that the lower part of the inclusion is clearly
resolved; while, the upper part of the inclusion is difficult to detect.

5. Conclusions

In this article, we present a numerically feasible reconstruction algo-
rithm for the determination of inclusions by boundary measurements
for the two-dimensional isotropic elasticity system. The domain can
also be unbounded. We point out that the same method works for the
cavity case. Our method depends on a new type of CGO solutions for
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Figure 4.5. The first column is the actual location of
the inclusion. The second column is the numerical re-
construction with noiseless simulated data when Ω is a
rectangle. The third column is the numerical reconstruc-
tion with noiseless simulated data when Ω is a strip. All
gray areas are inclusion-free regions.

the elasticity system. Numerical results show the actually implementa-
tion of the method with noiseless or noisy data simulated data derived
from the FEM.

To be able to effectively demonstrate our method without excessively
computational efforts, we choose N = 4 and probe the region from the
top and the bottom boundaries in the numerical simulation. It is of
course very natural to choose large N and also probe the region from
all sides. However, obtaining the simulated data for this improvement
will be a very time-consuming task.

From the numerical results, our method is very effective in determin-
ing parts of the object near the boundary even when the domain is un-
bounded. Its flexibility gives us another technique that can potentially
be used in real applications such as medical imaging and nondestructive
evaluation.

Appendix A

In this appendix, we show how to implement the artificial boundary
condition (4.6) in the FEM. Denote u = (u1, u2)

T . Let ΓD be the
boundary with imposed Dirichlet data fN,t,h and ΓA denote the artificial
boundary. From the variational formulation of the equation (1.2), the
isotropic elastic system on the truncated domain in section 4.3 can be
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written as follows:

∫

Ω




∂1v1

∂2v2

∂2v1 + ∂1v2




T 


λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ







∂1u1

∂2u2

∂2u1 + ∂1u2


 dx

−
∫

∂Ω

v1 (λ∇ · u + 2µ∂1u1, µ (∂2u1 + ∂1u2)) · n ds

−
∫

∂Ω

v2 (µ (∂2u1 + ∂1u2) , λ∇ · u + 2µ∂2u2) · n ds = 0

(A.1)

where v1, v2 are test functions in H1
0,ΓD

(Ω) = {v ∈ H1(Ω)| v(x) =
0 for x ∈ ΓD}. From (4.6), one has that

∂1u1 + ∂2u2 = ∇ · u = 0 and ∂1u2 − ∂2u1 = 0, (A.2)

on ΓA. Since the artificial boundary consists of line segments along
the x2-direction only, by (A.2), the partial derivatives ∂1u1 and ∂1u2

are replaced by −∂2u2 and ∂2u1, respectively. Thus the variational
formulation (A.1) becomes

∫

Ω




∂1v1

∂2v2

∂2v1 + ∂1v2




T 


λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ







∂1u1

∂2u2

∂2u1 + ∂1u2


 dx

+

∫

ΓA

2µv1 (∂2u2,−∂2u1) · n dx2 −
∫

ΓA

2µv2 (∂2u1, ∂2u2) · n dx2 = 0.

(A.3)

As a result, the standard finite element discretization procedure can
now be employed in (A.3).
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