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Abstract. We adopt a recent work in Chung, Qian, Uhlmann and Zhao (Inverse Problems,
23(2007) 309-329) to develop a phase space method for reconstructing pressure wave speed and
shear wave speed of an elastic medium from travel time measurements. The method is based on
the so-called Stefanov-Uhlmann identity which links two Riemannian metrics with their travel
time information. We design a numerical algorithm to solve the resulting inverse problem. The
algorithm is a hybrid approach that combines both Lagrangian and Eulerian formulations. In
particular the Lagrangian formulation in phase space can take into account multiple arrival times
naturally, while the Eulerian formulation for wave speeds allows us to compute the solution in
physical space. Numerical examples are shown to validate the method.

1. Introduction

We address numerically the inverse problem of determining pressure (P) wave speed and shear
(S) wave speed in elastic solids from P-wave and S-wave traveltime information. Different
from acoustic media in which there is only one propagation mode, elastic solids accommodate
more than one propagation mode. In 3-D isotropic elastic media, we have one P-wave and
two S-waves [1]; in 3-D anisotropic elastic media, we have one quasi-P wave and two quasi-S
waves [20, 24, 25, 23]. To reconstruct P-wave and S-wave speeds in elastic media from traveltime
information in one unified framework, we adopt our recent work [5] to this new setting, assuming
that in smooth elastic media P-wave and S-wave traveltimes can be identified and separated in
traveltime data obtained in the application of transmission tomography [21].

All the traditional methods of travel-time tomography are directly based on Fermat’s least
travel-time principle and bear a close link to the X-ray computerized tomography (CT) used in
medical diagnosis. In medical CT the measured data are assumed to be modeled by line integrals
of wave amplitude attenuation for straight ray-paths passing through the body, and the Radon
transform provides the foundation for medical CT. However, in seismics the ray-path curvature
has to be taken into account in that lithology and structure usually have strong inhomogeneity,
and the resulting ray-paths can depend strongly on the unknown wave speeds. To achieve such
a purpose, ray-tracing based travel-time tomography methods require very complicated data
structure to trace curved rays through each pixel [3]; see [35] for 3-D examples. In addition,



such ray-tracing based methods inevitably produce irregular ray coverage of the computational
domain, and the resulting system of equations may not be well-conditioned.

The problem of determining the Riemannian metric from first arrivals is known in differential
geometry as the boundary rigidity problem. The travel time information is encoded in the
boundary distance function, which measures the distance, with respect to the Riemannian
metric, between boundary points; see [31] and references therein for more information.

On the other hand, since multi-valued travel-times and resulting multipathings are common
in complex velocity structures, it is necessary to take into account all the arrivals systematically.
To use all arrivals in transmission tomography in an Eulerian framework, the works in [13, 11]
formulated transmission tomography by using the Liouville equation based PDE framework in
phase space.

The problem of determining the index of refraction from multiple arrival times is called
in differential geometry as the lens rigidity problem [32]. The information is encoded in the
scattering relation which gives the exit point and direction of a geodesic if we know the incoming
point and direction plus also the travel time.

Our approach is based on the Stefanov-Uhlmann identity in phase space [30], and the identity
was first developed into a numerical method for traveltime tomography in [5], which enables us
to take into account multiple arrivals systematically and treat caustics naturally. See [13] for a
related phase space formulation based on Liouville equations.

The advantages of phase space formulation are multi-fold. As a first advantage multipathing
can be taken into account systematically, as evidenced in [13, 5] and references therein. As
demonstrated in [8, 14], multipathing is essential for high resolution seismic imaging. As a
second advantage, our phase space formulation has the potential to recover generic (anisotropic)
Riemannian metrics, and also parameters of anisotropic elastic solids (see Remarks 2-4). These
advantages distinguish our new method from other traditional methods in inverse kinematic
problems [3, 26, 27, 28, 4, 35, 12] in that those traditional methods only recover isotropic metrics
by using first-arrivals. Moreover, our numerical algorithm is based on a hybrid approach. A
Lagrangian formulation (ray tracing) is used in phase space for the linearized Stefanov-Uhlmann
identity. This allows us to deal with multipathing naturally. On the other hand, a Eulerian
formulation is used for pressure wave speed or shear wave speed of an elastic medium. As a
consequence our computational domain is in physical space rather than in phase space.

The paper is organized as follows. Section 2 provides the necessary background for elastic
wave traveltime tomography. In Section 3, we state the inverse problem, linearize the Stefanov-
Uhlmann identity, and propose a nonlinear functional as the foundation for solving the inverse
problem in phase space. In Section 4, we show examples to demonstrate the effectiveness of the
phase space method. Section 5 concludes the paper.

2. Background

In elastic solids there are more than one propagation mode for elastic waves. In isotropic media
we have pressure (P ) waves and shear (S) waves, and in anisotropic media we also have more
than one type of shear waves.

In an isotropic-elastic solid without body force, the displacement vector u satisfies [9]

∇ ·
(

µ(∇u + ∇uT )
)

+ ∇(λ∇ · u) = ρü (1)

where λ and µ are Lame’s elastic parameters, and ρ is the density.
When the elastic body is homogeneous, the displacement vector u satisfies a simplified linear

elastic wave equation,
µ∇2u + (λ+ µ)∇∇ · u = ρü (2)

where λ and µ are constants.



Representing u in equation (2) in terms of the scalar potential ψp and the vector potential
ψs,

u = ∇ψp + ∇× ψs, (3)

the above equation of motion decouples into two wave equations for the potential [21]

∇2ψp =
1

v2
p

ψ̈p, (4)

∇2ψs =
1

v2
s

ψ̈s, (5)

where

v2
p =

λ+ 2µ

ρ
and v2

s =
µ

ρ
. (6)

In the high frequency regime, we seek solutions in the asymptotic form

ψp(x, t) = Ap(x, t)f(t− φp(x)), (7)

ψs(x, t) = As(x, t)f(t− φs(x)), (8)

where f is some waveform function, Ap and As are amplitudes. Then we have two eikonal
equations for P-wave traveltime function, φp, and S-wave traveltime function, φs, respectively,

‖∇φp(x)‖
2 =

1

v2
p

, (9)

‖∇φs(x)‖
2 =

1

v2
s

. (10)

We remark that one can also directly insert the following ansatz into the equation (1)

u = A(x, t)f(t− φ(x))

to obtain the eikonal equations for P and S waves [1, 20]. By considering the leading-order
singularity corresponding to f ′′, which yields eikonal equations for different waves, we realize that
the terms corresponding to f ′′ result from the second order derivatives of u only. Furthermore,
the resulting eikonal equations have the same form as equations (9) and (10), where now vp and
vs are varying functions of spatial position x. Consequently, without loss of generality we will
model P-wave and S-wave traveltimes by equations (9) and (10) with varying speed functions
vp or vs, respectively.

To carry out transmission traveltime tomography, we assume that in smooth elastic media
P-wave and S-wave traveltimes can be identified and separated in traveltime data obtained
in the application of transmission tomography [21]. This assumption enables us to adopt the
framework in [5] to reconstruct P-wave and S-wave speeds from their traveltimes satisfying the
eikonal equations (9), (10).

3. Methodology

The framework developed in [5] is valid for reconstructing a general Riemannian metric in a
bounded domain by a set of boundary measurements. In the following we outline the basic
setup and specify the formulation to the setting of an elastic medium.



3.1. Basic setup

Let Ω ⊂ R
n be a bounded domain with smooth boundary Γ = ∂Ω. Let g(x) = (gij(x)) be a

Riemannian metric in Ω. Let dg(x, y) denote the geodesic distance between x and y. The inverse
problem is whether we can determine the Riemannian metric g up to the natural obstruction of
a diffeomorphism by knowing dg(x, y) for any x ∈ Γ and y ∈ Γ.

While theoretically there are a lot of works addressing this question (see [18, 19, 17, 2, 29, 6, 22]
and references therein), following the successful work in [5] we explore the possibility to recover
isotropic metrics in elastic media numerically. We use a phase space formulation so that
multipathing in physical space is allowed. Rather than the boundary distance function we
look at the scattering relation which measures the point and direction of exit of a geodesic plus
the travel time if we know the point and direction of entrance of the geodesic. Such data are
available in practice; see [5, 13] and references therein. Below we formulate more precisely the
problem.

Assume that we have two Ck metrics g1 and g2 with k ≥ 2 satisfying g1 = g2 in R
n − Ω.

The Hamiltonian Hg related to g is

Hg(x, ξ) =
1

2
(Σn

i,j=1g
ij(x)ξiξj − 1), (11)

where g is either g1 or g2, and g−1 = (gij).
LetX := (x, ξ). We denote byXgj

(s,X(0)) = (xgj
(s,X(0)), ξgj

(s,X(0))), j = 1, 2, the solution
to the Hamiltonian system defined by Hgj

(x, ξ) = 0,

dx

ds
=
∂Hgj

∂ξ
,

dξ

ds
= −

∂Hgj

∂x
, (12)

with the initial condition X (0) = (x0, ξ0), where x0 ∈ R
n and ξ0 ∈ Sn−1

g (x0). Here we define the
unit sphere in the cotangent space T ∗

x (Rn):

Sn−1
g (x) :=

{

ξ ∈ T ∗
x (Rn) : Hg(x, ξ) =

1

2
(Σn

i,j=1g
ij(x)ξiξj − 1) = 0

}

. (13)

The continuous dependence on the initial data of the solution of the Hamiltonian system is
characterized by the Jacobian,

Jgj
(s) = Jgj

(

s,X(0)
)

:=
∂Xgj

∂X(0)

(

s,X(0)
)

. (14)

It can be shown easily from the definition of J and the corresponding Hamiltonian system (12)
[7] that Jgj

, j = 1, 2, satisfies
dJ

ds
= M J, J(0) = I, (15)

where, in terms of H = Hgj
(j = 1, 2), the matrix M is defined by

M =

(

Hξ,x, Hξ,ξ

−Hx,x, −Hx,ξ

)

. (16)

Since Hgj
∈ Ck(T ∗(Rn)) (j = 1, 2), where T ∗(Rn) denotes the cotangent bundle on Ω, according

to the standard theory Xgj
∈ Ck−1 jointly in s ∈ R and X (0) ∈ {(x0, ξ0) : x0 ∈ R

n, ξ0 ∈

Sn−1
g (x0)} ([33], page 30.)



3.2. Linearizing the Stefanov-Uhlmann identity

Given boundary measurements for g1, we are interested in recovering the metric g1.
Take X(0) = (x0, ξ0), where x0 ∈ Γ and ξ0 ∈ Sn−1

g (x0), such that the inflow condition holds,

ν(x0) · g−1ξ0 < 0, (17)

where ν(x0) is the outer normal to Γ = ∂Ω at x0, and g is either g1 or g2. In general, we let S−

and S+ be subsets of R
2n defined by

S− = {(x, ξ) | x ∈ Γ, ξ ∈ Sn−1
g (x), g−1ξ · ν(x) < 0},

S+ = {(x, ξ) | x ∈ Γ, ξ ∈ Sn−1
g (x), g−1ξ · ν(x) > 0},

where ν(x) is the outward normal vector at x ∈ Γ; they correspond to the inflow and outflow
conditions in phase space.

We link two metrics by introducing the function

F (s) := Xg2(t− s,Xg1(s,X
(0))),

where t = max(tg1 , tg2) and tg = tg(X
(0)) is the length of the geodesic issued from X (0) with the

endpoint on Γ. Consequently, we have the following Stefanov-Uhlmann identity [30]

Xg1(t,X
(0)) −Xg2(t,X

(0))

=

∫ t

0

∂Xg2

∂X(0)

(

t− s,Xg1(s,X
(0))

)

× (Vg1 − Vg2) (Xg1(s,X
(0))) ds,

(18)

where

Vgj
:=

(

∂Hgj

∂ξ
,−

∂Hgj

∂x

)

=

(

g−1ξ,−
1

2
∇x(g−1ξ) · ξ

)

. (19)

Linearizing the right hand side in the above identity, we have the following formula,

Xg1(t,X
(0)) −Xg2(t,X

(0))

=

∫ t

0
Jg2

(

t− s,Xg2(s,X
(0))

)

× ∂g2Vg2(g1 − g2)(Xg2(s,X
(0))) ds,

(20)

where ∂gVg(λ) is the derivative of Vg with respect to g at λ. This is the foundation for our
numerical procedure.

A few remarks are in order here.
Remark 1. In the case of the isotropic metric, we have

(gk)ij =
1

c2k
δij , (21)

which links directly to an eikonal equation of the same form as in equations (9) and (10). Then

Vgk
= (c2kξ,−(∇ck)ck|ξ|

2). (22)

Hence the derivative of V with respect to g, ∂gVg(λ) in the equation (20), is given by

∂gVg(λ) = (2cλξ,−(∇c · λ+ ∇λ · c)|ξ|2), (23)

since phase space variable ξ is fixed along the given path Xg2(s,X
(0)).

Remark 2. Our approach can be applied to an elastodynamical system with residual stress as



well [10]. In this case we have two Riemannian metrics with extra terms associated with the
residual stress tensor [10]; they correspond to compressional waves and shear waves, respectively.
Accordingly, we are able to identify and separate traveltimes of shear waves from those of
compressional waves in boundary measurements [10].
Remark 3. In fact, the Stefanov-Uhlmann identity holds for any Hamiltonian in phase space
rather than just Riemannian-metric-induced Hamiltonians; consequently, our approach works in
a more general setting. For instance, in anisotropic elastic solids we have one quasi-P wave mode
and two quasi-S wave modes; the Hamiltonian corresponding to quasi-P waves is induced by a
Finsler metric rather than a Riemannian metric; see [24, 25, 23] for such examples of quasi-P
Hamiltonians.
Remark 4. Since, in general, quasi-P waves are faster than quasi-S waves [20, 24, 25, 23], we
can assume that corresponding traveltimes can be identified and separated from those of other
waves. Therefore, it is possible to apply our approach to anisotropic elastic solids as well.

3.3. Continuous Tikhonov regularization

Given boundary measurements Xg1(t,X
(0)) ∈ S+, where X(0) ∈ S−, we recover g1 by Newton’s

method via the linearization (20). During each iteration, we solve the first kind integral equation
(20) by a regularization method.

For a given metric g2 we define a linear operator, the X-ray transform via the Hamiltonian
flow Xg2 , to map a function g̃ ∈ Ck

0 (Rn) into the set of its line integrals:

K : g̃ ∈ Ck
0 (Rn) → Kg̃ ∈ Ck(S−),

Kg̃ =

∫ tg2 (·)

0
Jg2 (tg2(·) − s,Xg2(s, ·)) × ∂g2Vg2(g̃) (Xg2(s, ·)) ds,

Kg̃(X(0)) =

∫ tg2 (X(0))

0
Jg2

(

tg2(X
(0)) − s,Xg2(s,X

(0))
)

× ∂g2Vg2(g̃)
(

Xg2(s,X
(0))

)

ds,

for X(0) ∈ S−. (24)

We define the data element as
d̃ = Xg1(t, ·) −Xg2(t, ·), (25)

where d̃ ∈ Ck(S−). Hence we have a first kind operator equation by equation (20),

Kg̃ = d̃. (26)

By the method of regularization we introduce a nonzero parameter β and a functional,

Gβ(g̃) =
1

2
‖Kg̃ − d̃‖2

L2(S−) +
1

2
β‖∇g̃‖2

L2(Ω), (27)

which is defined on the domain of the gradient operator ∇. Then we seek an element g̃β solving
the minimizing problem,

Gβ(g̃β) = inf
g̃∈D(∇)

Gβ(g̃), (28)

where D(∇) is the domain of ∇. Under appropriate conditions we may show that the g̃β

converges to a least squares solution g̃0 of equation (26) [15, 16].
In general Newton’s method for the nonlinear equation (18) based on solving the linearized

problem (20) iteratively may not converge for an arbitrary initial guess. However, since stability
and uniqueness are proved for a metric close to the isotropic metric [30, 34], this enables us
to develop a continuation (homotopy) method. A series of intermediate metrics can be created
continuously from an appropriately known metric, such as an isotropic metric, to the unknown
metric by interpolation of the data. See [5] for more details.



3.4. Numerical discretization

We use a hybrid approach to solve this problem numerically. The metric g is defined on an
Eulerian grid. The linearized integral equation (20) is treated in phase space using a Lagrangian
formulation. Hence multipathing can be dealt with easily. The main task in the numerical
computation is the discretization of the linearized integral equation (20). Since the integral
is defined along the ray in a given metric, we first solve the ray equation (12) in phase space

starting from a particular X
(0)
j . At the same time we compute the Jacobian matrix along the

ray according to (15). Standard ODE solvers are used to solve these ODEs. On the ray, values
of g are computed by interpolation from the neighboring grid point values. Hence each integral
equation along a particular ray yields a linear equation for grid values of g near the ray path in
the physical domain. We form a whole system of linear equations using all rays corresponding
to the given measurements. This system may be under or over determined and may not have
a unique solution. We regularize the system as in the continuous case discussed in Section 3.3.
See [5] for more details.

4. Numerical examples

In the numerical examples, we are mainly interested in vp and vs. However, we notice that once
we have vp and vs, we can reconstruct the Lame elastic parameters right away according to
equation (6).

In the numerical examples, the measurement is generated by solving Hamiltonian systems
for eikonal equations with true speed functions vp and vs, respectively. The initial data for

Hamiltonian systems are chosen so that each initial data pointX (0) contains two components x(0)

and ξ(0), which are the initial physical location and the initial momentum variable, respectively;
in turn, the initial momentum variable determines the corresponding initial ray direction
according to the Hamiltonian system.

We take Ω = [0, 1]× [0, 1] and use a regular (N + 1)× (N + 1) grid to discretize this domain.
We put a source at every boundary grid point except those located at the corner. That is, there
are totally 4(N − 1) sources on the boundary, and at each source we initiate a number of rays
with different initial ray directions.

4.1. Model 1

We assume that
vp = 3, vs = 2 and ρ = 2.5.

The initial guesses are
v(0)
p = 1 and v(0)

s = 1

and the regularization parameter β = 10−10. We use N = 10 and shoot 10 rays at each source on
the boundary. The algorithm recovers both vp and vs exactly using 8 iterations and 9 iterations,
respectively. In Figure 1 and Figure 2, we plot the successive errors for the numerical solutions.
We see that the algorithm converges at the 7-th iteration.

In Figure 3 and Figure 4, we also plot the residual errors for the numerical solutions. We see
that the numerical solutions are already very accurate after 5 iterations.

4.2. Model 2

We assume that

vp = 3 − e−2((x−0.5)2+(y−0.5)2), vs = 1 + 0.2 sin(πx) sin(0.5πy) and ρ = 2.5.

The initial guesses are
v(0)
p = 1.5 and v(0)

s = 1.15,
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Figure 1. Model 1: Successive
error vs iteration number for vp.
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Figure 2. Model 1: Successive
error vs iteration number for vs.
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Figure 3. Model 1: Residual error
vs iteration number for vp.
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Figure 4. Model 1: Residual error
vs iteration number for vs.

and the regularization parameter β = 10−6. We use N = 16 and shoot 20 rays at each source on
the boundary. The algorithm stops when the successive error is less than 2 × 10−5. In Figure 5
and Figure 6, we plot the successive errors for the numerical solutions. We see that the numerical
results for the P-wave speed, vp, and the S-wave speed, vs, converge after 10 and 14 iterations,
respectively.
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Figure 5. Model 2: Successive
error vs iteration number for vp.
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Figure 6. Model 2: Successive
error vs iteration number for vs.

As for relative numerical errors of the P-wave speed, the relative error initially is 0.3519, and
the relative error at the 10-th iteration is 0.0023; thus the relative error is reduced by 153 times



in 10 iterations. Similar behavior is observed for relative errors of the S-wave speed.
In Figure 7, we compare the numerical solution for vp at the 10th iteration with the exact

solution for vp at x = 0.5. In Figure 8, we compare the numerical solution for vs at the 14-th
iteration with the exact solution for vp at x = 0.5. As we can see, the reconstruction results
approximate the exact solutions very well.
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Figure 7. Model 2: Numerical and
exact solutions at x = 0.5 for vp.
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4.3. Model 3

We assume that

vp =











3, for (x, y) ∈ [0, 0.4] × [0, 1]

3 + 0.8α
∫ x

0.4 e
−

0.01
(s−0.4)(0.6−s) ds, for (x, y) ∈ [0.4, 0.6] × [0, 1]

3.8, for (x, y) ∈ [0.6, 1] × [0, 1]

and

vs =











2, for (x, y) ∈ [0, 0.4] × [0, 1]

2 + 0.2α
∫ x

0.4 e
−

0.01
(s−0.4)(0.6−s) ds, for (x, y) ∈ [0.4, 0.6] × [0, 1]

2.2, for (x, y) ∈ [0.6, 1] × [0, 1]

.

and

ρ =











2.5, for (x, y) ∈ [0, 0.4] × [0, 1]

2.5 + 0.5α
∫ x

0.4 e
−

0.01
(s−0.4)(0.6−s) ds, for (x, y) ∈ [0.4, 0.6] × [0, 1]

3.0, for (x, y) ∈ [0.6, 1] × [0, 1]

.

where

α =
1

∫ 0.6
0.4 e

−
0.01

(s−0.4)(0.6−s) ds
.

The initial guesses are
v(0)
p = 2.5 and v(0)

s = 1.5

and the regularization parameter β = 10−4. We use N = 20 and shoot 20 rays at each source
on the boundary.

As for relative numerical errors of the P-wave speed, the relative error initially is 0.2857, and
the relative error at the 30-th iteration is 0.0093; thus the relative error is reduced by 30 times
in 30 iterations. Similar behavior is observed for the relative errors of the S-wave speed.

In Figure 9, we compare the numerical solution and the exact solution at y = 0.5, while in
Figure 10, we compare the numerical solution and the exact solution at y = 0.5.
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Figure 9. Model 3: Numerical and
exact solutions at y = 0.5 for vp.
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Figure 10. Model 3: Numerical
and exact solutions at y = 0.5 for
vs.

5. Conclusion

We have developed a phase space method for reconstructing P-wave speed and S-wave speed
of an elastic medium from travel time measurements. The method is based on the so-called
Stefanov-Uhlmann identity which links two Riemannian metrics in a novel way. Linearizing
this identity yields an efficient numerical method for solving the reconstruction problem. In
particular, this phase space formulation can deal with multiple arrival times naturally. We have
designed numerical algorithms to solve the resulting inverse problem. Numerical examples for
elastic-wave traveltime tomography demonstrate the effectiveness of the method.
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