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Abstract
For the Lamé system, we prove in the three-dimensional case that both Lamé
coefficients are uniquely recovered from partial Cauchy data on an arbitrary
open subset of the boundary provided that the coefficient μ is a constant.

In a bounded domain � ⊂ R3 with smooth boundary, we consider the Lamé system
3∑

j,k,l=1

∂

∂x j

(
Ci jkl

∂uk

∂xl

)
= 0 in �, 1 � i � 3, (1)

and

u|∂� = f , (2)

where

Ci jkl = λ(x)δi jδkl + μ(x)(δikδ jl + δilδ jk), 1 � i, j, k, l � 3

with the Kronecker delta δi j. The functions λ and μ are called the Lamé coefficients, and
u(x) = (u1(x), u2(x), u3(x)) is the displacement. Assume that

μ(x) > 0 on �, (3λ + 2μ)(x) > 0 on �. (3)

We set

�λ,μ f =
⎛
⎝ 3∑

j,k,l=1

ν jC1 jkl
∂uk

∂xl
,

3∑
j,k,l=1

ν jC2 jkl
∂uk

∂xl
,

3∑
j,k,l=1

ν jC3 jkl
∂uk

∂xl

⎞
⎠ , (4)

where ν = (ν1, ν2, ν3) is the outward unit normal vector to ∂� and u is the solution to (1) and
(2). Denote

Lλ,μ(x, D)u =
⎛
⎝ 3∑

j,k,l=1

∂

∂x j

(
C1 jkl

∂uk

∂xl

)
,

3∑
j,k,l=1

∂

∂x j

(
C2 jkl

∂uk

∂xl

)
,

3∑
j,k,l=1

∂

∂x j

(
C3 jkl

∂uk

∂xl

)⎞
⎠ .
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The partial Cauchy data Cλ,μ are defined by

Cλ,μ = {(u,�λ,μu)|�̃; Lλ,μ(x, D)u = 0 in �, u|∂� = f , supp f ⊂ �̃, f ∈ H
3
2 (∂�)}.

Here, �̃ is an arbitrarily fixed open subset of ∂�. We set �0 = ∂� \ �̃.

In this paper, we consider the following inverse problem. Suppose that the partial Cauchy
data Cλ,μ are given. Can we determine the Lamé coefficients λ and μ?

This inverse problem has been studied since the 1990s. A linearized version of this inverse
problem for full data was studied by Ikehata [7]. In two dimensions, Akamatsu et al [1] proved
that for the case of full Cauchy data (�̃ = ∂�) one can recover the Lamé coefficients and their
normal derivatives of arbitrary orders on the boundary provided that the Lamé coefficients are
C∞ functions. This boundary determination result was extended by Nakamura and Uhlmann
[17] to higher dimensions. In [15], Nakamura and Uhlmann for the case of full Cauchy data
established that in two dimensions the Lamé coefficients are uniquely determined, assuming
that they are sufficiently close to a pair of positive constants. Recently, Imanuvilov and
Yamamoto in [13] proved for the two-dimensional case that the Lamé coefficient λ can be
recovered from partial Cauchy data if the coefficient μ is some positive constant. In two
dimensions, there is another possible way to prove a local uniqueness result for λ and μ which
are close to constants: the proof is a combination of [1] and a local uniqueness result for
the Love–Kirchhoff plate equation in [8], and the equivalence of the two problems is proved
in [9].

For the three-dimensional case, the uniqueness for both Lamé coefficients is proved
provided that μ is close to a positive constant [6, 16] and the proof relies on construction of
complex geometric optics solution [5, 18]. Our result relies on these uniqueness results for the
case of full data.

All the above works are concerned with the full Cauchy data (i.e. �̃ = ∂�). The recovery
of Lamé coefficients by partial Cauchy data on an arbitrary sub-boundary is useful from
the practical point of view, because one can limit input and measurement subsets of ∂� as
much as possible. In the case of partial Cauchy data for the Lamé system, unlike the case
of the Schrödinger operator, the construction of complex geometric optics solutions seems to
be possible only for a dense set of Lamé coefficients. To the best of our knowledge, there
are no results on the unique recovery of the Lamé coefficients from the partial Cauchy data
in the three-dimensional case. The purpose of this paper is to prove such uniqueness in three
dimensions.

Finally, we mention that this inverse problem is closely related to the method known as
electrical impedance tomography (EIT). EIT is used in prospection of oil and minerals and
in medical imaging in detecting breast cancer, pulmonary edema, etc. For the mathematical
treatments of this problem, we refer, e.g., to [2–4, 11, 12, 14, 19] and the review paper [20].

Our result is the following theorem.

Theorem 0.1. Let μ1, μ2 be some positive constants and λ1, λ2 ∈ C∞(�) be some functions
satisfying (3) and λ1 = λ2 on �0. If Cλ1,μ1 = Cλ2,μ2 , then (λ1, μ1) = (λ2, μ2).

Proof. The proof consists in showing that from partial Cauchy data one can recover the full
data. First, following [17], we prove that

(λ1, μ1) = (λ2, μ2) on �̃ and
∂λ1

∂ν
= ∂λ2

∂ν
on �̃. (5)

Let u j ∈ H2(�), j = 1, 2, be functions such that

Lλ j,μ j (x, D)u j = 0 in �, u j|∂� = f , (6)
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where supp f ⊂ �̃. Since the partial Cauchy data are the same, we obtain

�λ1,μ1 u1 = �λ2,μ2 u2 on �̃, (7)

where �λi,μi , i = 1, 2, are defined in (4).
Assume for the moment that u1 ∈ C2+α(�̄) for some α from (0, 1). The regularity results

for the Lamé system imply immediately that u2 ∈ C2+α(�̄).

By (5) and 3λ j + 2μ j > 0 on �, j = 1, 2, we can prove(
u1,

∂u1

∂ν

)
=

(
u2,

∂u2

∂ν

)
on �̃. (8)

Moreover, from (5), (8) and equation (6), we conclude(
u1,

∂u1

∂ν
,

∂2u1

∂xi∂xk

)
=

(
u2,

∂u2

∂ν
,

∂2u2

∂xi∂xk

)
on �̃, ∀i, k ∈ {1, 2, 3}. (9)

Hence, (
rot u1,

∂rot u1

∂ν

)
=

(
rot u2,

∂rot u2

∂ν

)
on �̃. (10)

As for the proof of (9) and (8), we refer, for instance, to [10].
Since the functions μ j are assumed to be constants, from (5) we conclude that

μ := μ1 = μ2 in �. (11)

For the constant μ, we note that

Lλ,μ(x, D)u = μ
u + (μ + λ)∇div u + (div u)∇λ.

Applying to equation (6) the operator rot and using the fact that μ j is constant, we obtain

μ j
rot u j = 0 in �, j = 1, 2. (12)

Equality (10) and the uniqueness of the solution for the Cauchy problem for the Laplace
equation imply

rot u1 = rot u2 in �. (13)

The Lamé operator, with the coefficient μ = const, can be written in the form L(x, D)u =
∇((λ + 2μ)div u) − μrot rotu. Then, using (11) and (13), we obtain

∇((λ1 + 2μ)div u1) = ∇((λ2 + 2μ)div u2) in �. (14)

Hence, (λ1 +2μ)div u1 − (λ2 +2μ)div u2 is a constant function in �. Since (λ1 +2μ)div u1 =
(λ2 + 2μ)div u2 on �̃ by (5) and (8), equation (14) implies

(λ1 + 2μ)div u1 = (λ2 + 2μ)div u2 in �. (15)

From (11), (15), (13) and the assumption (λ1 − λ2)|�0 = 0, we conclude

∂u1

∂ν
= ∂u2

∂ν
on �0. (16)

Indeed in order to obtain equality (16) observe that rotations preserve the isotropicity of
the Lamé system. Therefore, after choosing an arbitrary point x ∈ �0, we rotate the coordinates
to have ν(x) = (0, 0, 1). Then, we obtain

∂u1, j

∂xk
(x) = ∂u2, j

∂xk
(x), ∀ j ∈ {1, 2, 3}, ∀k ∈ {1, 2}.

Hence, equality (13) implies that ∂u1, j

∂ν
(x) = ∂u2, j

∂ν
(x) for j = 1, 2 and (15) implies that

∂u1,3

∂ν
(x) = ∂u2,3

∂ν
(x).
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By (16), if f ∈ C2+α(∂�), supp f ⊂ �̃ in (5), then ∂u1
∂ν

= ∂u2
∂ν

on ∂�. By a density
argument, the above relation holds for the slightly relaxed regularity assumption on the
function f . Namely, the function f belongs to H

3
2 (∂�). Hence, we removed the assumption

that u1 ∈ C2+α(�̄).

Next, let f ∈ H
3
2 (∂�) and the functions v j ∈ H2(�) be the solutions of the following

boundary value problems:

Lλ j,μ j (x, D)v j = 0 in �, v j|∂� = f , j ∈ {1, 2}. (17)

We claim that

∂v1

∂ν
= ∂v2

∂ν
on �̃. (18)

Indeed, let w j ∈ H2(�) be a solution to the Lamé system

Lλ j,μ j (x, D)w j = 0 in �, w j|∂� = g, j ∈ {1, 2}, (19)

where g ∈ H
3
2 (∂�) and supp g ⊂ �̃ is an arbitrary function. Taking the scalar product of

equation (17) with w j and integrating by parts, we have

0 =
∫

�

(Lλ j,μ j (x, D)v j, w j) dx =
∫

�

(v j,Lλ j,μ j (x, D)w j) dx

+
∫

∂�

((�λ j,μ jv j, w j) − (�λ j,μ jw j, v j)) dσ

=
∫

∂�

((�λ j,μ jv j, g) − (�λ j,μ jw j, f )) dσ =
∫

�̃

(�λ j,μ jv j, g) dσ −
∫

∂�

(�λ j,μ jw j, f ) dσ

=
∫

�̃

(�λ j,μ jv j, g) dσ −
∫

∂�

(�λ1,μ1w1, f ) dσ,

where dσ denotes the surface measure.
This integral identity implies

�λ1,μ1v1 = �λ2,μ2v2 on �̃.

Repeating the arguments in (12)–(16), we conclude

∂v1

∂ν
= ∂v2

∂ν
on �0. (20)

Hence, by (16) and (20), the following full Cauchy data are equal:

C̃λ1,μ1 = C̃λ2,μ2 ,

where

C̃λ,μ = {(u,�λ,μu)|∂�; Lλ,μ(x, D)u = 0 in �, u|∂� = f , f ∈ H
3
2 (∂�)}.

Applying the result of [6], we obtain that λ1 = λ2. �
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[2] Astala K and Päivärinta L 2006 Calderón’s inverse conductivity problem in the plane Ann. Math. 163 265–99
[3] Bukhgeim A 2008 Recovering the potential from Cauchy data in two dimensions J. Inverse Ill-Posed

Problems 16 19–34
[4] Calderón A P 1980 On an inverse boundary value problem Seminar on Numerical Analysis and Its Applications

to Continuum Physics (Rı́o de Janeiro: Sociedade Brasileira de Matemática) pp 65–73
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J. Math. Sci. Univ. Tokyo 5 627–92
[11] Imanuvilov O, Uhlmann G and Yamamoto M 2010 The Calderón problem with partial data in two dimensions

J. Am. Math. Soc. 23 655–91
[12] Imanuvilov O, Uhlmann G and Yamamoto M 2011 Determination of second-order elliptic operators in two

dimensions from partial Cauchy data Proc. Natl Acad. Sci. USA 1008 467–72
[13] Imanuvilov O and Yamamoto M 2011 Reconstruction of the Lamé parameters from partial Cauchy data
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