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Abstract

We study on a compact Riemannian manifold with boundary the ray transform
I which integrates symmetric tensor fields over geodesics. A tensor field is said to
be a nontrivial ghost if it is in the kernel of I and is L2-orthogonal to all potential
fields. We prove that a nontrivial ghost is smooth in the case of a simple metric.
This implies that the the wave front set of the solenoidal part of a field f can be
recovered from the ray transform If . We give an explicit procedure for recovering
the wave front set.
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1 Introduction

The term ghosts is used in tomography for objects that give no contribution to the pro-
jection data. In classical scalar tomography ghosts occur only due to the discretization of
a problem or in problems with incomplete data. In both the cases, ghosts turn out to be
very singular functions that have either rapid oscillation or many jumps. The situation is
quite different in tensor tomography when we have to recover several unknown functions
from the same projection data. For example, the typical problem of Doppler tomography
is described as follows. One attempts to recover a vector field f on a convex bounded
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domain M ⊂ R3 given the work of f over every straight-line segment with endpoints in
∂M . There is a large space of ghosts in the latter problem. Indeed, if ϕ is a function
on M vanishing on the boundary, ϕ|∂M = 0, then the potential vector field f = ∇ϕ has
zero work over any path with endpoints in ∂M . It can be easily shown that the space of
ghosts coincides with the space of potential fields in the latter problem. The question is
much more delicate for the following generalization of the problem which is still of great
applied interest. Assume M to contain some medium that refracts ultra-sound waves.
The index of refraction can be often modeled by a Riemannian metric, g, and the ultra-
sound rays propagate along the geodesics of g. The Doppler tomography problem in this
setting can be posed as follows. Can one recover a vector field f in M given the work of
f over all geodesic segments of a given metric g with endpoints in ∂M? The definition
of a potential field can be given in the latter setting with an obvious modification. The
case of integrating tensor fields of rank higher than one appears also in several situations.
For instance the case of tensor fields of rank two corresponds to the linearization of the
boundary rigidity problem; see Chapter 1 of [7]. The case of tensor fields of rank four
describes the perturbation of travel times of compressional waves propagating in slightly
anisotropic elastic media; see Chapter 7 of [7]. We can also define potential fields in this
more general setting and they are ghosts for the integration of tensor fields along geodes-
ics. The identification of the space of ghosts with the space of potential fields is known
under some assumptions on the curvature tensor of g, but the question is open in the case
of a general metric g. Let us refer to potential fields as trivial ghosts and use the term
nontrivial ghosts for ghosts that are L2-orthogonal to all potential fields. In the present
article we prove that, under some weak assumptions on the metric g, any nontrivial ghost
is C∞-smooth. The result is obtained for symmetric tensor fields of arbitrary rank m,
the Doppler tomography problem corresponds to the case of m = 1. We emphasize that,
until now, no example is known where the space of nontrivial ghosts is nonzero.

We describe below the problem more precisely.
Given a Riemannian manifold (M, g), we denote by C∞(Smτ ∗M) the space of smooth

covariant symmetric tensor fields of rank m on M . The first order differential operator

d = σ∇ : C∞(Sm−1τ ∗M) → C∞(Smτ ∗M) (1.1)

is called the inner derivative. Here ∇ is the covariant derivative with respect to the metric
g and σ denotes the symmetrization.

We are going to integrate symmetric tensor fields over geodesics joining boundary
points. First of all we will distinguish some class of Riemannian manifolds for which the
integration leads to a good operator.

A compact Riemannian manifold (M, g) with boundary is called a convex non-trapping
manifold (CNTM briefly), if it satisfies two conditions: (1) the boundary ∂M is strictly
convex, i.e., the second fundamental form of the boundary is positive definite at every
boundary point; (2) for every point x ∈ M and every vector 0 6= ξ ∈ TxM , the maximal
geodesic γx,ξ(t) satisfying the initial conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ is defined on
a finite segment [τ−(x, ξ), τ+(x, ξ)]. We recall that a geodesic γ : [a, b] → M is maximal
if it cannot be extended to a segment [a− ε1, b + ε2], where εi ≥ 0 and ε1 + ε2 > 0. The
second condition is equivalent to all geodesics having finite length in M .

Remark. In [7], the term CDRM (compact dissipative Riemannian manifold) was used
instead of CNTM.

2



An important subclass of CNTMs are the simple manifolds. A compact Riemannian
manifold (M, g) is said to be simple if (1) it is simply connected, (2) the boundary is
strictly convex, and (3) there are no conjugate points on any geodesic. A simple n-
dimensional Riemannian manifold is diffeomorphic to a closed ball in Rn, and any two
points of the manifold are joined by a unique geodesic.

We denote by TM = {(x, ξ) | x ∈ M, ξ ∈ TxM} the tangent bundle of the manifold
M , and by ΩM = {(x, ξ) ∈ TM | |ξ| = 1} we denote the unit sphere bundle. We
introduce the submanifolds of inner and outer vectors of ΩM :

∂±ΩM = {(x, ξ) ∈ ΩM | x ∈ ∂M, ±〈ξ, ν(x)〉 ≥ 0},
where ν is the unit outer normal to the boundary. Note that ∂+ΩM and ∂−ΩM are
compact manifolds with the same boundary Ω(∂M), and ∂ΩM = ∂+ΩM

⋃
∂−ΩM . It is

convenient to parameterize the set of maximal oriented geodesics by points of the manifold
∂+ΩM . Namely, for (x, ξ) ∈ ∂+ΩM , we denote by γx,ξ : [τ−(x, ξ), 0] → M the maximal
geodesic satisfying the initial conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ.

Let C∞(∂+ΩM) be the space of smooth functions on the manifold ∂+ΩM . The ray
transform (also called geodesic X-ray transform) on a CNTM M is the linear operator

I : C∞(Smτ ∗M) → C∞(∂+ΩM) (1.2)

defined by

If(x, ξ) =

0∫

τ−(x,ξ)

〈f(γx,ξ(t)), γ̇
m
x,ξ(t)〉 dt =

0∫

τ−(x,ξ)

fi1...im(γx,ξ(t))γ̇
i1
x,ξ(t) . . . γ̇im

x,ξ(t) dt. (1.3)

Throughout the paper, we use the agreement: summation from 1 to n = dim M is assumed
over upper and low indices repeated in a monomial. The right-hand side of (1.3) is a
smooth function on ∂+ΩM because the integration limit τ−(x, ξ) is a smooth function on
∂+ΩM , see Lemma 4.1.1 of [7].

On a compact manifold M , the topological Hilbert space Hk(Smτ ∗M) consists of rank
m symmetric tensor fields whose coordinates, in any local coordinate system, are locally
square integrable together with partial derivatives of order ≤ k. In a similar way we
define the topological Hilbert space Hk(∂+ΩM) of functions on ∂+ΩM . (By a topological
Hilbert space we mean a topological vector space whose topology can be determined by
some Hilbert dot-product but the product is not fixed.) The ray transform on a CNTM
is extendible to the bounded operator

I : Hk(Smτ ∗M) → Hk(∂+ΩM) (1.4)

for every integer k ≥ 0, see Theorem 4.2.1 of [7].
We denote the kernel of operator (1.4) by Zk(Smτ ∗M). A field f ∈ Hk(Smτ ∗M) is

said to be a potential field if it can be represented in the form f = dv with some
v ∈ Hk+1(Sm−1τ ∗M) satisfying the boundary condition v|∂M = 0. Let P k(Smτ ∗M) be
the subspace, of Hk(Smτ ∗m), consisting of all potential fields. For any CNTM, we have
that

P k(Smτ ∗M) ⊂ Zk(Smτ ∗M). (1.5)

The main question on the ray transform is the following: For what classes of CNTMs
and for what values of k and m can the inclusion in (1.5) be replaced by equality? As
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can be easily shown, if the answer is positive for k = k0, then it is positive for k ≥ k0.
No example of a CNTM is known for which (1.5) is not equality. On the other hand,
equality in (1.5) is known under some assumptions on the curvature of g which imply the
simplicity of (M, g), see Theorem 4.3.3 of [7] and also [10], [5], [3]. With no curvature
restriction, the following result is proved in [8]:

For a simple Riemannian manifold, inclusion (1.5) is of a finite codimension for all
m and k ≥ 1.

The following question was posed in [8]: Given a simple Riemannian manifold, is the
codimension ck,m(M, g) of the inclusion (1.5) independent of k? In other words, does
there exist a complement of P k(Smτ ∗M), in Zk(Smτ ∗M), consisting of smooth tensor fields?
The main result of the present article is the positive answer to this question. Before
formulating the result, we will introduce a couple of definitions.

We want to distinguish a subspace in Hk(Smτ ∗M) which is the complement to the space
of potential fields. The most natural candidate for such a complement is the kernel of the
dual to d operator.

Given a Riemannian manifold (M, g), the divergence operator δ : C∞(Smτ ∗M) →
C∞(Sm−1τ ∗M) is defined in local coordinates by (δu)i1...im−1 = gjk∇kuji1...im−1 . The op-
erators d and −δ are dual to each other with respect to the L2-product

(u, v)L2 =
∫

M

〈u(x), v(x)〉 dV n(x) (1.6)

on the space L2(Smτ ∗M) = H0(Smτ ∗M). Here dV n(x) = [det(gij)]
1/2|dx1 ∧ . . . ∧ dxn| is the

Riemannian volume form and 〈u, v〉 = gi1j1 . . . gimjmui1...im v̄j1...jm is the pointwise scalar
product of tensors. A field f ∈ Hk(Smτ ∗M) (k ≥ 0) is said to be a solenoidal field
if δf = 0. The space of solenoidal fields is the orthogonal complement of the space
P k(Smτ ∗M) of potential fields with respect to the L2-product. For f ∈ L2(Smτ ∗M), df and
δf are understood in the sense of distributions.

We can now state the main result of the present article.

Theorem 1.1 Let (M, g) be a simple Riemannian manifold. For any m ≥ 0, if a tensor
field f ∈ L2(Smτ ∗M) is solenoidal, δf = 0, and is in the kernel of the ray transform,
If = 0, then f is smooth, i.e., f ∈ C∞(Smτ ∗M).

We remark that in the cases of m = 0 and m = 1 the statement is trivial because
(1.5) is known to be equality in these cases, see [8]. So, the first nontrivial case is m = 2.
In the latter case, the theorem was recently proved in [1] and [11]. The analytical part of
our proof follows these articles with some improvements. The algebraic part of the proof
is much more complicated in the case of an arbitrary m.

Any tensor field f ∈ Hk(Smτ ∗M), k ≥ 0, on a compact Riemannian manifold can be
uniquely represented in the form

f = f̃ + dv, δf̃ = 0, v|∂M = 0

with f̃ ∈ Hk(Smτ ∗M) and v ∈ Hk+1(Sm−1τ ∗M). See Theorem 3.3.2 of [7] where the state-
ment is proved for k ≥ 1. The same proof with minor modifications works in the case of
k = 0. The fields f̃ and dv are called respectively solenoidal and potential parts of the
field f .
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Corollary 1.2 Let (M, g) be a simple Riemannian manifold. For any m ≥ 0, the wave
front set of the solenoidal part f̃ of a tensor field f ∈ L2(Smτ ∗M) can be uniquely recovered
from the ray transform If .

By the wave front set of a symmetric tensor field f , we mean the wave front set of the
function F (x, ξ) = fi1...im(x)ξi1 . . . ξim on the manifold TM . So, the wave front set is a
closed conic subset of T ∗(TM) \ {0}. Equivalently, in local coordinates, this means the
family of wave front sets of all coordinates of f . Indeed, let f1 and f2 be two tensor fields
such that If1 = If2. Let f̃1 and f̃2 be the solenoidal parts of f1 and f2 respectively. By
Theorem 1.1, f̃1 − f̃2 is a smooth tensor field. This means that WF (f̃1) = WF (f̃2). In
Section 3, we will give an effective procedure of recovering WF (f̃ |M\∂M).

The article is organized as follows. In Section 2, we consider the dual I∗ of the ray
transform I, prove that I∗I is a pseudodifferential operator of order −1, and calculate the
principal symbol of the operator. In Section 3, we construct a parametrix for I∗I on the
space of solenoidal tensor fields. Our construction of the parametrix has many features
in common with that of [11] but is done in more invariant terms. In Section 4, we recall
some known facts about the transmission condition which are presented in the form that
we need. In Section 5, we prove the interior regularity of a field f as in Theorem 1.1 and
reduce the question of the boundary regularity to proving ellipticity of some operator of
the form E − A on ∂M , where E is the identity. We calculate the principal symbol A
of A in Section 6. The rest of the article is of a pure algebraic nature. After developing
some tensor machinery in Section 7, we find invariant subspaces of the operator A in
Section 8. The question is thus reduced to checking nonsingularity of some matrices
E − A(l) (0 ≤ l ≤ m) whose elements are expressed in terms of binomial coefficients.
Section 9 contains some preliminaries on binomial coefficients. Finally, in Section 10, we
calculate the spectrum of the matrix A(l) and prove that E−A(l) is a nonsingular matrix.

The statement of Theorem 10.1 on spectra of matrices A(l) was found on the base
of many numerical experiments with these matrices. The authors are grateful to Yuri
Krivtsov for his help with the numerical calculations.

2 Symbol of I∗I

Given a Riemannian manifold (M, g), we denote by TxM the tangent space at x ∈ M ,
and by T ∗

xM , the dual space. The metric g defines the canonical isomorphism between
TxM and T ∗

xM which is expressed in coordinates by the well-known rule of raising and
lowering indices of a vector: ξi = gijξ

j and ξi = gijξj. The same rule applies to tensors.
Let Smτ ∗M be the complex vector bundle of covariant symmetric tensors of rank m over M .
The fiber of the bundle over a point x ∈ M is denoted by Sm(T ∗

xM). The scalar product
on Sm(T ∗

xM) is defined in coordinates by 〈u, v〉 = ui1...imvi1...im , the result is independent
of the choice of coordinates. The symmetric product uv = σ(u ⊗ v), where σ is the
symmetrization, turns ⊕∞m=0S

m(T ∗
xM) into a commutative graded algebra. For ξ ∈ T ∗

xM ,
we denote by iξ : Sm(T ∗

xM) → Sm+1(T ∗
xM) the operator of symmetric multiplication by

ξ and by jξ : Sm(T ∗
xM) → Sm−1(T ∗

xM), the dual of iξ.
For an n-dimensional Riemannian manifold (M, g) and a point x ∈ M , by ΩxM =

{ξ ∈ TxM | |ξ|2 = gij(x)ξiξj = 1} we denote the unit sphere in the tangent space
TxM . The Riemannian scalar product on TxM induces the volume form on ΩxM which
is denoted by dωx(ξ). We introduce the volume form dΣ2n−1 on the manifold ΩM by
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dΣ2n−1(x, ξ) = |dωx(ξ) ∧ dV n(x)|, where dV n is the Riemannian volume form on M . By
the well known Liouville theorem, the form dΣ2n−1 is preserved by the geodesic flow. The
corresponding volume form on the boundary ∂ΩM = {(x, ξ) ∈ ΩM | x ∈ ∂M} is given
by dΣ2n−2 = |dωx(ξ) ∧ dV n−1|, where dV n−1 is the volume form of ∂M .

Let (M, g) be a convex non-trapping Riemannian manifold. Introduce the space
L2(∂+ΩM) by

(ϕ, ψ)L2(∂+ΩM) =
∫

∂+ΩM

〈ξ, ν(x)〉ϕ(x, ξ)ψ(x, ξ) dΣ2n−2(x, ξ).

As has been mentioned in Section 1, the ray transform

I : L2(Smτ ∗M) → L2(∂+ΩM)

is a bounded operator. Now, we calculate its adjoint I∗.
For f ∈ L2(Smτ ∗M) and ψ ∈ L2(∂+ΩM),

(If, ψ)L2(∂+ΩM) =
∫

∂+ΩM

〈ξ, ν(x)〉If(x, ξ)ψ(x, ξ) dΣ2n−2(x, ξ) =

=
∫

∂+ΩM

〈ξ, ν(x)〉



0∫

τ−(x,ξ)

fi1...im(γx,ξ(t))γ̇
i1
x,ξ(t) . . . γ̇im

x,ξ(t)dt


 ψ(x, ξ) dΣ2n−2(x, ξ). (2.1)

Introduce the domain

G = {(x, ξ; t) | (x, ξ) ∈ ∂+ΩM, τ−(x, ξ) ≤ t ≤ 0} ⊂ ∂+ΩM ×R

and map
λ : G → ΩM, λ(x, ξ; t) = (γx,ξ(t), γ̇x,ξ(t)).

It is a diffeomorphism at least in the interior of G. It can be easily checked using Liouville’s
theorem that

λ∗(dΣ2n−1) = 〈ξ, ν〉dt ∧ dΣ2n−2.

Changing variables with the help of λ and using the latter equality, we transform (2.1) to
the following:

(If, ψ)L2(∂+ΩM) =
∫

ΩM

fi1...im(x)ξi1 . . . ξimψ(γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ))) dΣ2n−1(x, ξ).

If we denote by ψ̃ the extension of the function ψ from ∂+ΩM to ΩM such that the
function ψ̃ is constant on every orbit of the geodesic flow, then
ψ̃(x, ξ) = ψ(γx,ξ(τ+(x, ξ)), γ̇x,ξ(τ+(x, ξ))), and the previous formula can be written as
follows:

(If, ψ)L2(∂+ΩM) =
∫

M

fi1...im(x)




∫

ΩxM

ξi1 . . . ξimψ̃(x, ξ) dωx(ξ)


 dV n(x) = (f, I∗ψ)L2(Smτ∗M ),

where
(I∗ψ)i1...im(x) =

∫

ΩxM

ξi1 . . . ξimψ̃(x, ξ) dωx(ξ). (2.2)
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Now, we calculate the composition I∗I.

(I∗If)i1...im(x) =
∫

ΩxM

ξi1 . . . ξim Ĩf(x, ξ) dωx(ξ)

=
∫

ΩxM

ξi1 . . . ξim

τ+(x,ξ)∫

τ−(x,ξ)

fj1...jm(γx,ξ(t))γ̇
j1
x,ξ(t) . . . γ̇jm

x,ξ(t) dt dωx(ξ)

=
∫

ΩxM

ξi1 . . . ξim

τ+(x,ξ)∫

0

fj1...jm(γx,ξ(t))γ̇
j1
x,ξ(t) . . . γ̇jm

x,ξ(t) dt dωx(ξ)

+
∫

ΩxM

ξi1 . . . ξim

0∫

τ−(x,ξ)

fj1...jm(γx,ξ(t))γ̇
j1
x,ξ(t) . . . γ̇jm

x,ξ(t) dt dωx(ξ).

Two integrals on the right-hand side coincide as is easily seen using the change t =
−s, ξ = −η. Therefore

(I∗If)i1...im(x) = 2
∫

ΩxM

ξi1 . . . ξim

τ+(x,ξ)∫

0

fj1...jm(γx,ξ(t))γ̇
j1
x,ξ(t) . . . γ̇jm

x,ξ(t) dt dωx(ξ). (2.3)

We change integration variables in (2.3) as follows. For a fixed point x ∈ M , we
consider (ξ, t) as polar coordinates in TxM and put v = tξ. Then dv = |v|n−1 |dt∧dωx(w)|
and γ̇x,ξ(t) = Jx

expxvv/|v|, where dv is the volume form on TxM and Jx
expxv : TxM →

TexpxvM is the parallel transport along the geodesic t 7→ expxtv. After the change of
variables, (2.3) takes the form

(I∗If)i1...im(x) = 2
∫

TxM

vi1 . . . vim

|v|n+2m−1
fj1...jm(expxv)(Jx

expxvv)j1 . . . (Jx
expxvv)jm dv. (2.4)

The integration is taken over such v ∈ TxM that expxv is defined. We make below the
convention that an integrand depending on expxv is assumed to be zero for the v such
that expxv is not defined. With this agreement in mind, we can assume the integration
to be taken over whole of TxM in (2.4) and similar integrals below.

The parallel transport is defined on tensors as well as on vectors and agrees with the
inner product, i.e.,

fj1...jm(expxv)(Jx
expxvv)j1 . . . (Jx

expxvv)jm = (Jexpxv
x f(expxv))j1...jm

vj1 . . . vjm .

Therefore (2.4) can be rewritten as follows:

(I∗If)i1...im(x) = 2
∫

TxM

vi1 . . . vimvj1 . . . vjm

|v|n+2m−1
(Jexpxv

x f(expxv))j1...jm
dv. (2.5)

We define the Fourier transform on TxM as the linear operator F : S ′(TxM) →
S ′(T ∗

xM) on the space of temporary distributions. Introduce the notation

λi1...imj1...jm(x, ξ) = 2F̄v→ξ

[
vi1 . . . vimvj1 . . . vjm

|v|n+2m−1

]
= 2Fv→ξ

[
vi1 . . . vimvj1 . . . vjm

|v|n+2m−1

]
.
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The latter equality holds because F̄ is applied to an even function. By the inversion
formula for the Fourier transform,

2
vi1 . . . vimvj1 . . . vjm

|v|n+2m−1
= (2π)−n

∫

T ∗x M

e−i〈v,ξ〉λi1...imj1...jm(x, ξ) dξ.

We substitute the latter expression into (2.5)

(I∗If)i1...im(x) = (2π)−n
∫

TxM

∫

T ∗x M

e−i〈v,ξ〉λi1...imj1...jm(x, ξ) (Jexpxv
x f(expxv))j1...jm

dξ dv.

By formulas (2.11.4)–(2.11.5) and Lemma 2.11.1 of [7],

λi1...imj1...jm(x, ξ) = (−1)m πn/2Γ(−m + 1/2)

22m−2Γ(m + n/2− 1/2)

∂2m|ξ|2m−1

∂ξi1 . . . ∂ξim∂ξj1 . . . ∂ξjm

=

= (−1)m ((2m− 1)!!)2πn/2Γ(−m + 1/2)

22m−2Γ(m + n/2− 1/2)
|ξ|−1(εm(ξ))i1...imj1...jm ,

where εij(ξ) = gij − ξiξj/|ξ|2 and εm(ξ) is the m-th symmetric power of the tensor ε(ξ).
We have thus proved

Theorem 2.1 Let (M, g) be a CNTM of dimension n. The operator

I∗I : C∞(Smτ ∗M) → C∞(Smτ ∗M)

is given by the formula

(I∗If)(x) = (2π)−n
∫

TxM

∫

T ∗x M

e−i〈v,ξ〉λ(x, ξ)
(
Jexpxv

x f(expxv)
)
dξdv, (2.6)

where Jexpxv
x : Sm(T ∗

expxvM) → Sm(T ∗
xM) is the parallel transport of tensors along the

geodesic t 7→ expxtv, the linear operator λ(x, ξ) : Sm(T ∗
xM) → Sm(T ∗

xM) is defined in
coordinates by the formula (λ(x, ξ)f)i1...im = λi1...imj1...jm(x, ξ)f j1...jm with

λ(x, ξ) = (−1)m ((2m− 1)!!)2πn/2Γ(−m + 1/2)

22m−2Γ(m + n/2− 1/2)
|ξ|−1εm(ξ) (2.7)

and εij(ξ) = gij − ξiξj/|ξ|2.

Remark. Our proof of Theorem 2.1 is a modification of arguments of Section 2.11 of
[7]. The main result of the section, formula (2.11.6), is equivalent to Theorem 2.1 in the
case of the standard Euclidean metric on Rn. The operator I∗ is denoted by µm in [7].

Theorem 2.1 suggests that I∗I is a pseudodifferential operator of order −1. But
there are two main difficulties in considering I∗I as a pseudodifferential operator. First,
pseudodifferential operators are traditionally defined on manifolds with no boundary; the
theory of such operators on manifolds with boundary has several additional features and
complications. Pseudodifferential operators satisfying the transmission condition is one
example of such a theory (see for instance chapter 5 of [2]). In fact I∗I belongs to this
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latter class but we will not use this here. We will overcome this difficulty by embedding
our compact manifold M into a larger open (= noncompact with no boundary) manifold
M̃ and considering all operators on M̃ . The second more essential difficulty has to do
with conjugate points of the metric, i.e., critical points of the exponential map expx which
appears in (2.6). In the presence of such points, the singular support of I∗If can be larger
than that of f ; so I∗I is not a pseudodifferential operator. We avoid the latter difficulty
by assuming g to be a simple metric.

Let (M̃, g) be an open Riemannian manifold. It is said to be an open simple Rie-
mannian manifold if there exists a compact simple Riemannian manifold (M ′, g′) such
that M̃ is the interior of M ′, i.e., M̃ = M ′ \ ∂M ′, and g = g′|M̃ . For such a simple open
manifold (M̃, g), we define the ray transform as the operator

I : C∞
0 (Smτ ∗

M̃
) → C∞(∂+ΩM ′).

Any compact simple Riemannian manifold (M, g) can be embedded into an open simple
Riemannian manifold (M̃, g) of the same dimension.

Corollary 2.2 For an open simple Riemannian manifold (M̃, g) and for any integer m ≥
0, the operator

I∗I : C∞
0 (Smτ ∗

M̃
) → C∞(Smτ ∗

M̃
)

is the pseudodifferential operator of order −1 with the principal symbol λ(x, ξ) defined by
(2.7).

Corollary 2.2 follows from Theorem 2.1 using the arguments presented in Section 3 of
[9], see the discussion of the relation between Ψm

global(X,∇) and Ψm(X) before Lemma 3.1
of the latter article. Actually, Theorem 2.1 implies the following stronger statement. In
terms of [9], λ(x, ξ) is the full geometric symbol of the operator I∗I. In particular, I∗I is

a pseudodifferential operator with constant coefficients because
h

∇λ(x, ξ) = 0.
Formula (2.7) implies the following important properties of the symbol λ:

λ(x, ξ)iξ = 0, jξλ(x, ξ) = 0. (2.8)

3 Parametrix construction

In this section, M is a simple compact Riemannian manifold which is assumed to be
a compact subset of a larger open simple Riemannian manifold M̃ . All operators are
considered on M̃ . We denote the principal symbol of a pseudodifferential operator A of
order m by σm(A). From the definitions of d and δ, we have σ1(d) = iiξ, σ1(δ) = ijξ,
where i is the imaginary unit. Recall that δd is an elliptic operator, i.e., σ2(δd) = −jξiξ :
Sm(T ∗

xM̃) → Sm(T ∗
xM̃) is an isomorphism for any ξ 6= 0; see Lemma 3.3.3 of [7]. The

principal symbol λ(x, ξ) = σ−1(I
∗I) of the operator I∗I will be, for the most part, denoted

by λ(ξ) because its dependence on x is not relevant for us.

Theorem 3.1 Let S be a parametrix of the operator δd. There exists a pseudodifferential
operator P of order 1 on the bundle Smτ ∗

M̃
such that

E = PI∗I + dSδ + R, (3.1)

where E is the identity operator and R is a smoothing operator.
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The operator S is uniquely determined by formula (3.1), i.e., the following statement
is valid: if an operator S satisfies (3.1) for some P , then S is a parametrix for δd. Indeed,
assume (3.1) to be valid. Choose v ∈ C∞

0 (Sm−1τ ∗
M̃

) and apply (3.1) to the field dv

dv = PI∗Idv + dSδdv + Rdv.

Since Idv = 0, this gives dSδdv = dv − Rdv. Applying the operator δ to the latter
equality, we obtain δdSδd = δd− δRd. This implies that S is a parametrix for δd.

The arguments of the previous paragraph show that I∗Id = 0. So, the operator I∗I is
not elliptic and has no parametrix in the case of m > 0. Nevertheless, PI∗If = f − Rf
for any solenoidal field f . Therefore we call the operator P the parametrix of I∗I on the
space of solenoidal fields.

We will first reduce the theorem to the following weaker statement.

Lemma 3.2 There exist pseudodifferential operators P1 and B of orders 1 and −1 re-
spectively such that

E = P1I
∗I + dSδ + B. (3.2)

Proof of Theorem 3.1. Assume Lemma 3.2 to be valid. We multiply (3.2) by d
from the right and then use that S is a parametrix of δd and I∗Id = 0. We obtain

Bd = R1 (3.3)

with a smoothing operator R1.
C =

∑∞
k=0 Bk is a well defined pseudodifferential operator of order 0 and it is a

parametrix for E −B. Rewrite (3.2) as

P1I
∗I + dSδ = E −B

and compose on the left the latter equality with C

CP1I
∗I + dSδ +

∞∑

k=1

BkdSδ = C(E −B) = E + R2

with a smoothing R2. By (3.3), the last sum on the left-hand side is a smoothing operator.
We have thus obtained (3.1) with P = CP1.

Proof of Lemma 3.2. First of all we observe that the statement is of a pure algebraic
nature. Let p(ξ) = σ1(P1) be the principal symbol of the operator P1 we are looking for.
Equation (3.2) is equivalent to the following one:

E = p(ξ)λ(ξ) + iξ(jξiξ)
−1jξ.

So, we have to find an operator p(ξ) : Sm(T ∗
xM̃) → Sm(T ∗

xM̃) such that

f = p(ξ)λ(ξ)f + iξ(jξiξ)
−1jξf (3.4)

for any f ∈ Sm(T ∗
xM̃) and for any 0 6= ξ ∈ T ∗

xM̃ . The point x ∈ M̃ is fixed in the proof.
Since iξ and jξ are dual to each other, any tensor f ∈ Sm(T ∗

xM̃) can be uniquely
represented in the form

f = f̃ + iξv, jξf̃ = 0
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with f̃ ∈ Sm(T ∗
xM̃) and v ∈ Sm−1(T ∗

xM̃). Substituting the expression into (3.4), we have

f̃ + iξv = p(ξ)λ(ξ)(f̃ + iξv) + iξ(jξiξ)
−1jξ(f̃ + iξv).

Since λ(ξ)iξ = 0, the latter formula is equivalent to

f̃ = p(ξ)λ(ξ)f̃ .

In other words, the operator p(ξ)λ(ξ), restricted to the space

Sm
ξ (T ∗

xM̃) = {f ∈ Sm(T ∗
xM̃) | jξf = 0},

must be the identity.
By (2.8), λ(ξ) maps Sm(T ∗

xM̃) to Sm
ξ (T ∗

xM̃). Therefore the existence of an operator
p(ξ) satisfying (3.4) is equivalent to the statement: the operator

λ(ξ) : Sm
ξ (T ∗

xM̃) → Sm
ξ (T ∗

xM̃)

is an isomorphism for any ξ 6= 0. The latter statement is proved in Theorem 2.12.1 of
[7]. It does not matter that the case of Euclidean space is considered there because, for a
fixed point x ∈ M̃ , we can identify T ∗

xM̃ with Rn with the help of an orthonormal basis.
The lemma is proved.

In Theorem 2.12.1 of [7], the following explicit formula for p(ξ) is obtained:

p(ξ) = |ξ|
[m/2]∑

k=0

c(k,m, n)ikεj
k
g , (3.5)

where jg is the contraction with the metric tensor g, iε is the symmetric multiplication
by the tensor ε = (εij(ξ)), n = dim M , and the coefficients are expressed by

c(k, m, n) = (−1)k Γ(n/2− 1/2)

2
√

π(n− 3)!!Γ(n/2)

(n + 2m− 2k − 3)!!

2kk!(m− 2k)!
. (3.6)

Observe that our proof of Theorem 3.1 gives an explicit procedure for constructing the
parametrix P as in (3.1). Indeed, we first construct the operator P1 with the principal
symbol p(ξ) defined by (3.5)–(3.6). Then we define the operator B by formula (3.2) and
construct C =

∑∞
k=0 Bk. Finally, we set P = CP1.

Multiplying equation (3.1) by δ from the left, we obtain

δPI∗I = R1

with a smoothing operator R1. This means that the tensor field PI∗If is solenoidal, up
to a smooth field, for any f . Let f̃ be the solenoidal part of f ∈ L2(Smτ ∗M). Later, in
Section 5, we will show that the difference PI∗If − f̃ is smooth on M \ ∂M . This gives
the explicit formula for reconstructing the wave front set

WF (f̃ |M\∂M) = WF (PI∗If |M\∂M).
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4 Tensor field-distributions

and the transmission condition

Let (M, g) be an open Riemannian manifold. By D(Smτ ∗M) we denote the space C∞
0 (Smτ ∗M)

endowed with the corresponding topology, and by D′(Smτ ∗M) we denote the dual space.
Elements of D(Smτ ∗M) are called test tensor fields while elements of D′(Smτ ∗M) are called
(symmetric covariant) tensor field-distributions of rank m. The value of a functional
f ∈ D′(Smτ ∗M) on a test field u ∈ D(Smτ ∗M) is denoted by 〈f | u〉. The notations D(S0τ ∗M)
and D′(S0τ ∗M) will be abbreviated to D(M) and D′(M) respectively. The embedding
C∞(Smτ ∗M) ⊂ D′(Smτ ∗M) is defined by

〈f |u〉 =
∫

M

〈f, ū〉 dV n (u ∈ D(Smτ ∗M)), (4.1)

where dV n is the Riemannian volume form. For f ∈ D′(Smτ ∗M) and u ∈ C∞(Smτ ∗M), the
dot product 〈f, u〉 ∈ D′(M) is well defined.

If (x1, . . . , xn) is a local coordinate system with the domain U ⊂ M , then the coor-
dinates fi1...im ∈ D′(U) are defined for f ∈ D′(Smτ ∗M). Formula (4.1) can be written in
coordinates as follows:

〈f |u〉 =
∫

U

fi1...imui1...im
√

g dx1 . . . dxn (u ∈ D(Smτ ∗M), supp u ∈ U),

where g = det (gij).
Let Γ be a smooth hypersurface in M which is considered as an (n − 1)-dimensional

Riemannian manifold with the metric induced from M , and Smτ ∗M |Γ be the restriction of
the bundle Smτ ∗M to Γ. Define the operator

D′(Smτ ∗M |Γ) → D′(Smτ ∗M), f 7→ f ⊗ δΓ

by the formula

〈f ⊗ δΓ |u〉 =
∫

Γ

〈f, ū〉dV n−1 (u ∈ D(Smτ ∗M)),

where dV n−1 is the Riemannian volume form of Γ. In semigeodesic coordinates (such that
|xn| coincides with the distance from x to Γ) this operator looks as follows:

(f ⊗ δΓ)i1...im = fi1...im(x1, . . . , xn−1)δ0(x
n),

where δ0 stands for the Dirac delta function.

We will use the transmission condition in the following weak form, compare with
Section 2 of Chapter 5 of [2]. A classical pseudodifferential operator A of order m is said

to satisfy the transmission condition if, in the asymptotic expansion σ(A) ∼ −∞∑
j=m

aj(x, ξ)

of the full symbol, each term aj(x, ξ) is a rational function of ξ which is homogeneous of
degree j.

The following two lemmas coincide, up to nonrelevant details, with Theorems 2.2 and
2.4 of Chapter 5 of [2].
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Lemma 4.1 Let Ω ⊂ M be an open regular domain bounded by a smooth hypersurface
Γ = ∂Ω, and let A : C∞

0 (Smτ ∗M) → C∞(Smτ ∗M) be a classical pseudodifferential operator
on the bundle Smτ ∗M satisfying the transmission condition. If a compactly supported field-
distribution u ∈ D′(Smτ ∗M) satisfies u|Ω = 0, then (Au)|Ω has restrictions of all orders to
Γ.

The latter statement should be supplemented with the following definition. In the
setting of the lemma, a distribution v ∈ D′(Ω) has restrictions of order k to Γ if the
restriction v|U to the domain U ⊂ Ω of any semigeodesic coordinate system (x1, . . . , xn)
with xn = dist(x, Γ) is a Ck-function of xn ≥ 0 with values in the space of distributions
of variables (x1, . . . , xn−1).

Lemma 4.2 (Boundary regularity of a surface potential). Let Ω ⊂ M be an open regular
domain bounded by a smooth hypersurface Γ = ∂Ω, and let A : C∞

0 (Smτ ∗M) → C∞(Smτ ∗M)
be a classical pseudodifferential operator of order µ satisfying the transmission condition.
Then

1. The operator K defined by Kf = [A(f ⊗ δΓ)]|Ω is continuous from C∞
0 (Smτ ∗M |Γ) to

C∞(Smτ ∗M |Ω̄).
2. The operator

C : C∞
0 (Smτ ∗M |Γ) → C∞(Smτ ∗M |Γ), Cf = (Kf)|Γ

is the pseudodifferential operator of order µ + 1 on Γ.

5 Regularity of nontrivial ghosts

In this section M is again a simple compact Riemannian manifold with boundary embed-

ded into a simple open Riemannian manifold M̃ . The interior
◦

M= M \ ∂M of M is the

open regular domain in M̃ bounded by the smooth compact hypersurface ∂
◦

M = ∂M ⊂ M̃ .

First of all we prove smoothness of a ghost in
◦

M .

Theorem 5.1 Let f ∈ L2(Smτ ∗M) satisfy If = 0 and δf = 0. Then f is C∞-smooth in
◦

M and f | ◦
M

has restrictions of all orders to ∂M .

Proof. Extend f by zero to M̃ \M and denote the extension by f ◦. Then at least
f ◦ ∈ L2(Smτ ∗

M̃
). The extension is still in the kernel of the ray transform, If ◦ = 0, where

I is now the ray transform on M̃ . Apply Theorem 3.1 to f ◦

f ◦ = dSδf ◦ + Rf ◦. (5.1)

δf ◦ is the tensor field-distribution on M̃ supported on ∂M . Therefore the restriction

of the first term on the right-hand side of (5.1) to
◦

M is smooth. The second term is
smooth on the whole of M̃ . Now (5.1) implies smoothness of f ◦| ◦

M
= f | ◦

M
. This proves

the first statement of the theorem.
The operator dS satisfies the transmission condition. By the hypothesis of the theorem,

(δf ◦)| ◦
M

= (δf)| ◦
M

= 0. Applying Lemma 4.1, we see that (dSδf ◦)| ◦
M

has restrictions of

any order to ∂M . By (5.1), the same is true for f | ◦
M

. The theorem is proved.
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To finish the proof of Theorem 1.1, it remains to prove smoothness of the trace
tr |∂Mf = f |∂M . To this end we first calculate δf ◦.

Lemma 5.2 Let f ∈ L2(Smτ ∗M) satisfy If = 0 and δf = 0, and let f ◦ be the extension
of f to M̃ as zero outside M . Then

δf ◦ = jνf |∂M ⊗ δ∂M , (5.2)

where ν is the unite inner normal to the boundary.

Proof. By Theorem 5.1, the trace f |∂M is a well defined tensor field-distribution on
∂M . For a test field u ∈ D(Sm−1τ ∗

M̃
),

〈δf ◦ |u〉 = −〈f ◦ | du〉 = −
∫

M

〈f, dū〉 dV n.

By Green’s formula (see Theorem 3.3.1 of [7]),

∫

M

(〈f, dū〉+ 〈δf, ū〉)dV n = −
∫

∂M

〈jνf, ū〉dV n−1.

Since δf = 0, then the last two equations give

〈δf ◦ |u〉 =
∫

∂M

〈jνf, ū〉dV n−1 = 〈jνf |∂M ⊗ δ∂M |u〉.

The lemma is proved.

Remark. The hypothesis If = 0 of Lemma 5.2 can be replaced with f ∈ H1(Smτ ∗M).
The trace f |∂M ∈ L2(Smτ ∗M |∂M) is well defined under the latter hypothesis, and the rest
of the proof is the same.

Proof of Theorem 1.1. Let f ∈ L2(Smτ ∗M) satisfy δf = 0 and If = 0, and f ◦ be the
extension of f to M̃ , as zero outside M . Substituting the value (5.2) for δf ◦ into (5.1),
we obtain

f ◦ = dS(jνf |∂M ⊗ δ∂M) + Rf ◦. (5.3)

By tr |∂M we mean below the limit value from the inner part of M . We apply the operator
jνtr |∂M to (5.3)

jνf |∂M = jνtr |∂MdS(jνf |∂M ⊗ δ∂M) + jνtr |∂MRf ◦.

We rewrite this equality in the form

jνf |∂M = A(jνf |∂M) + jνtr |∂MRf ◦,

where the operator
A : C∞(Sm−1τ ∗M |∂M) → C∞(Sm−1τ ∗M |∂M)

is defined by
Au = jνtr |∂MdS(u⊗ δ∂M). (5.4)
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By Lemma 4.2, A is a pseudodifferential operator of order 0 on ∂M . We have thus proved
that the field h = jνf |∂M satisfies the equation

(E −A)h = jνtr |∂MRf ◦

with a smooth right-hand side, where E is the identity operator. The ellipticity of E−A
would imply the smoothness of h = jνf |∂M . If this is the case, using equation (5.3) and
Lemma 4.2, we would then prove smoothness of the field f ◦|∂M = f |∂M .

Thus, Theorem 1.1 is reduced to the following

Lemma 5.3 The operator

E −A : C∞(Smτ ∗M |∂M) → C∞(Smτ ∗M |∂M)

is elliptic for any integer m ≥ 0. Here E is the identity and A is defined by (5.4).

The following statement is the basis for the wave front set reconstruction procedure
that has been discussed in Section 3.

Theorem 5.4 Let P be the operator constructed in Theorem 3.1. For f ∈ L2(Smτ ∗M), if

f = f̃ + dv, δf̃ = 0, v|∂M = 0

is the decomposition into solenoidal and potential parts, then the field PI∗If− f̃ is smooth

in
◦

M .

Proof. Extend f, f̃ , v by zero to M̃ \ M and denote the extensions by f ◦, f̃ ◦, v◦

respectively. Then If ◦ = If and the difference h = f ◦ − f̃ ◦ − dv◦ is a tensor field-
distribution supported in ∂M . Apply Theorem 3.1 to f ◦

f ◦ = PI∗If + dSδf ◦ + Rf ◦.

Substitute the expression f ◦ = f̃ ◦ + dv◦ + h into this equation

f̃ ◦ + dv◦ + h = PI∗If + dSδ(f̃ ◦ + dv◦ + h) + Rf ◦.

Since dSδdv◦ coincides with dv◦ up to a smooth field, the latter equation is simplified to
the following one:

f̃ ◦ − PI∗If = dSδf̃ ◦ − h + dSδh + R1f
◦,

where R1 is a smoothing operator. Take the restriction of the latter equation to
◦

M .
Restrictions of all terms on the right-hand side are smooth. So we have obtained that
(f̃ ◦ − PI∗If)| ◦

M
= (f̃ − PI∗If)| ◦

M
is a smooth field. The theorem is proved.

The rest of the article is devoted to the proof of Lemma 5.3.
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6 Symbol of the operator A
Here we calculate the principal symbol A = σ0(A) of the operator A. Choose a semigeo-
desic coordinate system (x1, . . . , xn) in a neighborhood U ⊂ M̃ of a point x0 ∈ ∂M such

that |xn| = dist(x, ∂M) and xn > 0 in U∩ ◦
M . In such coordinates

Af = jν lim
xn→+0

dS(f ⊗ δ0(x
n)), (6.1)

where ν is the inner unit normal to ∂M and δ0 is the Dirac delta function.
Let b(x, ξ) = σ(dS) be the full symbol of dS in the chosen coordinates, and b−1 =

σ−1(dS) be its principal symbol. Since S is a parametrix of δd,

σ−2(S) = −(jξiξ)
−1 = −

m∑

k=0

(−1)k

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k+2
,

where
(

m+1
k+1

)
is the binomial coefficient. The last equality is written using Lemma 7.6

that will be proved later. From the latter formula,

b−1 = −i
m∑

k=0

(−1)k

(
m + 1

k + 1

)
ik+1
ξ jk

ξ

|ξ|2k+2
. (6.2)

Let f ∈ C∞
0 (Smτ ∗M |∂M) be supported in U ∩∂M . By the definition of a pseudodifferential

operator

dS(f ⊗ δ0)(x) = (2π)−n
∫

ei〈x,ξ〉b(x, ξ) ̂f ⊗ δ0(ξ) dξ.

In what follows we use the notation ξ = (ξ′, ξn) with ξ′ = (ξ1, . . . , ξn−1). Since ̂f ⊗ δ0(ξ) =
f̂(ξ′), the previous formula can be rewritten as follows:

dS(f ⊗ δ0)(x) = (2π)1−n
∫

ei〈x′,ξ′〉

 1

2π

∞∫

−∞
eixnξnb(x, ξ) dξn


 f̂(ξ′) dξ′.

This means that the symbol b̃ of the operator f 7→ [dS(f ⊗ δ0(x
n))]|∂M is given by

b̃(x, ξ′) = lim
xn→+0

1

2π

∞∫

−∞
eixnξnb(x, ξ) dξn. (6.3)

Let A be the principal symbol of A. Formulas (6.1)–(6.3) imply that

A(ξ′) = jν

m∑

k=0

(−1)k

(
m + 1

k + 1

)
lim

xn→+0

1

2πi

∞∫

−∞
eixnξn

ik+1
ξ jk

ξ

|ξ|2k+2
dξn. (6.4)

We are going to evaluate the integral in (6.4) by the method of residues. To this end
we consider f(ξn) = ik+1

ξ jk
ξ /|ξ|2k+2 as a function of the complex argument ξn. It is the

meromorphic function in the half-plane Im ξn > 0 with the unique pole at ξn = i|ξ′| of
order k + 1. By the Jordan lemma,

1

2πi

∞∫

−∞
eixnξn

ik+1
ξ jk

ξ

|ξ|2k+2
dξn = Res

(
eixnξn

ik+1
ξ jk

ξ

|ξ|2k+2

)∣∣∣∣∣
ξn=i|ξ′|

(6.5)
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for xn > 0. We use the following rule for evaluating residues: if f(z) = ϕ(z)/(ψ(z))k+1,
where ϕ(z) and ψ(z) are holomorphic functions in a neighborhood of z0 with ψ(z0) = 0
and ψ′(z0) 6= 0, then

Res

[
ϕ(z)

(ψ(z))k+1

]

z=z0

=
1

k!

ϕ(k)(z0)

(ψ′(z0))k+1
.

Applying this rule, we obtain from (6.5)

1

2πi

∞∫

−∞
eixnξn

ik+1
ξ jk

ξ

|ξ|2k+2
dξn =

1

k!(2i|ξ′|)k+1

dk

dξk
n

(
eixnξnik+1

ξ jk
ξ

)∣∣∣
ξn=i|ξ′| .

This implies

lim
xn→+0

1

2πi

∞∫

−∞
eixnξn

ik+1
ξ jk

ξ

|ξ|2k+2
dξn =

1

k!(2i|ξ′|)k+1

dk

dξk
n

(
ik+1
ξ jk

ξ

)∣∣∣
ξn=i|ξ′| .

Substituting this value into (6.4), we obtain the final formula for the principal symbol A
of the operator A

A(ξ′) = jν

m∑

k=0

(−1)k

k!

(
m + 1

k + 1

)
1

(2i|ξ′|)k+1

dk

dξk
n

(
ik+1
ξ jk

ξ

)∣∣∣
ξn=i|ξ′| . (6.6)

Formula (6.6) has a pure algebraic character. Indeed, since iξ = iξ′ + ξniν and jξ =
jξ′ + ξnjν , the product ik+1

ξ jk
ξ is a polynomial of degree 2k + 1 in ξn with operator-valued

coefficients.

7 Decomposition of a tensor

The rest of the paper is of a pure algebraic nature. We will analyze the operator (6.6) at
a point x ∈ ∂M which is fixed from now on so that we will omit all the dependence on x.
Our goal is to prove that

E − A(ξ′) : Sm(T ∗
xM) → Sm(T ∗

xM) (7.1)

is an isomorphism for any covector 0 6= ξ′ ∈ T ∗
xM which is orthogonal to the vector ν. We

denote V = TxM and identify V with its dual V ∗ using the Riemannian scalar product.
Thus, V is an n-dimensional real vector space endowed with a scalar product 〈·, ·〉 and the
corresponding norm | · |. A unit vector ν ∈ V is distinguished which is the inner normal
to the boundary. Let Sm = Sm(V ) be the space of complex symmetric m-tensors on V .

In this section we will establish some commutator formulas for the operators involved
in (6.6), and will return to analyzing operator (6.6) in the next section.

Lemma 7.1 Given two vectors u, v ∈ V , the formula

jk
uilv =

min(k,m)∑

p=max(0,k−l)

(
m
p

)(
l

k−p

)
(

m+l
k

) 〈u, v〉k−pip+l−k
v jp

v (7.2)

is valid on Sm for k ≤ m + l.
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For k = 1 we obtain

Corollary 7.2 For two vectors u, v ∈ V , the formula

jui
l
v =

l

m + l
〈u, v〉il−1

v +
m

m + l
ilvju

is valid on Sm if m + l > 0.

Corollary 7.3 If 〈u, v〉 = 0, then the formula

jk
uilv =





0 for k > m,

(m
k)

(m+l
k )

ilvj
k
u for k ≤ m

holds on Sm if k ≤ m + l.

Corollary 7.4 If juf = 0 for f ∈ Sm, then

jk
uilvf =





0 for k > l,

( l
k)

(m+l
k )

〈u, v〉kil−k
v f for k ≤ l.

Sketch of the proof of Lemma 7.1. In the case of k = l = 1 formula (7.2) looks
as follows:

juiv =
〈u, v〉
m + 1

E +
m

m + 1
ivju, (7.3)

where E is the identity operator. The latter formula is proved by a straightforward
calculation in coordinates. For u = v, this calculation is presented at the end of Section
3.3 of [7]. Starting with (7.3), one easily proves (7.2) for k = 1 by induction on l, and
then proves (7.2) by induction on k in the general case.

Lemma 7.5 Let u and v be two nonzero vectors in V which are orthogonal to each other,
〈u, v〉 = 0. Any tensor f ∈ Sm can be uniquely represented in the form

f =
∑

r+s≤m

irui
s
vfrs, (7.4)

where frs ∈ Sm−r−s satisfies
jufrs = jvfrs = 0. (7.5)

The summands of (7.4) are orthogonal to each other. In other words, we have the orthog-
onal decomposition

Sm =
⊕

r+s≤m

Sm
rs(u, v),

where Sm
rs(u, v) is the subspace of Sm consisting of tensors f that can be represented in

the form f = irui
s
vg with some g ∈ Sm−r−s satisfying jug = jvg = 0.
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Proof. We first prove uniqueness of the representation (7.4). Fix some r0, s0 and
apply the operator jr0

u js0
v to (7.4)

jr0
u js0

v f =
∑

r+s≤m

jr0
u js0

v irui
s
vfrs. (7.6)

Let us recall that the operators iu and iv commute for any u and v, as well as ju and
jv commute.

In the expression jr0
u js0

v irui
s
vfrs from (7.6), we first transpose the operators js0

v and iru.
Since 〈u, v〉 = 0, Corollary 7.3 gives

jr0
u (js0

v iru)i
s
vfrs =

(
m−s0

r

)
(

m
r

) jr0
u iruj

s0
v isvfrs. (7.7)

Now, we transpose the factors js0
v and isv in the expression js0

v isvfrs using Lemma 7.1

js0
v isvfrs =

min(s0,m−r−s)∑

p=max(0,s0−s)

(
s0

p

)(
m−r−s0

m−r−s−p

)
(

m−r
s

) |v|2(s0−p)ip+s−s0
v jp

vfrs.

If s0 > s, then the summation is over the positive values of p, and all summands on the
right-hand side are equal to zero by (7.5). If s0 ≤ s, then the right-hand side contains
one nonzero summand corresponding to p = 0. We have thus obtained

js0
v isvfrs =





0 if s0 > s,

(m−r−s0
m−r−s )
(m−r

s )
|v|2s0is−s0

v frs if s0 ≤ s.

We substitute the latter expression into (7.7) to obtain

jr0
u js0

v irui
s
vfrs =





0 if s0 > s,

(m−s0
r )(m−r−s0

s−s0
)

(m
r )(

m−r
s )

|v|2s0jr0
u irui

s−s0
v frs if s0 ≤ s.

(7.8)

Now, we transpose the factors jr0
u and iru in the expression jr0

u irui
s−s0
v frs. By Lemma

7.1,

(jr0
u iru)i

s−s0
v frs =

min(r0,m−r−s0)∑

p=max(0,r0−r)

(
m−r−s0

p

)(
r

r0−p

)
(

m−s0

r0

) ip+r−r0
u jp

ui
s−s0
v frs.

By Corollary 7.3, the operators jp
u and is−s0

v commute up to a scalar factor. Together with
(7.5), this implies that jp

ui
s−s0
v frs = 0 for p > 0. Therefore there can be only one nonzero

summand corresponding to p = 0 in the latter sum. We have thus obtained

jr0
u irui

s−s0
v frs =





0 if r0 > r,

( r
r0
)

(m−s0
r0

)
|u|2r0ir−r0

u is−s0
v frs if r0 ≤ r.

We substitute the latter value into (7.8) to obtain, after the cancellation of factorials in
the binomial coefficients,

jr0
u js0

v irui
s
vfrs =





0 if r0 > r or s0 > s,

r0!s0!(m−r0−s0)!
m!

(
r
r0

)(
s
s0

)
|u|2r0|v|2s0ir−r0

u is−s0
v frs if r0 ≤ r, s0 ≤ s.

(7.9)
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We substitute the latter expression into (7.6)

jr0
u js0

v f = |u|2r0|v|2s0
r0!s0!(m−r0−s0)!

m!

∑

r+s≤m
r≥r0,s≥s0

(
r

r0

)(
s

s0

)
ir−r0
u is−s0

v frs.

In the latter sum, we distinguish the summand corresponding to (r, s) = (r0, s0) and
obtain the recurrent formula

fr0s0 =
m!

r0!s0!(m−r0−s0)!|u|2r0 |v|2s0
jr0
u js0

v f − ∑

r0+s0<r+s≤m
r≥r0,s≥s0

(
r

r0

)(
s

s0

)
ir−r0
u is−s0

v frs

which determines uniquely all tensors frs.

Let us show that the summands of the decomposition (7.4) are orthogonal to each
other. Let (r, s) 6= (r0, s0) and let, for example r0 > r. Then

〈iruisvfrs, i
r0
u is0

v fr0s0〉 = 〈jr0
u js0

v irui
s
vfrs, fr0s0〉.

By (7.9), the right-hand side of the latter formula is zero.

Finally, we prove the existence of representation (7.4). Let us complete the pair (u, v)
to form an orthogonal basis (e1, e2, e3, . . . , en) = (u, v, e3, . . . , en) of the space V . Any
tensor f ∈ Sm(V ) can be represented in the form

f =
∑

|α|=m

f̃αeα =
∑

|α|=m

f̃α1...αneα1
1 . . . eαn

n

with some coefficients f̃α ∈ C. This can be rewritten as follows:

f =
∑

r+s≤m

urvs
∑

α3+...+αn=m−r−s

f̃rsα3...αneα3
3 . . . eαn

n =
∑

r+s≤m

irui
s
vfrs,

where
frs =

∑

α3+...+αn=m−r−s

f̃rsα3...αneα3
3 . . . eαn

n .

Obviously, jufrs = jvfrs = 0.

Lemma 7.6 For a nonzero vector ξ ∈ V , the operator jξiξ : Sm → Sm is the isomorphism
whose inverse is given by the formula

(jξiξ)
−1 =

1

|ξ|2
m∑

k=0

(−1)k

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k
.

Proof. By Corollary 7.2,

jξiξ =
|ξ|2

m + 1
E +

m

m + 1
iξjξ,

where E is the identity. The operator iξjξ is a nonnegative symmetric operator because
it is the product of two operators that are dual to each other. Therefore the operator
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on the right-hand side of the latter formula is a positive symmetric operator, so it is an
isomorphism.

To prove the second statement we have just to check that the operator

jξiξ
|ξ|2

m∑

k=0

(−1)k

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k
=

m∑

k=0

(−1)k

(
m + 1

k + 1

)
jξi

k+1
ξ jk

ξ

|ξ|2k+2
(7.10)

coincides with the identity operator. To this end we transpose the factors jξ and ik+1
ξ on

the right-hand side of the latter equality using Corollary 7.2

(jξi
k+1
ξ )jk

ξ =
k + 1

m + 1
|ξ|2ikξjk

ξ +
m− k

m + 1
ik+1
ξ jk+1

ξ .

We substitute the latter expression into (7.10)

jξiξ
|ξ|2

m∑

k=0

(−1)k

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k
=

=
m∑

k=0

(−1)k k + 1

m + 1

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k
+

m∑

k=0

(−1)k m− k

m + 1

(
m + 1

k + 1

)
ik+1
ξ jk+1

ξ

|ξ|2k+2
.

The term corresponding to k = m in the second sum can be omitted since jm+1
ξ = 0 on

Sm. Changing the summation index k := k− 1 in the second sum and distinguishing the
first term of the first sum, we obtain

jξiξ
|ξ|2

m∑

k=0

(−1)k

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k
=

= E +
1

m + 1

m∑

k=1

(−1)k

[
(k + 1)

(
m + 1

k + 1

)
− (m− k + 1)

(
m + 1

k

)]
ikξj

k
ξ

|ξ|2k
.

The coefficient in the brackets is equal to zero. We have thus concluded that

jξiξ
|ξ|2

m∑

k=0

(−1)k

(
m + 1

k + 1

)
ikξj

k
ξ

|ξ|2k
= E.

The lemma is proved.

8 Invariant subspaces for the operator A

We return to considering operator (6.6). Recall that the operator is considered for vectors
0 6= ξ′ ∈ V = T ∗

xM which are orthogonal to a distinguished unit vector ν ∈ V .
By Lemma 7.5, there is the orthogonal decomposition Sm =

⊕
r+s≤m Sm

rs, where Sm
rs =

Sm
rs(ξ

′, ν) is the subspace of Sm consisting of tensors f which can be represented in the
form f = irξ′i

s
νv with v ∈ Sm−r−s satisfying jξ′v = jνv = 0.

Theorem 8.1 For any 0 ≤ l ≤ m, the subspace Sm
l =

⊕
r+s=l S

m
rs of Sm is invariant

under the operator A(ξ′), so we have the orthogonal decomposition Sm =
⊕m

l=0 Sm
l into

invariant subspaces. Any tensor f ∈ Sm
l can be uniquely represented in the form

f =
l∑

j=0

il−j
ξ′ ijνvj (8.1)
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with vj ∈ Sm−l satisfying jξ′vj = jνvj = 0. The operator A(ξ′) acts on the space Sm
l as

follows. If f ∈ Sm
l is represented in form (8.1), then

A(ξ′)f =
l∑

j=0

il−j
ξ′ ijν ṽj (8.2)

with ṽj =
l∑

k=0
ã

(l)
jkvk, where

ã
(l)
jk =

j + 1

k + 1
(i|ξ′|)j−kck−j

l−k,k (8.3)

and

ct
rs =

s∑

p=max(0,t−1)

(−1)p

2p+1

(
s + 1

p + 1

)(
2p− t + 1

p

) min(r,p−t+1)∑

q=max(0,−t)

1

2q

(
r

q

)(
p + 1

q + t

)
. (8.4)

The number ct
rs is well defined for r ≥ 0, s ≥ 0, and −r ≤ t ≤ s + 1.

Corollary 8.2 Given an integer l ≥ 0, define the (l+1)× (l+1)-matrix A(l) = (a
(l)
jk )l

j,k=0

by
a

(l)
jk = ck−j

l−k,k, (8.5)

where ct
rs are given by (8.4). Let l0 ≤ +∞ be the minimum of such l that E − A(l) is a

singular matrix, where E is the unit matrix. Then the operator (7.1) is nondegenerate for
any m < l0 and for all ξ′ 6= 0, and degenerate for any m ≥ l0.

Proof of Corollary. The operator E −A(ξ′) : Sm → Sm is degenerate if and only if
its restriction to Sm

l is degenerate for some l ≤ m. The latter happens if and only if the
system

l∑

k=0

(δjk − ã
(l)
jk )vk = 0 (0 ≤ j ≤ l)

has a nontrivial solution (v0, . . . , vl). This is equivalent to degeneracy of the matrix

E − Ã(l), where Ã(l) = (ã
(l)
jk ).

Comparing (8.3) and (8.5), we see that the matrices E − Ã(l) and E −A(l) are related

by the formula δjk − ã
(l)
jk = αj

αk
(δjk − a

(l)
jk ), where αj = (i|ξ′|)−j(j + 1) 6= 0. This means

that the matrix E − Ã(l) is obtained from E − A(l) by multiplying every j-th row by
αj and multiplying every k-th column by (αk)

−1. So, these matrices are degenerate or
nondegenerate simultaneously.

Proof of Theorem 8.1. Fix nonnegative integers r, s, and m such that r + s ≤ m.
Choose a tensor v ∈ Sm−r−s satisfying

jξ′v = jνv = 0 (8.6)

and let f = irξ′i
s
νv. Our goal is to represent the tensor A(ξ′)f in the form (8.2) with

l = r + s.
By (6.6), for f = irξ′i

s
νv

A(ξ′)f =
m∑

k=0

(−1)k

k!

(
m + 1

k + 1

)
1

(2i|ξ′|)k+1
jν

dk

dξk
n

(
ik+1
ξ jk

ξ irξ′i
s
νv

)∣∣∣
ξn=i|ξ′| . (8.7)
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Here ξ = ξ′ + ξnν, so 〈ξ, ξ′〉 = |ξ′|2 and 〈ξ, ν〉 = ξn.
First we transpose the factors jk

ξ and irξ′ in the expression ik+1
ξ jk

ξ irξ′i
s
νv. By Lemma 7.1,

(jk
ξ irξ′)i

s
νv =

min(k,m−r)∑

p=max(0,k−r)

(
m−r

p

)(
r

k−p

)
(

m
k

) |ξ′|2(k−p)ip+r−k
ξ′ jp

ξ i
s
νv. (8.8)

Next, we transpose the factors jp
ξ and isν in the expression ip+r−k

ξ′ jp
ξ i

s
νv. By Corollary 7.4,

ip+r−k
ξ′ (jp

ξ i
s
ν)v =





0 if p > s,

(s
p)

(m−r
p )

ξp
ni

p+r−k
ξ′ is−p

ν v if p ≤ s.

We substitute the latter expression into (8.8) and apply the operator ik+1
ξ to the resultant

equation

ik+1
ξ jk

ξ irξ′i
s
νv =

min(k,s)∑

p=max(0,k−r)

(
s
p

)(
r

k−p

)
(

m
k

) |ξ′|2(k−p)ξp
ni

p+r−k
ξ′ ik+1

ξ is−p
ν v. (8.9)

Here we have used the equality min(k, s, m− r) = min(k, s) that follows from r + s ≤ m.
Since iξ = iξ′ + ξniν , we have

ik+1
ξ = (iξ′ + ξniν)

k+1 =
k+1∑

l=0

(
k + 1

l

)
ξl
nik−l+1

ξ′ ilν .

We substitute the latter expression into (8.9) and differentiate the resultant equality

dk

dξk
n

(ik+1
ξ jk

ξ irξ′i
s
νv) =

min(k,s)∑

p=max(0,k−r)

k+1∑

l=k−p

(
s
p

)(
r

k−p

)(
k+1

l

)
(

m
k

) (p+l)!

(p+l−k)!
|ξ′|2(k−p)ξp+l−k

n ip+r−l+1
ξ′ is+l−p

ν v.

We set ξn = i|ξ′| here and apply the operator jν to the resultant formula

jν
dk

dξk
n

(ik+1
ξ jk

ξ irξ′i
s
νv)

∣∣∣∣∣
ξn=i|ξ′|

=

=
min(k,s)∑

p=max(0,k−r)

k+1∑

l=k−p

(
s
p

)(
r

k−p

)(
k+1

l

)
(

m
k

) ip+l−k(p+l)!|ξ′|k+l−p

(p+l−k)!
jνi

p+r−l+1
ξ′ is+l−p

ν v. (8.10)

Next, we transpose the factors jν and ip+r−l+1
ξ′ in the expression jνi

p+r−l+1
ξ′ is+l−p

ν v. By
Corollary 7.3,

(jνi
p+r−l+1
ξ′ )is+l−p

ν v =
m + l − r − p

m + 1
ip+r−l+1
ξ′ jνi

s+l−p
ν v. (8.11)

Then, we transpose the factors jν and is+l−p
ν on the right-hand side of (8.11). By Corollary

7.4,

ip+r−l+1
ξ′ (jνi

s+l−p
ν )v =

s + l − p

m + l − r − p
ip+r−l+1
ξ′ is+l−p−1

ν v.
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Combining the latter formula with (8.11), we get

jνi
p+r−l+1
ξ′ is+l−p

ν v =
s + l − p

m + 1
ip+r−l+1
ξ′ is+l−p−1

ν v.

Substituting the latter value into (8.10), we obtain

jν
dk

dξk
n

(ik+1
ξ jk

ξ irξ′i
s
νv)

∣∣∣∣∣
ξn=i|ξ′|

=

=
min(k,s)∑

p=max(0,k−r)

k+1∑

l=k−p

(
s
p

)(
r

k−p

)(
k+1

l

)
(

m
k

) ip+l−k(s+l−p)(p+l)!|ξ′|k+l−p

(m+1)(p+l−k)!
ip+r−l+1
ξ′ is+l−p−1

ν v.

Finally, we substitute the latter expression into (8.7)

A(ξ′)f =
m∑

k=0

min(k,s)∑

p=max(0,k−r)

k+1∑

l=k−p

(
s
p

)(
r

k−p

)(
k+1

l

)(
p+l
k

)
ip+l−1(s+l−p)|ξ′|l−p−1

2k+1(k+1)
ip+r−l+1
ξ′ is+l−p−1

ν v.

(8.12)
In order to simplify formula (8.12), we remind that the summation indices satisfy the

inequalities l ≥ k − p, s ≥ p, k ≥ p which imply l ≥ p − s. Moreover, the term
corresponding to l = p−s is equal to zero because of the presence of the factor (s+ l−p).
Therefore we can assume that l ≥ p − s + 1, and formula (8.12) can be written in the
more precise form:

A(ξ′)f =

=
m∑

k=0

min(k,s)∑

p=max(0,k−r)

k+1∑

l=max(p−s+1,k−p)

(
s
p

)(
r

k−p

)(
k+1

l

)(
p+l
k

)
ip+l−1(s+l−p)|ξ′|l−p−1

2k+1(k+1)
ip+r−l+1
ξ′ is+l−p−1

ν v.

Next, we replace the summation index l with t = p− l + 1

A(ξ′)f =
m∑

k=0

min(k,s)∑

p=max(0,k−r)

min(s,2p−k+1)∑

t=p−k

(−1)p

(
s
p

)(
r

k−p

)(
k+1

p−t+1

)(
2p−t+1

k

)
(s−t+1)(i|ξ′|)−t

2k+1(k+1)
ir+t
ξ′ is−t

ν v.

(8.13)
Since the term ir+t

ξ′ is−t
ν v in (8.13) is independent of the indices k and p, it is quite

natural to change the order of summations in (8.13) in such a way that the summation
over t would become the most exterior summation. Inequalities t ≥ p− k and p ≥ k − r
imply t ≥ −r. Thus, the limits for the exterior summation over t are determined by the
inequalities −r ≤ t ≤ s. To determine the limits for k and p when t is fixed, we write
down the system of inequalities

0 ≤ p ≤ k, k − r ≤ p ≤ s, p− k ≤ t ≤ 2p− k + 1

which is equivalent to the system

0 ≤ p, k − r ≤ p,
1

2
(k + t− 1) ≤ p; p ≤ s, p ≤ k, p ≤ k + t.

Therefore the limits of summation over k and p are determined by

0 ≤ k ≤ m; max(0, k − r, (k + t− 1)/2) ≤ p ≤ min(k, s, k + t).
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Implementing the change, we obtain

A(ξ′)(irξ′i
s
νv) =

s∑

t=−r

c̃t
rs(i|ξ′|)−tir+t

ξ′ is−t
ν v, (8.14)

where

c̃t
rs = (s− t + 1)

m∑

k=0

1

2k+1

min(k,s,k+t)∑

p=max(0,k−r,(k+t−1)/2)

(−1)p

(
s
p

)(
r

k−p

)(
k+1

p−t+1

)(
2p−t+1

k

)

k + 1
. (8.15)

In particular, formula (8.14) proves the first statement of the theorem.
Next, we change the summation order in (8.15). The index p must satisfy inequalities

0 ≤ p ≤ s. Beside this, the inequalities 2p ≥ k + t− 1 and k ≥ p imply p ≥ t− 1. So, the
summation limits over p are determined by max(0, t− 1) ≤ p ≤ s. In which limits does k
vary for a fixed p? To answer the question we write down the system

0 ≤ k ≤ m, k − r ≤ p ≤ k, (k + t− 1)/2 ≤ p ≤ k + t

which is equivalent to the following one:

p ≤ k, p− t ≤ k; k ≤ r + p, k ≤ 2p− t + 1.

Thus, the summation limits over k are determined by

max(p, p− t) ≤ k ≤ min(r + p, 2p− t + 1).

Implementing the change, we obtain

c̃t
rs = (s− t + 1)

s∑

p=max(0,t−1)

(−1)p

(
s

p

) min(r+p,2p−t+1)∑

k=max(p,p−t)

(
r

k−p

)(
k+1

p−t+1

)(
2p−t+1

k

)

2k+1(k + 1)
.

Then we use the fact that
(

k+1
p−t+1

)(
2p−t+1

k

)

k + 1
=

(
2p−t+1

p

)(
p+1

k−p+t

)

p + 1
,

and replace the summation index k with q = k − p to obtain

c̃t
rs = (s− t + 1)

s∑

p=max(0,t−1)

(−1)p
(

s
p

)(
2p−t+1

p

)

2p+1(p + 1)

min(r,p−t+1)∑

q=max(0,−t)

(
r
q

)(
p+1
q+t

)

2q
.

Finally, we transform the formula to the final form

c̃t
rs =

s− t + 1

s + 1

s∑

p=max(0,t−1)

(−1)p

2p+1

(
s + 1

p + 1

)(
2p− t + 1

p

) min(r,p−t+1)∑

q=max(0,−t)

1

2q

(
r

q

)(
p + 1

q + t

)
. (8.16)

Let a tensor f ∈ Sm
l be represented in the form f =

∑l
k=0 il−k

ξ′ ikνvk with vk ∈ Sm−l

satisfying jξ′vk = jνvk = 0. Setting v = vk, r = l − k, s = k in (8.14), we have

A(ξ′)(il−k
ξ′ ikνvk) =

k∑

t=k−l

c̃t
l−k,k(i|ξ′|)−til−k+t

ξ′ ik−t
ν vk =

l∑

j=0

c̃k−j
l−k,k(i|ξ′|)j−kil−j

ξ′ ijνvk.
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Therefore

A(ξ′)f =
l∑

k=0

l∑

j=0

c̃k−j
l−k,k(i|ξ′|)j−kil−j

ξ′ ijνvk =
l∑

j=0

il−j
ξ′ ijν

( l∑

k=0

c̃k−j
l−k,k(i|ξ′|)j−kvk

)
.

This can be written in the form

A(ξ′)f =
l∑

j=0

il−j
ξ′ ijν ṽj, (8.17)

where ṽj =
∑l

k=0 bl
jkvk and

bl
jk = (i|ξ′|)j−kc̃k−j

l−k,k. (8.18)

Formulas (8.16)–(8.18) are equivalent to (8.2)–(8.4). This finishes the proof.

9 Preliminaries on binomial coefficients

The goal of the section is Lemma 9.3 below. Before proving the lemma, we remind some
basic formulas about binomial coefficients. The most of these formulas are known, see for
example [4] or [6].

Binomial coefficients are correctly defined by the formula

(
x

n

)
=

Γ(x + 1)

Γ(n + 1)Γ(x− n + 1)

in each of the following two cases: (1) x /∈ {−1,−2, . . .} and n is an arbitrary complex
number; (2) n is a nonnegative integer and x is an arbitrary complex number. In the
latter case the formula (

x

n

)
=

x(x− 1) . . . (x− n + 1)

n!

holds which shows that
(

x
n

)
is a polynomial of degree n in x with a nonzero leading

coefficient. In other words, the family {
(

x
n

)
| n = 0, 1, . . .} is the basis of the vector space

of polynomials of the variable x. The multiplication table in the basis is given by the
formula (

x

m

)(
x

n

)
=

m+n∑

k=max(m,n)

(
n

k −m

)(
k

n

)(
x

k

)
. (9.1)

Note that the coefficient
(

n

k −m

)(
k

n

)
=

k!

(k −m)!(k − n)!(k −m− n)!

of the formula is symmetric in (m, n). The formula can be easily proved by induction on
n.

The following formula is an analog of Newton’s binomial formula

(
x + y

n

)
=

n∑

k=0

(
x

n− k

)(
y

k

)
. (9.2)
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It is enough to prove the formula for integer x ≥ 0. Indeed, both parts of the formula are
polynomials of x. If they coincide for integer values of x, then they are equal identically.
For integer x ≥ 0, the formula can be easily proved by induction on x. Formula (9.2) has
the following corollary:

n∑

k=0

(
x

n− k

)(−x

k

)
=

{
1 for n = 0,
0 for n > 0.

(9.3)

The following formula is valid for nonnegative integers m and n:

n∑

k=0

(−1)k

(
n

k

)(
x− k

m

)
=

{
0 for m < n,(

x−n
m−n

)
for m ≥ n.

(9.4)

The formula is proved by induction on n on the base of the Pascal equation
(
n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
for k > 0. (9.5)

Formula (9.4) admits the following generalization: for nonnegative integers m,n and l

n∑

k=0

(−1)k

(
k

l

)(
n

k

)(
x− k

m

)
=

{
0 for m + l < n,

(−1)l
(

n
l

)(
x−n

m+l−n

)
for m + l ≥ n.

(9.6)

The latter formula can be reduced to (9.4) with the help of the identity

(
k

l

)(
n

k

)
=

(
n

l

)(
n− l

k − l

)
.

Formula (9.4) has one more useful corollary:

(
x− y

n

)
=

n∑

k=0

(−1)k

(
x− k

n− k

)(
y

k

)
. (9.7)

Again, it is enough to prove the formula for nonnegative integers x and y. In the latter
case it can be obtained by setting n = y and m = x− n in (9.4).

Finally, we will need the formula

n∑

k=0

(−1)k

(
x

k

)
= (−1)n

(
x− 1

n

)
(9.8)

which can be obtained by setting y = −1 in (9.2) and using the relation
(−1

k

)
= (−1)k.

Given an integer k ≥ 0, we define the linear functional Lk on the space of polynomials
f(x) by

Lk[f(x)] =
k∑

p=0

(−1)p

(
k + 1

p + 1

)
f(p). (9.9)

Lemma 9.1 Let a polynomial f(x) satisfy f(−1) = 0. The degree of f is smaller or
equal than d ≥ 1 if and only if Lk[f ] = 0 for k ≥ d. If such a polynomial is represented in

the form f(x) =
∑d

n=0 fn

(
x+1
n

)
, then f0 = 0 and fd = (−1)d+1Ld−1[f ].
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Proof. Represent f as f(x) =
∑

n≥0
fn

(
x+1
n

)
. The condition f(−1) = 0 is equivalent to

f0 = 0. Therefore

Lk[f ] =
∑

n≥1

fnLk

[(
x + 1

n

)]
.

On using the equalities

Lk

[(
x + 1

n

)]
=

{
0, if 0 < n < k + 1,
(−1)k, if n = k + 1,

which can be easily proved, we obtain

Lk[f ] = (−1)kfk+1 if fk+2 = fk+3 = . . . = 0.

Therefore the condition fd+1 = fd+2 = . . . = 0 is equivalent to Ld[f ] = Ld+1[f ] = . . . = 0.
The lemma is proved.

Let P be the space of polynomials (with real coefficients) of two variables x and y.
Given an integer d ≥ 1, we define the subspace Pd ⊂ P as follows: a polynomial f(x, y)
belongs to Pd if

(1) the degree of f(x, y) with respect to (x, y) is not more than 2d− 1;
(2) the degree of f(x, y) with respect to y is not more than d− 1;
(3) the degree of the polynomial f(x, z − x) with respect to x is not more than d.

Lemma 9.2 The system of polynomials

ϕ(ij)(x, y) =

(
x + 1

i

)(
x + y

j

)
(0 ≤ i ≤ d, 0 ≤ j ≤ d− 1) (9.10)

is the basis of the space Pd.

Proof. It is clear that all ϕ(ij) belong to Pd. Setting ψ(ij)(x, z) = ϕ(ij)(x, z − x), we
obtain the system of polynomials

ψ(ij)(x, z) =

(
x + 1

i

)(
z

j

)
(0 ≤ i ≤ d, 0 ≤ j ≤ d− 1),

which is obviously linearly independent. Therefore system (9.10) is also linearly indepen-
dent.

Let us show that any f ∈ Pd is a linear combination of system (9.10). Let g(x, z) =
f(x, z − x). By the definition of Pd, the degree of g(x, z) with respect to x is not more
than d, and the degree of g(x, z) with respect to z is not more than d− 1. Therefore the
representation

g(x, z) =
d∑

i=0

d−1∑

j=0

gijψ
(ij)(x, z)

exists. It implies

f(x, y) = g(x, x + y) =
d∑

i=0

d−1∑

j=0

gijϕ
(ij)(x, y).

The lemma is proved.
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We define the involution I : P → P of the space of polynomials of two variables as
follows. Every f ∈ P can be uniquely represented as a finite sum

f(x, y) =
∑

m,n≥0

fmn

(
x + 1

m

)(
y

n

)
.

By the definition

(If)(x, y) =
∑

m,n≥0

(−1)m+nfmn

(
x + 1

m

)(
y

n

)
.

Lemma 9.3 (1) The space Pd is invariant under the involution I.
(2) Let a polynomial f ∈ Pd satisfy f(−1, y) = 0. Expand it in the basis (9.10)

f(x, y) =
d∑

i=0

d−1∑

j=0

fijϕ
(ij)(x, y). (9.11)

Let h(x, y) = (If)(x, z − x). The leading coefficient of the representation

h(x, z) =
d∑

k=0

hk(z)

(
x + 1

k

)
(9.12)

is expressed by the formula

hd(z) = (−1)d
d−1∑

j=0

fdj

j∑

p=0

(−1)p

(
d− 1

j − p

)(
z − d + 1

p

)
. (9.13)

Proof. To prove the first statement, it is enough to check that Iϕ(ij) ∈ Pd for all
elements of basis (9.10). To prove the second statement, we have to find the leading
coefficient of the decomposition

χ(ij)(x, z) = (Iϕ(ij))(x, z − x) =
d∑

k=0

χ
(ij)
k (z)

(
x + 1

k

)
. (9.14)

Both statements are obvious in the case d = 1. Therefore we assume d ≥ 2 in the proof.
We start the proof of the statement Iϕ(ij) ∈ Pd with considering the case of i = 0.

ϕ(0j)(x, y) =

(
x + y

j

)
(0 ≤ j ≤ d− 1)

is a polynomial of degree j in (x, y) admitting the representation

ϕ(0j)(x, y) =
∑

0≤m+n≤j

ϕ(0j)
mn

(
x + 1

m

)(
y

n

)
.

Therefore

(Iϕ(0j))(x, y) =
∑

0≤m+n≤j

(−1)m+nϕ(0j)
mn

(
x + 1

m

)(
y

n

)
.
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For j ≤ d− 1, each term of the latter sum obviously belongs to Pd. Moreover, the degree
of (Iϕ(0j))(x, x− z) with respect to x is not more than d− 1. This means, in notations of
formula (9.14), that

χ
(0j)
d (z) = 0 (0 ≤ j ≤ d− 1). (9.15)

From now on, in the proof, we consider the case i > 0.
First of all we will find the coefficients of the decomposition

ϕ(ij)(x, y) =
∑

m,n≥0

ϕ(ij)
mn

(
x + 1

m

)(
y

n

)
. (9.16)

By formula (9.2),

(
x + y

j

)
=

(
(x+1) + (y−1)

j

)
=

j∑

k=0

(
x+1

j−k

)(
y−1

k

)
=

j∑

k=0

(−1)k

(
x + 1

j − k

)
k∑

n=0

(−1)n

(
y

n

)
.

Substituting the latter expression into definition (9.10) of the polynomial ϕ(ij), we obtain

ϕ(ij)(x, y) =
j∑

k=0

k∑

n=0

(−1)k+n

(
x + 1

i

)(
x + 1

j − k

)(
y

n

)
.

By (9.1),

(
x + 1

i

)(
x + 1

j − k

)
=

i+j−k∑

m=max(i,j−k)

(
j − k

m− i

)(
m

j − k

)(
x + 1

m

)
.

Substituting this expression into the previous formula, we get

ϕ(ij)(x, y) =
j∑

k=0

k∑

n=0

(−1)k+n
i+j−k∑

m=max(i,j−k)

(
j − k

m− i

)(
m

j − k

)(
x + 1

m

)(
y

n

)
.

After changing the summation order, the formula takes the form

ϕ(ij)(x, y) =
j∑

n=0

(−1)n
i+j−n∑

m=i

ϕ(ij)
mn

(
x + 1

m

)(
y

n

)
, (9.17)

where

ϕ(ij)
mn =

i+j−m∑

k=max(n,j−m)

(−1)k

(
j − k

m− i

)(
m

j − k

)
(0 ≤ n ≤ j, i ≤ m ≤ i + j − n).

We will simplify the latter formula. First we change the summation index as k := j−k

ϕ(ij)
mn = (−1)j

min(m,j−n)∑

k=m−i

(−1)k

(
k

m− i

)(
m

k

)
.

Using the equality (
k

m− i

)(
m

k

)
=

(
m

i

)(
i

m− k

)
,
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we transform the formula to

ϕ(ij)
mn = (−1)j

(
m

i

) min(m,j−n)∑

k=m−i

(−1)k

(
i

m− k

)
= (−1)j+m

(
m

i

)
i∑

k=max(0,m+n−j)

(−1)k

(
i

k

)
.

If m + n − j ≤ 0, then the sum in the latter formula equals zero. If m + n − j > 0, we
continue our transformations as follows:

ϕ(ij)
mn = (−1)j+m

(
m

i

)
i∑

k=m+n−j

(−1)k

(
i

i− k

)
= (−1)i+j+m

(
m

i

) i+j−m−n∑

k=0

(−1)k

(
i

k

)
.

We changed again the summation index as k := k −m− n + j on the last step. Finally,
applying (9.8), we obtain

ϕ(ij)
mn = (−1)n

(
m

i

)(
i− 1

i + j −m− n

)
.

This formula is valid in the case of m+n− j ≤ 0 too because the right-hand side vanishes
in the case.

Substituting the latter value into (9.17), we obtain

ϕ(ij)(x, y) =
j∑

n=0

i+j−n∑

m=i

(
m

i

)(
i− 1

i + j −m− n

)(
x + 1

m

)(
y

n

)
. (9.18)

Observe that the summation limits in (9.18) are determined by the summand. Indeed,

the factor
(

m
i

)
is not zero only if i ≤ m, and the factor

(
i−1

i+j−m−n

)
is not zero only if

m ≤ i + j − n. Inequalities i ≤ m ≤ i + j − n imply n ≤ j. Therefore formula (9.18) can
be simplified to the following one:

ϕ(ij)(x, y) =
∑

m,n≥0

(
m

i

)(
i− 1

i + j −m− n

)(
x + 1

m

)(
y

n

)
. (9.19)

We apply the involution I to (9.19)

(Iϕ(ij))(x, y) =
∑

m,n≥0

(−1)m+n

(
m

i

)(
i− 1

i + j −m− n

)(
x + 1

m

)(
y

n

)
. (9.20)

We have to prove that Iϕ(ij) ∈ Pd for 0 < i ≤ d, j ≤ d− 1. It is clear from (9.20) that
(Iϕ(ij))(x, y) is a polynomial of degree ≤ i + j ≤ 2d − 1 with respect to (x, y) since the

factor
(

i−1
i+j−m−n

)
can be nonzero only for m + n ≤ i + j. Second, inequalities i ≤ m and

m + n ≤ i + j imply n ≤ j, i.e., (Iϕ(ij))(x, y) is a polynomial of degree ≤ j ≤ d− 1 with
respect to y. It remains to prove that

χ(ij)(x, z) = (Iϕ(ij))(x, z − x) =
∑

m,n≥0

(−1)m+n

(
m

i

)(
i− 1

i + j −m− n

)(
x + 1

m

)(
z − x

n

)

(9.21)
is a polynomial of degree ≤ d with respect to x.
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Observe that χ(ij)(−1, z) = 0 for i > 0 because only positive values of m participate in
sum (9.21). Thus, Lemma 9.1 can be applied. By the lemma, the statement degxχ

(ij) ≤ d
is equivalent to the following one:

Lk[χ
(ij)(x, z)] = 0 for k ≥ d.

Hereafter, the functional Lk acts with respect to the variable x while z is considered as a
parameter. The latter equality should be valid identically in z.

As we know, χ(ij)(x, z) is a polynomial of degree ≤ i + j, i.e., Lk[χ
(ij)(x, z)] = 0 for

k ≥ i + j. So, it is enough to consider the case of d ≤ k < i + j. The question is thus
reduced to the statement

Lk[χ
(ij)(x, z)] = 0 for d ≤ k < i + j, 0 < i ≤ d, 0 ≤ j ≤ d− 1. (9.22)

The case of k = d− 1 is also of some interest for us because we want to find the leading
coefficient of decomposition (9.14).

Let
1 ≤ d− 1 ≤ k < i + j, 0 < i ≤ d, 0 ≤ j ≤ d− 1. (9.23)

By definition (9.9) of the functional Lk and formula (9.21),

Lk[χ
(ij)] =

k∑

p=0

(−1)p

(
k + 1

p + 1

) ∑

m,n≥0

(−1)m+n

(
m

i

)(
i− 1

i + j −m− n

)(
p + 1

m

)(
z − p

n

)
.

The term of the sum can be nonzero only if i ≤ m ≤ p + 1. Therefore the summation
with respect to p can be restricted to the limits i − 1 ≤ p ≤ k, and the summation with
respect to m can be restricted to the limits i ≤ m ≤ p + 1. We rewrite the formula in the
more precise form

Lk[χ
(ij)] =

k∑

p=i−1

(−1)p

(
k + 1

p + 1

) p+1∑

m=i

∑

n≥0

(−1)m+n

(
m

i

)(
i− 1

i + j −m− n

)(
p + 1

m

)(
z − p

n

)
.

Changing the summation order, we have

Lk[χ
(ij)] =

k+1∑

m=i

∑

n≥0

(−1)m+n

(
m

i

)(
i− 1

i + j −m− n

)
Ak

mn(z), (9.24)

where

Ak
mn(z) =

k∑

p=m−1

(−1)p

(
k + 1

p + 1

)(
p + 1

m

)(
z − p

n

)
. (9.25)

Formula (9.25) can be simplified. Indeed, using the equality

(
k + 1

p + 1

)(
p + 1

m

)
=

(
k + 1

m

)(
k −m + 1

p−m + 1

)
,

we transform the formula to the form

Ak
mn(z) =

(
k + 1

m

)
k∑

p=m−1

(−1)p

(
k −m + 1

p−m + 1

)(
z − p

n

)
.
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Then, changing the summation index as p := p + m− 1, we have

Ak
mn(z) = (−1)m+1

(
k + 1

m

)
k−m+1∑

p=0

(−1)p

(
k −m + 1

p

)(
z −m + 1− p

n

)
.

The sum on the right-hand side of this formula has the same structure as the left-hand
side of (9.4). Applying the latter formula, we obtain

Ak
mn(z) =

{
0 for n < k −m + 1,

(−1)m+1
(

k+1
m

)(
z−k

m+n−k−1

)
for n ≥ k −m + 1.

We substitute the latter value into (9.24)

Lk[χ
(ij)] =

k+1∑

m=i

∑

n≥k−m+1

(−1)n+1

(
m

i

)(
i− 1

i + j −m− n

)(
k + 1

m

)(
z − k

m + n− k − 1

)

and replace the summation index n with r = m + n

Lk[χ
(ij)] = −

k+1∑

m=i

∑

r≥k+1

(−1)m+r

(
m

i

)(
i− 1

i + j − r

)(
k + 1

m

)(
z − k

r − k − 1

)
.

The summation in the inner sum can be restricted to the limits k +1 ≤ r ≤ i+ j because
the factor

(
i−1

i+j−r

)
equals zero for r > i + j. Changing the order of summation, we rewrite

the latter formula in the form

Lk[χ
(ij)] = −bi

k

i+j∑

r=k+1

(−1)r

(
i− 1

i + j − r

)(
z − k

r − k − 1

)
, (9.26)

where

bi
k =

k+1∑

m=i

(−1)m

(
m

i

)(
k + 1

m

)
. (9.27)

We transform formula (9.27). Using the equality

(
m

i

)(
k + 1

m

)
=

(
k + 1

i

)(
k − i + 1

m− i

)
,

the formula takes the form

bi
k =

(
k + 1

i

)
k+1∑

m=i

(−1)m

(
k − i + 1

m− i

)
.

Changing the summation index as m := m + i, we see that

bi
k = (−1)i

(
k + 1

i

)
k−i+1∑

m=0

(−1)m

(
k − i + 1

m

)
=

{
0, if i < k + 1,
(−1)k+1, if i = k + 1.

Together with the latter relation, formula (9.26) gives that

Lk[χ
(ij)] = 0 for i < k + 1 (9.28)
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and

Lk[χ
(k+1,j)] = (−1)k

j+k+1∑

r=k+1

(−1)r

(
k

j + k − r + 1

)(
z − k

r − k − 1

)
. (9.29)

Recall that the values of i, j and k are assumed to satisfy the inequalities (9.23). If
k ≥ d, then i ≤ d < k+1, and formula (9.28) gives (9.22). This proves the first statement
of the lemma.

If k = d− 1, then (9.28) and (9.29) give

Ld−1[χ
(ij)] = 0 for 0 < i < d (9.30)

and

Ld−1[χ
(dj)] = (−1)d+1

j+d∑

r=d

(−1)r

(
d− 1

d + j − r

)(
z − d + 1

r − d

)
.

Replacing the summation index r with m = r − d in the latter formula, we have

Ld−1[χ
(dj)] = −

j∑

m=0

(−1)m

(
d− 1

j −m

)(
z − d + 1

m

)
. (9.31)

We can now finish the proof of the second statement of the lemma. If a polynomial
f(x, y) satisfies f(−1, y) = 0, then the coefficients f0j in representation (9.11) are equal
to zero. In decomposition (9.12) of the polynomial h(x, z) = (If)(x, z−x), the coefficient
h0(z) is also equal to zero as one can easily see. Therefore Lemma 9.1 can be applied to
h(x, z). By the lemma,

hd(z) = (−1)d+1Ld−1[h(x, z)]. (9.32)

On the other hand, applying the involution I to equality (9.11), we have

(If)(x, y) =
d∑

i=1

d−1∑

j=0

fij(Iϕ(ij))(x, y).

Set y = x− z here

h(x, z) =
d∑

i=1

d−1∑

j=0

fijχ
(ij)(x, z).

Apply the operator Ld−1 to the latter equality

Ld−1[h] =
d∑

i=1

d−1∑

j=0

fijLd−1[χ
(ij)]

and use (9.32) and (9.33)

Ld−1[h] = −
d−1∑

j=0

fdj

j∑

m=0

(−1)m

(
d− 1

j −m

)(
z − d + 1

m

)
.

Comparing the latter formula with (9.32), we obtain (9.13).
The lemma is proved.
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10 The matrix E − A(l) is nonsingular

By Corollary 8.2, to finish the proof of Theorem 1.1, we have to demonstrate that the
matrix E − A(l) is nonsingular for any l. We remind that the matrix A(l) = (a

(l)
jk )l

j,k=0 is
defined by

a
(l)
jk = ck−j

l−k,k, (10.1)

where ct
rs are given by (8.4).

Theorem 10.1 The numbers

λ
(l)
j =

1

2l+1


2

j∑

p=0

(
l

p

)
−

(
l

j

)
 (0 ≤ j ≤ l) (10.2)

are eigenvalues of the matrix A(l).

Note that λ
(l)
j 6= λ

(l)
k for j 6= k, 0 < λ

(l)
j < 1, and λ

(l)
j = 1− λ

(l)
l−j. Thus, the spectrum

Λ(l) = {λ(l)
j | 0 ≤ j ≤ l} of the matrix A(l) consists of l+1 different eigenvalues, lies in the

interval (0, 1), and is symmetric with respect to the point λ = 1/2. Therefore the matrix
A(l) is diagonalizable and the matrix E − A(l) has the same spectrum Λ(l). In particular,
E − A(l) is a nonsingular matrix.

Define the matrix U (l) = (ujk)
l
j,k=0 by the equality

ujk =

(
k + 1

j + 1

)
. (10.3)

Note that U (l) is an upper-triangular matrix with units on the diagonal and the inverse
matrix (U (l))−1 = (vjk) is given by

vjk = (−1)j+k

(
k + 1

j + 1

)
. (10.4)

Theorem 10.1 is the obvious corollary of the following statement

Lemma 10.2 The product (U (l))−1A(l)U (l) is a low-triangular matrix with the numbers

λ
(l)
0 , . . . , λ

(l)
l on the diagonal.

Written in components, the statement of Lemma 10.2 looks as follows:

l∑

r,s=0

vjra
(l)
rs usk =

{
0 for j < k,

λ
(l)
k for j = k.

We substitute values (10.1), (10.3), and (10.4) into the latter formula and replace the
summation index r with t = s− r to obtain

k∑

s=0

(−1)s

(
k + 1

s + 1

) s−j∑

t=s−l

(−1)t

(
s− t + 1

j + 1

)
ct
l−s,s =

{
0 for j < k,

(−1)kλ
(l)
k for j = k.
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Comparing the latter formula with definition (9.9) of the functional Lk, we see that the
statement of Lemma 10.2 is equivalent to the following one:

Lk[g
(l)
j (s)] =

{
0 for 1 ≤ j ≤ k,

(−1)kλ
(l)
k for j = k + 1,

(10.5)

where

g
(l)
j (s) =

s−j+1∑

t=s−l

(−1)t

(
s− t + 1

j

)
ct
l−s,s.

Taking the convention ct
rs = 0 for t < −r and t > s + 1, the latter formula can be written

in the simpler form

g
(l)
j (s) =

∑

t

(−1)t

(
s− t + 1

j

)
ct
l−s,s, (10.6)

where the summation is performed over all integers t.
Comparing (10.5) with Lemma 9.1, we see that Lemma 10.2 follows from the next

statement.

Lemma 10.3 Defined by (10.6), the function g
(l)
j (s) is a polynomial of degree ≤ j in s

for any 0 ≤ j ≤ l + 1. The polynomial satisfies g
(l)
j (−1) = 0. In particular, g

(l)
0 (s) ≡ 0.

The leading coefficient of the decomposition

g
(l)
j (s) =

j∑

n=0

g
(l)
jn

(
s + 1

n

)
(10.7)

is
g

(l)
jj = λ

(l)
j−1 (10.8)

using the convention λ
(l)
−1 = 0.

Remark. The statement “g
(l)
j (s) is a polynomial in s” is not trivial since the number

of nonzero terms in sums (10.6) and (8.4) goes to infinity as s does. The simplest example

of such a phenomenon is presented by the formula 2s =
∑

t≥0

(
s
t

)
. Each term of the sum

depends polynomially on s but the sum is not a polynomial.
We will reduce Lemma 10.3 to the following statement.

Lemma 10.4 For 0 ≤ j ≤ l + 1, the function

f
(l)
j (s) =

∑

t

(−1)t

(
t

j

)
ct
l−s,s (10.9)

is a polynomial of degree ≤ j in s satisfying f
(l)
j (−1) = 0. In particular, f

(l)
0 (s) ≡ 0. The

leading coefficient of the decomposition

f
(l)
j (s) =

j∑

n=0

f
(l)
jn

(
s + 1

n

)
(10.10)

is given by

f
(l)
jj = −

j−1∑

p=0

(−1)p

(
j

p + 1

)
λ(l)

p . (10.11)
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Proof of Lemma 10.3. We will express g
(l)
j (s) through the functions f

(l)
k (s) (0 ≤

k ≤ l + 1). To this end we write using (9.7)

(
s− t + 1

j

)
=

j∑

k=0

(−1)k

(
s− k + 1

j − k

)(
t

k

)
.

Substituting this value into (10.6) and comparing the result with (10.9), we obtain

g
(l)
j (s) =

j∑

k=0

(−1)k

(
s− k + 1

j − k

)
f

(l)
k (s). (10.12)

Assuming the validity of Lemma 10.4, we see that every term of sum (10.12) is a polyno-

mial of degree ≤ j in s vanishing at s = −1. Therefore the same is true for g
(l)
j (s). This

proves the first statement of Lemma 10.3. It remains to calculate the leading coefficient
of the decomposition (10.7).

Deleting all terms of degree < j, we write (10.12) as follows:

g
(l)
jj

(
s + 1

j

)
=

j∑

k=0

(−1)kf
(l)
kk

(
s + 1

j − k

)(
s + 1

k

)
+ . . . .

Here and in the next formula, the dots stand for a polynomial of degree < j in s. By
(9.1), (

s + 1

j − k

)(
s + 1

k

)
=

(
j

k

)(
s + 1

j

)
+ . . . .

Substituting this value into the previous formula, we have

g
(l)
jj =

j∑

k=0

(−1)k

(
j

k

)
f

(l)
kk .

Insert the value (10.11) for f
(l)
kk into the latter equality

g
(l)
jj = −

j∑

k=1

(−1)k

(
j

k

)
k−1∑

p=0

(−1)p

(
k

p + 1

)
λ(l)

p .

After changing the summation order, this formula takes the form

g
(l)
jj =

j−1∑

p=0

Bj
pλ

(l)
p , (10.13)

where

Bj
p = (−1)p+1

j∑

k=p+1

(−1)k

(
j

k

)(
k

p + 1

)
.

The last formula can be simplified. First, with the help of the equality

(
j

k

)(
k

p + 1

)
=

(
j

p + 1

)(
j − p− 1

j − k

)
,
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we transform the formula to the following one:

Bj
p = (−1)p+1

(
j

p + 1

) j∑

k=p+1

(−1)k

(
j − p− 1

j − k

)
.

Then we replace the summation index k with r = j − k

Bj
p = (−1)j+p+1

(
j

p + 1

) j−p−1∑

r=0

(−1)r

(
j − p− 1

r

)
=

{
0, if p < j − 1,
1, if p = j − 1.

Substituting this value into (10.13), we arrive to the equality g
(l)
jj = λ

(l)
j−1. This finishes

the proof of Lemma 10.3.

The rest of the section is devoted to the proof of Lemma 10.4.
Substituting value (8.4) for ct

l−s,s into (10.9), we obtain

f
(l)
j (s) =

∑

p,q≥0

(−1)p+q

2p+q+1

(
s + 1

p + 1

)(
l − s

q

)
F (j)(p, q), (10.14)

where

F (j)(p, q) = (−1)q
∑

t

(−1)t

(
t

j

)(
p + 1

q + t

)(
2p− t + 1

p

)
. (10.15)

The idea of the proof is to separate variables p and q in the function F (j)(p, q), i.e., to
represent the function in the form F (j)(p, q) =

∑
k Gk(p)Hk(q). After such a separation,

the right-hand side of (10.14) will be factorized to a product of two sums, over p and q
independently, which can be easily calculated.

We transform formula (10.15). We replace the summation index t with k = t + q and
use the equality (

k − q

j

)
=

j∑

i=0

( −q

j − i

)(
k

i

)

that follows from (9.2). We obtain

F (j)(p, q) =
j∑

i=0

( −q

j − i

) ∑

k

(−1)k

(
k

i

)(
p + 1

k

)(
2p + q − k + 1

p

)
. (10.16)

The inner sum in (10.16) can be calculated using (9.6):

∑

k

(−1)k

(
k

i

)(
p + 1

k

)(
2p + q − k + 1

p

)
=

{
0 for i = 0,

(−1)i
(

p+1
i

)(
p+q
i−1

)
for i > 0.

(10.17)

This means, in particular, that F 0(p, q) ≡ 0 and, consequently, f (0)(s) ≡ 0 as stated
in Lemma 10.4. Therefore we will consider only the case of j > 0 in what follows.
Substituting value (10.17) into (10.16), we obtain

F (j)(p, q) =
j∑

i=1

(−1)i

(
p + 1

i

)( −q

j − i

)(
p + q

i− 1

)
. (10.18)
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It is clear from (10.18) that F (j)(p, q) is a polynomial in (p, q) and satisfies

F (j)(−1, q) = 0. (10.19)

The degree of F (j)(p, q) with respect to (p, q) is equal to 2j − 1, its degree with respect
to q is not larger than j − 1, and the degree of the polynomial F (j)(p, l − p) with respect
to p is not larger than j. This means that F (j)(p, q) belongs to the space Pj introduced
before Lemma 9.2 (where x, y, z and d are replaced with p, q, l and j respectively).

Represent the polynomial F (j)(p, q) as

F (j)(p, q) =
∑

m,n≥0

F̃ (j)
mn

(
p + 1

m

)(
q

n

)
, (10.20)

substitute this expression into (10.14), and write the result in the form

f
(l)
j (s) =

∑

m,n≥0

F̃ (j)
mnAm(s)Bn(l − s), (10.21)

where

Am(s) =
∑

p≥0

(−1)p

2p+1

(
s + 1

p + 1

)(
p + 1

m

)
(10.22)

and

Bn(l − s) =
∑

q≥0

(−1)q

2q

(
l − s

q

)(
q

n

)
. (10.23)

Formulas (10.22) and (10.23) are equivalent to

Am(s) =
(−1)m+1

2s+1

(
s + 1

m

)
(10.24)

and

Bn(l − s) =
(−1)n

2l−s

(
l − s

n

)
(10.25)

respectively. We will present the proof only of the first of these formulas because the
second one is proved in a similar way. Changing the summation index in (10.22), we
write the formula as follows:

Am(s) = −∑

p≥0

(−1)p

2p

(
s + 1

p

)(
p

m

)
. (10.26)

In the larrer formula, m is a nonnegative integer and s is considered as a complex variable.
Consider the function u(x) = (1− x/2)s+1 of the complex argument x normalized by

the condition u(0) = 1. It is a holomorphic function in the disc |x| < 2 with the Tailor
series

(1− x/2)s+1 =
∑

p≥0

(−1)p

2p

(
s + 1

p

)
xp.

Applying the operator 1
m!

dm

dxm to the latter equality we get

(−1)m

2m

(
s + 1

m

)
(1− x/2)s−m+1 =

∑

p≥0

(−1)p

2p

(
s + 1

p

)(
p

m

)
xp−m.
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Setting x = 1, obtain

∑

p≥0

(−1)p

2p

(
s + 1

p

)(
p

m

)
=

(−1)m

2s+1

(
s + 1

m

)
.

Together with (10.26), the latter formula gives (10.24).
Substituting values (10.24) and (10.25) into (10.21), we obtain

f
(l)
j (s) = − 1

2l+1

∑

m,n≥0

(−1)m+nF̃ (j)
mn

(
s + 1

m

)(
l − s

n

)
. (10.27)

Comparing formulas (10.20) and (10.27), we see that

f
(l)
j (s) = − 1

2l+1
(IF (j))(s, l − s), (10.28)

where I is the involution of the space of polynomials of the variables p and q defined in
the previous section. By Lemma 9.3, the polynomial (IF (j))(p, q) belongs to the space Pj.

Now, formula (10.28) shows that f
(l)
j (s) is a polynomial of degree ≤ j in s. This proves

the first statement of Lemma 10.4.
It remains to calculate the leading coefficient of the polynomial f

(l)
j (s). To this end,

according to the second statement of Lemma 9.3, we have to find the expansion of the
polynomial F (j)(p, q) in the basis

ϕ(αβ)(p, q) =

(
p + 1

α

)(
p + q

β

)
(0 ≤ α ≤ j, 0 ≤ β ≤ j − 1) (10.29)

of the space Pj. In the expansion

F (j)(p, q) =
j∑

α=0

j−1∑

β=0

F
(j)
αβ ϕ(αβ)(p, q) (10.30)

we are interested only in coefficients F
(j)
αβ with α = j.

Using (9.2), we can write

( −q

j − i

)
=

(
(p + 1) + (−p− q − 1)

j − i

)
=

j−i∑

γ=0

(
p + 1

γ

)(−p− q − 1

j − i− γ

)
.

Replacing the second factor on the right-hand side of (10.18) with the latter value, we
obtain

F (j)(p, q) =
j∑

i=1

j−i∑

γ=0

(−1)i

(
p + 1

i

)(
p + 1

γ

)(−p− q − 1

j − i− γ

)(
p + q

i− 1

)
.

Every term of the latter sum is the product of a polynomial of degree i + γ ≤ j of p and
a polynomial of p + q. We are interested only in those terms for which i + γ = j. Thus,
we can write

F (j)(p, q) =
j∑

i=1

(−1)i

(
p + 1

i

)(
p + 1

j − i

)(
p + q

i− 1

)
+ . . . , (10.31)

where the dots stand for a linear combination of those ϕ(αβ)(p, q) for which α < j.
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By (9.1), (
p + 1

i

)(
p + 1

j − i

)
=

(
j

i

)(
p + 1

j

)
+ . . . ,

where the dots stand for a polynomial of degree < j in p. Substituting this expression
into (10.31), we have

F (j)(p, q) =
j∑

i=1

(−1)i

(
j

i

)(
p + 1

j

)(
p + q

i− 1

)
+ . . . .

Replacing the summation index i with β = i − 1 and comparing the resultant formula
with definition (10.29) of ϕ(αβ)(p, q), we see that

F (j)(p, q) = −
j−1∑

β=0

(−1)β

(
j

β + 1

)
ϕ(jβ)(p, q) + . . . ,

where the dots stand for a linear combination of those ϕ(αβ)(p, q) for which α < j. We
have thus proved that

F
(j)
jβ = (−1)β+1

(
j

β + 1

)
. (10.32)

We conclude from (10.32) with the help of Lemma 9.3, that the leading coefficient of
the representation

(IF (j))(s, l − s) =
j∑

k=0

hk(l)

(
s + 1

k

)
(10.33)

is

hj(l) = (−1)j+1
j−1∑

β=0

(−1)β

(
j

β + 1

) β∑

γ=0

(−1)γ

(
j − 1

β − γ

)(
l − j + 1

γ

)
.

Comparing this formula with (10.28), we obtain

f
(l)
jj =

(−1)j

2l+1

j−1∑

β=0

(−1)β

(
j

β + 1

) β∑

γ=0

(−1)γ

(
j − 1

β − γ

)(
l − j + 1

γ

)
. (10.34)

We recall that f
(l)
jj is the leading coefficient of representation (10.10).

It remains to prove equivalence of formulas (10.11) and (10.34). Let us temporary

denote the right-hand side of (10.11) by f̃
(l)
jj , i.e.,

f̃
(l)
jj = −

j−1∑

β=0

(−1)β

(
j

β + 1

)
λ

(l)
β .

Substituting the value (10.2) for λ
(l)
β into the latter formula, we conclude

f̃
(l)
jj = − 1

2l+1

j−1∑

β=0

(−1)β

(
j

β + 1

) 
2

β∑

p=0

(
l

p

)
−

(
l

β

)
 . (10.35)

We have to prove that f
(l)
jj = f̃

(l)
jj . To this end we will transform both formulas (10.34) and

(10.35) to get representations for f
(l)
jj and f̃

(l)
jj as linear combinations of the polynomials
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(
l
k

)
of the variable l, and then we will prove that these two linear combinations have the

same coefficients.
We start with transforming formula (10.35)

f̃
(l)
jj = − 1

2l

j−1∑

β=0

(−1)β

(
j

β + 1

) β∑

p=0

(
l

p

)
+

1

2l+1

j−1∑

β=0

(−1)β

(
j

β + 1

)(
l

β

)
.

We change the summation order in the first term on the right-hand side and replace the
summation index β with p in the second term

f̃
(l)
jj = − 1

2l

j−1∑

p=0

(
l

p

) j−1∑

β=p

(−1)β

(
j

β + 1

)
+

1

2l+1

j−1∑

p=0

(−1)p

(
j

p + 1

)(
l

p

)
.

The inner sum of the first term can be easily calculated using (9.8):

j−1∑

β=p

(−1)β

(
j

β + 1

)
= −

j∑

β=p+1

(−1)β

(
j

j − β

)
= (−1)j+1

j−p−1∑

β=0

(−1)β

(
j

β

)
= (−1)p

(
j − 1

p

)
.

Substitute the latter value into the previous formula

f̃
(l)
jj = − 1

2l

j−1∑

p=0

(−1)p

(
j − 1

p

)(
l

p

)
+

1

2l+1

j−1∑

p=0

(−1)p

(
j

p + 1

)(
l

p

)
.

Uniting two sums on the right-hand side and using the Pascal relation

( j
p+1)=(j−1

p )+(j−1
p+1), we obtain

f̃
(l)
jj =

1

2l+1

j−1∑

p=0

(−1)p

[(
j − 1

p + 1

)
−

(
j − 1

p

)] (
l

p

)
. (10.36)

Now, we transform formula (10.34). First we write using (9.2)
(
l − j + 1

γ

)
=

γ∑

p=0

(
1− j

γ − p

)(
l

p

)
.

Insert this expression into (10.34) and change the summation order in the resultant sum

f
(l)
jj =

(−1)j

2l+1

j−1∑

p=0

j−1∑

β=p

(−1)β

(
j

β + 1

) β∑
γ=p

(−1)γ

(
j − 1

β − γ

)(
1− j

γ − p

)(
l

p

)
.

Replacing the summation indices β and γ with i = β − p and k = γ − p respectively, we
finally get

f
(l)
jj =

(−1)j

2l+1

j−1∑

p=0




j−p−1∑

i=0

(−1)i

(
j

i + p + 1

)
i∑

k=0

(−1)k

(
j − 1

i− k

)(
1− j

k

)


(
l

p

)
. (10.37)

Comparing (10.36) and (10.37), we see that the statement f
(l)
jj = f̃

(l)
jj is equivalent to

the system

(−1)j+p
j−p−1∑

i=0

(−1)i

(
j

i + p + 1

)
i∑

k=0

(−1)k

(
j − 1

i− k

)(
1− j

k

)
=

(
j − 1

p + 1

)
−

(
j − 1

p

)
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for 0 ≤ p ≤ j − 1. In order to simplify the formula, we slightly change notations as
follows. First replace the variable j with m = j − 1, and then replace p with q = m− p.
In such the way obtain

(−1)q
q∑

i=0

(−1)i

(
m + 1

q − i

)
i∑

k=0

(−1)k

(
m

i− k

)(−m

k

)
=

(
m

q

)
−

(
m

q − 1

)
for 0 ≤ q ≤ m.

(10.38)
The next transformation is used to simplify the right-hand side of (10.38). Choose p

satisfying 0 ≤ p ≤ m and take the sum of equations (10.38) over q in the limits 0 ≤ q ≤ p.
In such the way we obtain the equivalent system

p∑

q=0

(−1)q
q∑

i=0

(−1)i

(
m + 1

q − i

)
i∑

k=0

(−1)k

(
m

i− k

)(−m

k

)
=

(
m

p

)
for 0 ≤ p ≤ m.

Next, we change the summation order on the left-hand side of the latter formula

p∑

k=0

(−1)k

(−m

k

) p∑

i=k

(−1)i

(
m

i− k

) p∑

q=i

(−1)q

(
m + 1

q − i

)
=

(
m

p

)
for 0 ≤ p ≤ m. (10.39)

The inner sum can be easily calculated on the base of (9.8):

p∑

q=i

(−1)k

(
m + 1

q − i

)
= (−1)i

p−i∑

q=0

(−1)q

(
m + 1

q

)
= (−1)p

(
m

p− i

)
.

Substitute this value into (10.39) to obtain

(−1)p
p∑

k=0

(−1)k

(−m

k

) p∑

i=k

(−1)i

(
m

i− k

)(
m

p− i

)
=

(
m

p

)
for 0 ≤ p ≤ m.

Change the summation order

(−1)p
p∑

i=0

(−1)i

(
m

p− i

)
i∑

k=0

(−1)k

(
m

i− k

)(−m

k

)
=

(
m

p

)
for 0 ≤ p ≤ m,

replace the summation index k with j = i− k

(−1)p
p∑

i=0

(
m

p− i

)
i∑

j=0

(−1)j

(
m

j

)(−m

i− j

)
=

(
m

p

)
for 0 ≤ p ≤ m,

and change again the summation order to obtain

(−1)p
p∑

j=0

(−1)j

(
m

j

) p∑

i=j

(
m

p− i

)(−m

i− j

)
=

(
m

p

)
for 0 ≤ p ≤ m. (10.40)

We emphasize that the systems (10.38) and (10.40) are equivalent, i.e., system (10.40)

is still equivalent to the equality f
(l)
jj = f̃

(l)
jj for j = m + 1. At a first glance there does

not seem to be any progress in going from (10.38) to (10.40) because these systems seem
to have almost the same structure. However, there is the following crucial difference
between these systems. All summands of the inner sum in (10.38) are positive (take the
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sign (−1)k of the factor
(−m

k

)
into account). On the other hand, the summands of the

inner sum in (10.40) have alternating signs and they cancel each other, as is shown in the
next paragraph.

We calculate the inner sum of (10.40). To this end we replace the summation index i
with q = i− j and use (9.3)

p∑

i=j

(
m

p− i

)(−m

i− j

)
=

p−j∑

q=0

(
m

p− j − q

)(−m

q

)
=

{
1 for j = p,
0 for j < p.

Substituting the latter value into (10.40), we arrive to the identity
(
m

p

)
=

(
m

p

)
.

This proves validity of (10.40).
Lemma 10.4 is proved.
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