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Abstract

This chapter discusses imaging methods related to wave phenom-
ena, and in particular inverse problems for the wave equation will be
considered. The first part of the chapter explains the boundary control
method for determining a wave speed of a medium from the response
operator which models boundary measurements. The second part dis-
cusses the scattering relation and travel times, which are different types
of boundary data contained in the response operator. The third part
gives a brief introduction to curvelets in wave imaging for media with
nonsmooth wave speeds. The focus will be on theoretical results and
methods.
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1 Introduction

This chapter discusses imaging methods related to wave phenomena. Of

the different types of waves that exist, we will focus on acoustic waves and

problems which can be modelled by the acoustic wave equation. In the

simplest case this is the second order linear hyperbolic equation

∂2
t u(x, t) − c(x)2∆u(x, t) = 0

for a sound speed c(x). This equation can be considered as a model for other

hyperbolic equations, and the methods presented here can in some cases be

extended to study wave phenomena in other fields such as electromagnetism

or elasticity.

We will mostly be interested in inverse problems for the wave equation.

In these problems one has access to certain measurements of waves (the

solutions u) on the surface of a medium, and one would like to determine

material parameters (the sound speed c) of the interior of the medium from

these boundary measurements. A typical field where such problems arise

is seismic imaging, where one wishes to determine the interior structure of

Earth by making various measurements of waves at the surface. We will

not describe seismic imaging applications in more detail here, since they are

discussed elsewhere in this volume.

Another feature in this chapter is that we will consistently consider

anisotropic materials, where the sound speed depends on the direction of

propagation. This means that the scalar sound speed c(x), where x =

(x1, x2, . . . , xn) ∈ Ω ⊂ R
n is replaced by a positive definite symmetric ma-

trix (gjk(x))nj,k=1, and the wave equation becomes

∂2
t u(x, t) −

n∑

j,k=1

gjk(x)
∂2u

∂xj∂xk
(x, t) = 0.

Anisotropic materials appear frequently in applications such as in seismic

imaging.

It will be convenient to interpret the anisotropic sound speed (gjk) as the

inverse of a Riemannian metric, thus modelling the medium as a Riemannian

manifold. The benefits of such an approach are twofold. First, the well

established methods of Riemannian geometry become available to study the

problems, and second, this provides an efficient way of dealing with the

invariance under changes of coordinates present in many anisotropic wave

imaging problems. The second point means that in inverse problems in

anisotropic media, one can often only expect to recover the matrix (gjk)

up to a change of coordinates given by some diffeomorphism. In practice

this ambiguity could be removed by some a priori knowledge of the medium

properties (such as the medium being in fact isotropic, see Section 3.1.2).
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2 Background

This chapter contains three parts which discuss different topics related to

wave imaging. The first part considers the inverse problem of determining a

sound speed in a wave equation from the response operator, also known as

the hyperbolic Dirichlet-to-Neumann map, by using the boundary control

method, see [5, 7, 43]. The second part considers other types of bound-

ary measurements of waves, namely the scattering relation and boundary

distance function, and discusses corresponding inverse problems. The third

part is somewhat different in nature and does not consider any inverse prob-

lems, but rather gives an introduction to the use of curvelet decompositions

in wave imaging for nonsmooth sound speeds. We briefly describe these

three topics.

2.1 Wave imaging and boundary control method

Let us consider an isotropic wave equation. Let Ω ⊂ R
n be an open, bounded

set with smooth boundary ∂Ω and let c(x) be a scalar-valued positive func-

tion in C∞(Ω) modeling the wave speed in Ω. First, we consider the wave

equation

∂2
t u(x, t) − c(x)2∆u(x, t) = 0 in Ω × R+, (2.1)

u|t=0 = 0, ut|t=0 = 0,

c(x)−n+1∂nu = f(x, t) in ∂Ω × R+,

where ∂n denotes the Euclidean normal derivative, where n is the unit inte-

rior normal. We denote by uf = uf (x, t) the solution of (2.1) corresponding

to the boundary source term f .

Let us assume that the domain Ω ⊂ R
n is known. The inverse problem

is to reconstruct the wave speed c(x) when we are given the set

{(f |∂Ω×(0,2T ), u
f |∂Ω×(0,2T )) : f ∈ C∞

0 (∂Ω × R+)},

that is, the Cauchy data of solutions corresponding to all possible boundary

sources f ∈ C∞
0 (∂Ω × R+), T ∈ (0,∞]. This data is equivalent to the

response operator

ΛΩ : f 7→ uf |∂Ω×R+ , (2.2)

which is also called the non-stationary Neumann-to-Dirichlet map. Physi-

cally, ΛΩf describes the measurement of the medium response to any applied

boundary source f and it is equivalent to various physical measurements.

For instance, measuring how much energy is needed to force the bound-

ary value c(x)−n+1∂nu|∂Ω×R+ to be equal to any given boundary value

f ∈ C∞
0 (∂Ω × R+) is equivalent to measuring the map ΛΩ on ∂Ω × R+,
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see [43, 45]. Measuring ΛΩ is also equivalent to measuring the correspond-

ing Neumann-to-Dirichlet map for the heat or the Schrödinger equations,

or measuring the eigenvalues and the boundary values of the normalized

eigenfunctions of the elliptic operator −c(x)2∆, see [45].

The inverse problems for the wave equation and the equivalent inverse

problems for the heat or the Schrödinger equations go back to works of

M. Krein at the end of 50’s who used the causality principle in dealing

with the one-dimensional inverse problem for an inhomogeneous string,

utt−c2(x)uxx = 0, see e.g. [46]. In his works, causality was transformed into

analyticity of the Fourier transform of the solution. A more straightforward

hyperbolic version of the method was suggested by A. Blagovestchenskii at

the end of 60’s-70’s [12, 13]. The multidimensional case was studied by M.

Belishev [4] in late 80’s who understood the role of the PDE-control for

these problems and developed the boundary control method for hyperbolic

inverse problems in domains of Euclidean space. Of crucial importance for

the boundary control method was the result of D. Tataru in 1995 [78, 80] con-

cerning a Holmgren-type uniqueness theorem for non-analytic coefficients.

The boundary control method was extended to the anisotropic case by M.

Belishev and Y. Kurylev [7]. The geometric version of the boundary control

method which we consider in this chapter was developed in [7, 42, 47, 43].

We will consider the inverse problem in the more general setting of an

anisotropic wave equation in an unbounded domain or on a non-compact

manifold. These problems have been studied in detail in [39, 44] also in

the case when the measurements are done only on a part of the bound-

ary. In this paper we present a simplified construction method applicable

for non-compact manifolds in the case when measurements are done on the

whole boundary. We demonstrate these results in the case when we have an

isotropic wave speed c(x) in a bounded domain of Euclidean space. For this

we use the fact that in the Euclidean space the only conformal deformation

of a compact domain fixing the boundary is the identity map. This implies

that after the abstract manifold structure (M,g) corresponding to the wave

speed c(x) in a given domain Ω is constructed, we can construct in an ex-

plicit way the embedding of the manifold M to the domain Ω and determine

c(x) at each point x ∈ Ω. We note on the history of this result that using

Tataru’s unique continuation result [78], Theorem 3.5 concerning this case

can be proven directly using the boundary control method developed for

domains in Euclidean space in [4].

The reconstruction of non-compact manifolds has been considered also

in [11, 27] with different kind of data, using iterated time reversal for so-

lutions of the wave equation. We note that the boundary control method

can be generalized also for Maxwell and Dirac equations under appropriate

geometric conditions, [50, 51], and its stability has been analyzed in [1, 41].
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2.2 Travel times and scattering relation

The problem considered in the previous section of recovering a sound speed

from the response operator is highly overdetermined in dimensions n ≥ 2.

The Schwartz kernel of the response operator depends on 2n variables and

the sound speed c depends on n variables.

In Section 3.2 we will show that other types of boundary measurements

in wave imaging can be directly obtained from the response operator. One

such measurement is the boundary distance function, a function of 2n − 2

variables, which measures the travel times of shortest geodesics between

boundary points. The problem of determining a sound speed from the travel

times of shortest geodesics is the inverse kinematic problem. The more

general problem of determining a Riemannian metric (corresponding to an

anisotropic sound speed) up to isometry from the boundary distance function

is the boundary rigidity problem. The problem is formally determined if

n = 2 but overdetermined for n ≥ 3.

This problem arose in geophysics in an attempt to determine the inner

structure of the Earth by measuring the travel times of seismic waves. It

goes back to Herglotz [37] and Wiechert and Zoeppritz [85] who considered

the case of a radial metric conformal to the Euclidean metric. Although the

emphasis has been in the case that the medium is isotropic, the anisotropic

case has been of interest in geophysics since the Earth is anisotropic. It

has been found that even the inner core of the Earth exhibits anisotropic

behavior [24].

To give a proper definition of the boundary distance function, we will

consider a bounded domain Ω ⊂ R
n with smooth boundary to be equipped

with a Riemannian metric g, that is, a family of positive definite symmetric

matrices g(x) = (gjk(x))
n
j,k=1 depending smoothly on x ∈ Ω. The length of

a smooth curve γ : [a, b] → Ω is defined to be

Lg(γ) =

∫ b

a




n∑

j,k=1

gjk(γ(t))γ̇
j(t)γ̇k(t)




1/2

dt.

The distance function dg(x, y) for x, y ∈ Ω is the infimum of the lengths of

all piecewise smooth curves in Ω joining x and y. The boundary distance

function is dg(x, y) for x, y ∈ ∂Ω.

In the boundary rigidity problem one would like to determine a Rie-

mannian metric g from the boundary distance function dg. In fact, since

dg = dψ∗g for any diffeomorphism ψ : Ω → Ω which fixes each boundary

point, we are looking to recover from dg the metric g up to such a diffeo-

morphism. Here ψ∗g(y) = Dψ(y)tg(ψ(y))Dψ(y) is the pullback of g by

ψ.
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It is easy to give counterexamples showing that this can not be done

in general, consider for instance the closed hemisphere where boundary dis-

tances are given by boundary arcs so making the metric larger in the inte-

rior does not change dg. Michel [55] conjectured that a simple metric g is

uniquely determined, up to an action of a diffeomorphism fixing the bound-

ary, by the boundary distance function dg(x, y) known for all x and y on ∂Ω.

A metric is called simple if for any two points in Ω there is a unique length

minimizing geodesic joining them, and if the boundary is strictly convex.

The conjecture of Michel has been proved for two dimensional simple

manifolds [61]. In higher dimensions it is open but several partial results are

known, including the recent results of Burago and Ivanov for metrics close

to Euclidean [15] and close to hyperbolic [16] (see the survey [40]). Earlier

and related works include results for simple metrics conformal to each other

[26], [10], [56], [57], [59], [8], for flat metrics [34], for locally symmetric spaces

of negative curvature [9], for two dimensional simple metrics with negative

curvature [25] and [60], a local result [71], a semiglobal solvability result [54],

and a result for generic simple metrics [72].

In case the metric is not simple, instead of the boundary distance func-

tion one can consider the more general scattering relation which encodes, for

any geodesic starting and ending at the boundary, the start point and di-

rection, the end point and direction, and the length of the geodesic. We will

see in Section 3.2 that also this information can be determined directly from

the response operator. If the metric is simple then the scattering relation

and boundary distance function are equivalent, and either one is determined

by the other.

The lens rigidity problem is to determine a metric up to isometry from

the scattering relation. There are counterexamples of manifolds which are

trapping, and the conjecture is that on a nontrapping manifold the metric

is determined by the scattering relation up to isometry. We refer to [73] and

the references therein for known results on this problem.

2.3 Curvelets and wave equations

In Section 3.3 we describe an alternative approach to the analysis of solu-

tions of wave equations, based on a decomposition of functions into basic

elements called curvelets or wave packets. This approach also works for wave

speeds of limited smoothness unlike some of the approaches presented ear-

lier. Furthermore, the curvelet decomposition yields efficient representations

of functions containing sharp wavefronts along curves or surfaces, thus pro-

viding a common framework for representing such data and analyzing wave

phenomena and imaging operators. Curvelets and related methods have

been proposed as computational tools for wave imaging, and the numerical

aspects of the theory are a subject of ongoing research.
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A curvelet decomposition was introduced by Smith [68] to construct

a solution operator for the wave equation with C1,1 sound speed, and to

prove Strichartz estimates for such equations. This started a body of re-

search on Lp estimates for low regularity wave equations based on curvelet

type methods, see for instance Tataru [81]–[83], Smith [69], Smith-Sogge

[70]. Curvelet decompositions have their roots in harmonic analysis and the

theory of Fourier integral operators, where relevant works include Córdoba-

Fefferman [23] and Seeger-Sogge-Stein [66] (see also Stein [74]).

In a rather different direction, curvelet decompositions came up in image

analysis as an optimally sparse way of representing images with C2 edges,

see Candés-Donoho [21] (the name ”curvelet” was introduced in [20]). The

property that curvelets yield sparse representations for wave propagators

was studied in Candés-Demanet [17], [18]. Numerical aspects of curvelet

type methods in wave computation are discussed in [19], [30]. Finally, both

theoretical and practical aspects of curvelet methods related to certain seis-

mic imaging applications are studied in [2], [14], [29], [31], [65].

3 Mathematical modeling and analysis

3.1 Boundary control method

3.1.1 Inverse problems on Riemannian manifolds.

Let Ω ⊂ R
n be an open, bounded set with smooth boundary ∂Ω and let c(x)

be a scalar-valued positive function in C∞(Ω) modeling the wave speed in Ω.

We consider the closure Ω as a differentiable manifoldM with a smooth, non-

empty boundary. We consider also a more general case, and allow (M,g) to

be a possibly non-compact, complete manifold with boundary. This means

that the manifold contains its boundary ∂M and M is complete with metric

dg defined below. Moreover, near each point x ∈ M there are coordinates

(U,X) where U ⊂ M is a neighborhood of x and X : U → R
n if x is an

interior point, or X : U → R
n−1 × [0,∞) is x is a boundary point such that

for any coordinate neighborhoods (U,X) and (Ũ , X̃) the transition functions

X ◦ X̃−1 : X̃(U ∩ Ũ) → X(U ∩ Ũ) are C∞-smooth. Note that all compact

Riemannian manifolds are complete according to this definition. Usually we

denote the components of X by X(y) = (x1(y), . . . , xn(y)).

Let u be the solution the wave equation

utt(x, t) +Au(x, t) = 0 in M × R+, (3.1)

u|t=0 = 0, ut|t=0 = 0,

Bν,ηu|∂M×R+ = f.

Here, f ∈ C∞
0 (∂M×R+) is a real valued function, A = A(x,D) is an elliptic

8



partial differential operator of the form

(3.2)

Av = −
n∑

j,k=1

µ(x)−1|g(x)|− 1
2
∂

∂xj

(
µ(x)|g(x)| 12 gjk(x) ∂v

∂xk
(x)

)
+ q(x)v(x),

where gjk(x) is a smooth, symmetric, real, positive definite matrix, |g| =

det(gjk(x))−1, and µ(x) > 0 and q(x) are smooth real valued functions. On

existence and properties of the solutions of the equation (3.1), see [52]. The

inverse of the matrix (gjk(x))nj,k=1, denoted (gjk(x))
n
j,k=1 defines a Riemanian

metric on M . The tangent space of M at x is denoted by TxM and it consist

of vectors p which in local coordinates (U,X), X(y) = (x1(y), . . . , xn(y)) are

written as p =
∑n

k=1 p
k ∂
∂xk . Similarly, the cotangent space T ∗

xM of M at

x consist of covectors which are written in the local coordinates as ξ =∑n
k=1 ξkdx

k. The inner product which g determines in the cotangent space

T ∗
xM of M at the point x is denoted by 〈ξ, η〉g = g(ξ, η) =

∑n
j,k=1 g

jk(x)ξjηk
for ξ, η ∈ T ∗

xM . We use the same notation for the inner product at the

tangent space TxM , that is, 〈p, q〉g = g(p, q) =
∑n

j,k=1 gjk(x)p
jqk for p, q ∈

TxM .

The metric defines a distance function, which we call also the travel time

function,

dg(x, y) = inf |µ|, |µ| =

∫ 1

0
〈∂sµ(s), ∂sµ(s)〉1/2g ds,

where |µ| denotes the length of the path µ and the infimum is taken over all

piecewise C1-smooth paths µ : [0, 1] →M with µ(0) = x and µ(1) = y.

We define the space L2(M,dVµ) with inner product

〈u, v〉L2(M,dVµ) =

∫

M
u(x)v(x) dVµ(x),

where dVµ = µ(x)|g(x)|1/2dx1dx2 . . . dxn. By the above assumptions, A is

formally selfadjoint, that is,

〈Au, v〉L2(M,dVµ) = 〈u,Av〉L2(M,dVµ) for u, v ∈ C∞
0 (M int).

Furthermore, let

Bν,ηv = −∂νv + ηv,

where η : ∂M → R is a smooth function and

∂νv =
n∑

j,k=1

µ(x)gjk(x)νk
∂

∂xj
v(x),

9



where ν(x) = (ν1, ν2, . . . , νm) is the interior conormal vector field of ∂M ,

satisfying
∑n

j,k=1 g
jkνjξk = 0 for all cotangent vectors of the boundary,

ξ ∈ T ∗(∂M). We assume that ν is normalized so that
∑n

j,k=1 g
jkνjνk =

1. If M is compact, then the operator A in the domain D(A) = {v ∈
H2(M) : ∂νv|∂M = 0}, where Hs(M) denotes the Sobolev spaces on M , is

an unbounded selfadjoint operator in L2(M,dVµ).

An important example is the operator

A0 = −c2(x)∆ + q(x) (3.3)

on a bounded smooth domain Ω ⊂ R
n with ∂νv = c(x)−n+1∂nv, where ∂nv

is the Euclidean normal derivative of v.

We denote the solutions of (3.1) by

u(x, t) = uf (x, t).

For the initial boundary value problem (3.1) we define the non-stationary

Robin-to-Dirichlet map, or the response operator Λ by

Λf = uf |∂M×R+ . (3.4)

The finite time response operator ΛT corresponding to the finite observation

time T > 0 is given by

ΛT f = uf |∂M×(0,T ). (3.5)

For any set B ⊂ ∂M × R+, we denote L2(B) = {f ∈ L2(∂M × R+) :

supp(f) ⊂ B}. This means that we identify the functions and their zero

continuations.

By [79], the map ΛT can be extended to bounded linear map ΛT :

L2(B) → H1/3(∂M × (0, T )) when B ⊂ ∂M × (0, T ) is compact. Here,

Hs(∂M × (0, T )) denotes the Sobolev space on ∂M × (0, T ). Below we

consider ΛT also as a linear operator ΛT : L2
cpt(∂M × (0, T )) → L2(∂M ×

(0, T )), where L2
cpt(∂M × (0, T )) denotes the compactly supported functions

in L2(∂M × (0, T )).

For t > 0 and a relatively compact open set Γ ⊂ ∂M , let

M(Γ, t) = {x ∈M : dg(x,Γ) < t}. (3.6)

This set is called the domain of influence of Γ at time t.

When Γ ⊂ ∂M is an open relatively compact set and f ∈ C∞
0 (Γ × R+),

it follows from finite speed of wave propagation (see e.g. [38]) that the wave

uf (t) = uf (· , t) is supported in the domain M(Γ, t), that is,

uf (t) ∈ L2(M(Γ, t)) = {v ∈ L2(M) : supp(v) ⊂M(Γ, t)}. (3.7)

10



We will consider the boundary of the manifold ∂M with the metric

g∂M = ι∗g inherited from the embedding ι : ∂M →M . We assume that we

are given the boundary data, that is, the collection

(∂M, g∂M ) and Λ (3.8)

where (∂M, g∂M ) is considered as a smooth Riemannian manifold with a

known differentiable and metric structure and Λ is the non-stationary Robin-

to-Dirichlet map given in (3.4).

Our goal is reconstruct the isometry type of the Riemannian manifold

(M,g), that is, a Riemannian manifold which is isometric to the manifold

(M,g). This is often stated by saying that we reconstruct (M,g) up to an

isometry. Our next goal is to prove the following result:

Theorem 3.1. Let (M,g) to be a smooth, complete Riemannian manifold

with a non-empty boundary. Assume that we are given the boundary data

(3.8). Then it is possible to determine the isometry type of manifold (M,g).

3.1.2 From boundary distance functions to Riemannian metric

In order to reconstruct (M,g) we use a special representation, the boundary

distance representation, R(M), of M and later show that the boundary

data (3.8) determine R(M). We consider next the (possibly unbounded)

continuous functions h : C(∂M) → R. Let us choose a spesific point Q0 ∈
∂M and a constant C0 > 0 and using these, endow C(∂M) with the metric

dC(h1, h2) = |h1(Q0) − h2(Q0)| + sup
z∈∂M

min(C0, |h1(z) − h2(z)|). (3.9)

Consider a map R : M → C(∂M),

R(x) = rx(·); rx(z) = dg(x, z), z ∈ ∂M, (3.10)

i.e., rx(·) is the distance function from x ∈ M to the points on ∂M . The

image R(M) ⊂ C(∂M) of R is called the boundary distance representation

of M . The set R(M) is a metric space with the distance inherited from

C(∂M) which we denote by dC , too. The map R, due to the triangular

inequality, is Lipschitz,

dC(rx, ry) ≤ 2dg(x, y). (3.11)

We note that when M is compact and C0 = diam (M), the metric dC :

C(∂M) → R is a norm which is equivalent to the standard norm ‖f‖∞ =

maxx∈∂M |f(x)| of C(∂M).

We will see below that the map R : M → R(M) ⊂ C(∂M) is an em-

bedding. Many results of differential geometry, such as Whitney or Nash
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embedding theorems, concern the question how an abstract manifold can

be embedded to some simple space, such as a higher dimensional Euclidean

space. In the inverse problem we need to construct a ”copy” of the unknown

manifold in some known space, and as we assume that the boundary is given,

we do this by embedding the manifold M to the known, although infinite

dimensional function space C(∂M).

Next we recall some basic definitions on Riemannian manifolds, see e.g.

[22] for an extensive treatment. A path µ : [a, b] → N is called a geodesic if,

for any c ∈ [a, b] there is ε > 0 such that if s, t ∈ [a, b] such that c− ε < s <

t < c+ ε, the path µ([s, t]) is a shortest path between its endpoints, i.e.

|µ([s, t])| = dg(µ(s), µ(t)).

In the future, we will denote a geodesic path µ by γ and parameterize γ

with its arclength s so that |µ([s1, s2])| = dg(µ(s1), µ(s2)). Let x(s),

x(s) = (x1(s), . . . , xn(s))

be the representation of the geodesic γ in local coordinates (U,X). In the

interior of the manifold, that is, for U ⊂ M int the path x(s) satisfies the

second-order differential equations

d2xk(s)

ds2
= −

n∑

i,j=1

Γkij(x(s))
dxi(s)

ds

dxj(s)

ds
, (3.12)

where Γkij are the Christoffel symbols, given in local coordinates by the

formula

Γkij(x) =
n∑

p=1

1

2
gkp(x)

(
∂gjp
∂xi

(x) +
∂gip
∂xj

(x) − ∂gij
∂xp

(x)

)
.

Let y ∈M and ξ ∈ TxM be a unit vector satisfying the condition g(ξ, ν(y)) >

0 in the case when y ∈ ∂M . Then, we can consider the solution of the initial

value problem for the differential equation (3.12) with the initial data

x(0) = y,
dx

ds
(0) = ξ.

This initial value problem has a unique solution x(s) on an interval [0, s0(y, ξ))

such that s0(y, ξ) > 0 is the smallest value s0 > 0 for which x(s0) ∈ ∂M , or

s0(y, ξ) = ∞ in case no such s0 exists. We will denote x(s) = γy,ξ(s) and say

that the geodesic is a normal geodesic starting at y if y ∈ ∂M and ξ = ν(y).

Example. In the case when (M,g) is such a compact manifold that all

geodesics are the shortest curves between their endpoints and all geodesics
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can be continued to geodesics that hit the boundary, we can see that the

metric spaces (M,dg) and (R(M), ‖ · ‖∞) are isometric. Indeed, for any two

points x, y ∈ M there is a geodesic γ from x to a boundary point z, which

is a continuation of the geodesic from x to y. As in the considered case the

geodesics are distance minimizing curves, we see that

rx(z) − ry(z) = dg(x, z) − dg(y, z) = dg(x, y),

and thus ‖rx−ry‖∞ ≥ dg(x, y). Combining this with the triangular inequal-

ity, we see that ‖rx − ry‖∞ = dg(x, y) for x, y ∈ M and R is isometry of

(M,dg) and (R(M), ‖ · ‖∞).

Notice that when even M is a compact manifold, the metric spaces

(M,dg) and (R(M), ‖ · ‖∞) are not always isometric. As an example, con-

sider a unit sphere in R
3 with a small circular hole near the South pole

of, say, diameter ε. Then, for any x, y on the equator and z ∈ ∂M ,

π/2 − ε ≤ rx(z) ≤ π/2 and π/2 − ε ≤ ry(z) ≤ π/2. Then dC(rx, ry) ≤ ε,

while dg(x, y) may be equal to π.

Next, we introduce the boundary normal coordinates on M . For a normal

geodesic γz,ν(s) starting from z ∈ ∂M consider dg(γz,ν(s), ∂M). For small

s,

dg(γz,ν(s), ∂M) = s, (3.13)

and z is the unique nearest point to γz,ν(s) on ∂M . Let τ(z) ∈ (0,∞] be the

largest value for which (3.13) is valid for all s ∈ [0, τ(z)]. Then for s > τ(z),

dg(γz,ν(s), ∂M) < s,

and z is no more the nearest boundary point for γz,ν(s). The function

τ(z) ∈ C(∂M) is called the cut locus distance function and the set

ω = {γz,ν(τ(z)) ∈M : z ∈ ∂M, and τ(z) <∞}, (3.14)

is the cut locus of M with respect to ∂M . The set ω is a closed subset of M

having zero measure. In particular, M \ ω is dense in M . In the remaining

domain M \ ω we can use the coordinates

x 7→ (z(x), t(x)), (3.15)

where z(x) ∈ ∂M is the unique nearest point to x and t(x) = dg(x, ∂M).

(Strictly speaking, one also has to use some local coordinates of the bound-

ary, y : z 7→ (y1(z), . . . , y(n−1)(z)) and define that

x 7→ (y(z(x)), t(x)) = (y1(z(x)), . . . , y(n−1)(z(x)), t(x)) ∈ R
n, (3.16)

are the boundary normal coordinates.) Using these coordinates we show that

R : M → C(∂M) is an embedding. The result of Lemma 3.2 is considered

in detail for compact manifolds in [43].

13



Lemma 3.2. Let (M,dg) be the metric space corresponding to a complete

Riemannian manifold (M,g) with a non-empty boundary. The map R :

(M,dg) → (R(M), dC) is a homeomorphism. Moreover, given R(M) as a

subset of C(∂M) it is possible to construct a distance function dR on R(M)

that makes the metric space (R(M), dR) isometric to (M,dg).

Proof. We start by proving that R is a homeomorphism. Recall the follow-

ing simple result from topology:

Assume that X and Y are Hausdorff spaces, X is compact and F : X →
Y is a continuous, bijective map from X to Y . Then F : X → Y is a

homeomorphism.

Let us next extend this principle. Assume that (X, dX ) and (Y, dY )

are metric spaces and let Xj ⊂ X, j ∈ Z+ be compact sets such that⋃
j∈Z+

Xj = X. Assume that F : X → Y is a continuous, bijective map.

Moreover, let Yj = F (Xj) and assume that there is a point p ∈ Y such that

aj = inf
y∈Y \Yj

dY (y, p) → ∞ as j → ∞. (3.17)

Then by the above, the maps F : ∪nj=1Xj → ∪nj=1Yj are homeomorphisms

for all n ∈ Z+. Next, consider a sequence yk ∈ Y such that yk → y in Y

as k → ∞. By removing first elements of the sequence (yk)
∞
k=1 if needed,

we can assume that dY (yk, y) ≤ 1. Let now N ∈ Z+ be such that for

j > N we have aj > b := dY (y, p) + 1. Then yk ∈ ∪Nj=1Yj and as the map

F : ∪Nj=1Xj → ∪Nj=1Yj is a homeomorphism, we see that F−1(yk) → F−1(y)

in X as k → ∞. This shows that F−1 : Y → X is continuous and thus

F : X → Y is a homeomorphism.

By definition, R : M → R(M) is surjective and, by (3.11), continuous.

In order to prove the injectivity, assume the contrary, i.e. rx(·) = ry(·) but

x 6= y. Denote by z0 any point where

min
z∈∂M

rx(z) = rx(z0).

Then

dg(x, ∂M) = min
z∈∂M

rx(z) = rx(z0) (3.18)

= ry(z0) = min
z∈∂M

ry(z) = dg(y, ∂M),

and z0 ∈ ∂M is a nearest boundary point to x. Let µx be the shortest path

from z0 to x. Then, the path µx is a geodesic from x to z0 which intersects

∂M first time at z0. By using the first variation on length formula, we see

that µx has to hit to z0 normally, see [22]. The same considerations are

true for the point y with the same point z0. Thus, both x and y lie on the

normal geodesic γz0,ν(s) to ∂M . As the geodesics are unique solutions of

14



a system of ordinary differential equations (the Hamilton-Jacobi equation

(3.12)), they are uniquely determined by their initial points and directions,

that is, the geodesics are non-branching. Thus we see that

x = γz0(s0) = y,

where s0 = rx(z0) = ry(z0). Hence R : M → C(∂M) is injective.

Next, we consider the condition (3.17) for R : M → R(M). Let z ∈ M

and consider closed sets Xj = {x ∈ M : dC(R(x), R(z)) ≤ j}, j ∈ Z+.

Then for x ∈ Xj we have by definition (3.9) of the metric dC that

dg(x,Q0) ≤ j + dg(z,Q0),

implying that the sets Xj , j ∈ Z+ are compact. Clearly,
⋃
j∈Z+

Xj = X.

Let next Yj = R(Xj) ⊂ Y = R(M) and p = R(Q0) ∈ R(M). Then for

rx ∈ Y \ Yj we have

dC(rx, p) ≥ rx(Q0) − p(Q0) = dg(x,Q0)

≥ j − dg(z,Q0) −C0 → ∞ as j → ∞

and thus the condition (3.17) is satisfied. As R : M → R(M) is a continuous,

bijective map, this implies that R : M → R(M) is a homeomorphism.

Next we introduce a differentiable structure and a metric tensor, gR, on

R(M) to have an isometric diffeomorpism

R : (M,g) → (R(M), gR). (3.19)

Such structures clearly exists – the map R pushes the differentiable structure

of M and the metric g to some differentiable structure on R(M) and the

metric gR := R∗g which makes the map (3.19) an isometric diffeomorphism.

Next we construct these coordinates and the metric tensor in those on R(M)

using the fact that R(M) is known as a subset of C(∂M).

We will start by construction of the differentiable and metric structures

on R(M) \R(ω), where ω is the cut locus of M with respect to ∂M . First,

we show that we can identify in the set R(M) all the elements of the form

r = rx ∈ R(M) where x ∈ M \ ω. To do this, we observe that r = rx with

x = γz,ν(s), s < τ(z) if and only if

i. r(·) has a unique global minimum at some point z ∈ ∂M ;

ii. there is r̃ ∈ R(M) having a unique global minimum at the same z and

r(z) < r̃(z). This is equivalent to saying that there is y with ry(·) having a

unique global minimum at the same z and rx(z) < ry(z).

Thus we can find R(M \ ω) by choosing all those r ∈ R(M) for which

the above conditions i and ii are valid.
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Next, we choose a differentiable structure on R(M \ ω) which makes

the map R : M \ ω → R(M \ ω) a diffeomorphism. This can be done by

introducing coordinates near each r0 ∈ R(M \ ω). In a sufficiently small

neighborhood W ⊂ R(M) of r0 the coordinates

r 7→ (Y (r), T (r)) = (y(argminz∈∂Mr), min
z∈∂M

r)

are well defined. These coordinates have the property that the map x 7→
(Y (rx), T (rx)) coincides with the boundary normal coordinates (3.15), (3.16).

When we choose the differential structure on R(M \ ω) that corresponds to

these coordinates, the map

R : M \ ω → R(M \ ω)

is a diffeomorphism.

Next we construct the metric gR on R(M). Let r0 ∈ R(M \ ω). As

above, in a sufficiently small neighborhood W ⊂ R(M) of r0 there are

coordinates r 7→ X(r) := (Y (r), T (r)) that correspond to the boundary

normal coordinates. Let (y0, t0) = X(r0). We consider next the evaluation

function

Kw : W → R, Kw(r) = r(w),

where w ∈ ∂M . The inverse of X : W → R
n is well defined in a neighbor-

hood U ⊂ Rn of (y0, t0) and thus we can define the function

Ew = Kw ◦X−1 : U → R

that satisfies

Ew(y, t) := dg(w, γz(y),ν(y)(t)), (y, t) ∈ U, (3.20)

where γz(y),ν(y)(t) is the normal geodesic starting from the boundary point

z(y) with coordinates y = (y1, . . . , yn−1) and ν(y) is the interior unit normal

vector at y.

Let now gR = R∗g be the push-forward of g to R(M \ ω). We denote

its representation in X-coordinates by gjk(y, t). Since X corresponds to the

boundary normal coordinates, the metric tensor satisfies

gmm = 1, gαm = 0, α = 1, . . . , n− 1.

Consider the function Ew(y, t) as a function of (y, t) with a fixed w. Then

its differential, dEw at point (y, t) defines a covector in T ∗
(y,t)(U) = R

n. Since

the gradient of a distance function is a unit vector field, we see from (3.20)

that

‖dEw(y, t)‖2
(gjk) := (

∂

∂t
Ew(y, t))2+

n−1∑

α,β=1

(gR)αβ(y, t)
∂Ew
∂yα

(y, t)
∂Ew
∂yβ

(y, t) = 1.
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Let us next fix a point (y0, t0) ∈ U . Varying the point w ∈ ∂M we obtain a

set of covectors dEw(y0, t0) in the unit ball of (T ∗
(y0,t0)U, gjk) which contains

an open neighborhood of (0, . . . , 0, 1). This determines uniquely the tensor

gjk(y0, t0). Thus we can construct the metric tensor in the boundary normal

coordinates at arbitrary r ∈ R(M \ ω). This means that we can find the

metric gR on R(M \ ω) when R(M) is given.

To complete the reconstruction, we need to find the differentiable struc-

ture and the metric tensor near R(ω). Let r(0) ∈ R(ω) and x(0) ∈ M int

be such a point that r(0) = rx(0) = R(x(0)). Let z0 be some of the closest

points of ∂M to the point x(0). Then there are points z1, . . . , zn−1 on ∂M ,

given by zj = µz0,θj
(s0), where µz0,θj

(s) are geodesics of (∂M, g∂M ) and

θ1, . . . , θn−1 are orthonormal vectors of Tz0(∂M) with respect to metric g∂M
and s0 > 0 is sufficiently small, so that the distance functions y 7→ dg(zi, y),

i = 0, 1, 2, . . . , n− 1 form local coordinates y 7→ (dg(zi, y))
n−1
i=0 on M in some

neighborhood of the point x(0) (we omit here the proof which can be found

in [43, Lemma 2.14]).

Let now W ⊂ R(M) be a neighborhood of r(0) and let r̃ ∈W . Moreover,

let V = R−1(W ) ⊂M and x̃ = R−1(r̃) ∈ V . Let us next consider arbitrary

points z1, . . . , zn−1 on ∂M . Our aim is to verify whether the functions

x 7→ Xi(x) = dg(x, zi), i = 0, 1, . . . , n − 1 form smooth coordinates in V .

As M \ ω is dense on M and we have found topological structure of R(M)

and constructed the metric gR on R(M \ω), we can choose r(j) ∈ R(M \ω)

such that limj→∞ r(j) = r̃ in R(M). Let x(j) ∈ M \ ω be the points for

which r(j) = R(x(j)). Now the function x 7→ (Xi(x))n−1
i=0 defines smooth

coordinates near x̃ if and only if for functions Zi(r) = Kzi(r) we have

lim
j→∞

det((gR(dZi(r), dZ l(r)))n−1
i,l=0)|r=r(j) (3.21)

= lim
j→∞

det((g(dXi(x), dX l(x)))n−1
i,l=0)|x=x(j) 6= 0.

Thus for all r̃ ∈W we can verify for any points z1, . . . , zn−1 ∈ ∂M whether

the condition (3.21) is valid or not and this condition is valid for all r̃ ∈W

if and only if the functions x 7→ Xi(x) = dg(x, zi), i = 0, 1, . . . , n − 1 form

smooth coordinates in V . Moreover, by the above reasoning we know that

any r(0) ∈ R(ω) has some neighborhood W and some points z1, . . . , zn−1 ∈
∂M for which the condition (3.21) is valid for all r̃ ∈ W . By choosing such

points, we find also near r(0) ∈ (ω) smooth coordinates r 7→ (Zi(r))n−1
i=0

which make the map R : M → R(M) a diffeomorphism near x(0).

Summarizing, we have constructed differentiable structure (i.e. local co-

ordinates) on the whole set R(M), and this differentiable structure makes

the map R : M → R(M) a diffeomorphism. Moreover, since the met-

ric gR = R∗g is a smooth tensor, and we have found it in a dense subset

R(M \ ω) of R(M), we can continue it in the local coordinates. This gives
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us the metric gR on the whole R(M) which makes the map R : M → R(M)

an isometric diffeomorphism. �

In the above proof, the reconstruction of the metric tensor in the bound-

ary normal coordinates can be considered as finding the image of the metric

in the travel time coordinates.

Let us next consider the case when we have an unknown isotropic wave

speed c(x) in a bounded domain Ω ⊂ R
n. We will assume that we are given

the set Ω and an abstract Riemannian manifold (M,g) which is isometric to

Ω endowed with its travel time metric corresponding to the wave speed c(x).

Also, we assume that we are given a map ψ : ∂Ω → ∂M which gives the

correspondence between the boundary points of Ω and M . Next we show

that it is then possible to find an embedding from the manifold M to Ω

which gives us the wave speed c(x) at each point x ∈ Ω. This construction

is presented in detail in [43].

For this end, we need first to reconstruct a function σ on M which

corresponds to the function c(x)2 on Ω. This is done on the following lemma.

Lemma 3.3. Assume we are given a Riemannian manifold (M,g) such that

there exists an open set Ω ⊂ R
n and an isometry Ψ : (Ω, (σ(x))−1δij) →

(M,g) and a function α on M such that α(Ψ(x)) = σ(x). Then knowing

the Riemannian manifold (M,g), the restriction ψ = Ψ|∂Ω : ∂Ω → ∂M , and

the boundary value σ|∂Ω, we can determine the function α.

Proof. First, observe that we are given the boundary value α|∂M of

α(Ψ(x)) = σ(x). By assumption the metric g on M is conformally Eu-

clidean, that is, the metric tensor, in the some coordinates, has the form

gjk(x) = σ(x)−1δjk where σ(x) > 0. Hence the function β = 1
2 ln(α), when

m = 2, and β = α(n−2)/4, when n ≥ 3, satisfies the so-called scalar curvature

equation

∆gβ − kg = 0 (n = 2), (3.22)

4(n− 1)

n− 2
∆gβ − kgβ = 0 (n ≥ 3), (3.23)

where kg is the scalar curvature of (M,g),

kg(x) =
n∑

k,j,l=1

gjl(x)Rkjkl(x)

where Rijkl is the curvature tensor given in terms of the Christoffel symbols

as

Rijkl(x) =
∂

∂xk
Γilj(x) −

∂

∂xl
Γikj(x) +

n∑

r=1

(Γrlj(x)Γ
i
kr(x) − Γrkj(x)Γ

i
lr(x)).
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The idea of these equations is that if β satisfies, e.g., equation (3.23) in

the case m ≥ 3, then the metric β4/(n−2)g has zero scalar curvature. To-

gether with boundary data (3.8) being given, we obtain Dirichlet boundary

value problem for β in M .

Clearly, Dirichlet problem for equation (3.22) has a unique solution that

gives α when n = 2. In the case n ≥ 3, to show that this boundary value

problem has a unique solution, it is necessary to check that 0 is not an

eigenvalue of the operator 4(n−1)
n−2 ∆g−kg with Dirichlet boundary condition.

Now, the function β = α(n−2)/4 is a positive solution of the Dirichlet problem

for equation (3.23) with boundary condition β|∂M = α(n−2)/4
∣∣
∂M

. Assume

that there is another possible solution of this problem,

β̃ = vβ, v > 0, v|∂M = 1. (3.24)

Then both (M,β4/(n−2)g) and (M, β̃4/(n−2)g) have zero scalar curvatures.

Denoting g1 = β4/(n−2)g, g2 = β̃4/(n−2)g, we obtain that v should satisfy

the scalar curvature equation

4(n − 1)

n− 2
∆g1v − kg1v = 0.

Here, we have kg1 = 0 as g1 has vanishing scalar curvature. Together with

boundary condition (3.24), this equation implies that v ≡ 1, i.e. β = β̃.

This immediately yields that 0 is not the eigenvalue of the Dirichlet operator

(3.23) because, otherwise, we could obtain a positive solution β̃ = β+ c0ψ0,

where ψ0 is the Dirichlet eigenfunction, corresponding to zero eigenvalue,

and |c0| is sufficiently small. Thus β, and henceforth α, can be uniquely

determined by solving Dirichlet boundary value problems for (3.22) and

(3.23). �

Our next goal is to embed the abstract manifold (M,g) with conformally

Euclidean metric into Ω with metric (σ(x))−1δij . To achieve this goal, we

use the a priori knowledge that such embedding exists and the fact that we

have already constructed α corresponding to σ(x) on M .

Lemma 3.4. Let (M,g) be a compact Riemannian manifold, α(x) a positive

smooth function on M , and ψ : ∂Ω → ∂M a diffeomorphism. Assume also

that there is a diffeomorphism Ψ : Ω →M such that

Ψ|∂Ω = ψ, Ψ∗g = (α(Ψ(x)))−1δij .

Then, if Ω, (M,g), α, and ψ are known, it is possible to construct the

diffeomorphism Ψ by solving ordinary differential equations.
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Proof. Let ζ = (z, τ) be the boundary normal coordinates on M \ ω.

Our goal is to construct the coordinate representation for Ψ−1 = X,

X : M \ ω → Ω,

X(z, τ) = (x1(z, τ), . . . , xn(z, τ)).

Denote by hij(x) = α(Ψ(x))−1δij the metric tensor in Ω. Let Γi,jk =∑
p gipΓ

p
jk be the Christoffel symbols of (Ω, hij) in the Euclidean coordinates

and let Γ̃σ,µν be Christoffel symbols of (M,g), in ζ-coordinates. Next, we

consider functions hij , Γk,ij, etc. as functions on M \ω in (z, τ)-coordinates

evaluated at the point x = x(z, τ), e.g., Γk,ij(z, τ) = Γk,ij(x(z, τ)). Then,

since Ψ is an isometry, the transformation rule of Christoffel symbols with

respect to the change of coordinates implies

Γ̃σ,µν =

n∑

i,j,k=1

Γk,ij
∂xi

∂ζµ
∂xj

∂ζν
∂xk

∂ζσ
+

n∑

i,j=1

hij
∂xi

∂ζσ
∂2xj

∂ζµ∂ζν
, (3.25)

where

hij(z, τ) =
1

α(Ψ(z, τ))
δij . (3.26)

Using equations (3.25) and (3.26) we can write ∂2xj

∂ζµ∂ζν in the form

∂2xj

∂ζµ∂ζν
(ζ) =

n∑

p,σ,µ,ν=1

α(ζ)δjp
(

Γ̃σ,µν
∂ζσ

∂xp

−
n∑

n=1

1

2

∂α−1

∂ζσ

[
∂ζσ

∂xn
δpi +

∂ζσ

∂xi
δpn −

∂ζσ

∂xp
δni

]
∂xi

∂ζµ
∂xn

∂ζν

)
. (3.27)

As α and Γ̃σ,µν are known as a function of ζ, the right-hand side of (3.27)

can be written in the form

∂2xj

∂ζµ∂ζν
= F jµ,ν

(
ζ,
∂x

∂ζ

)
, (3.28)

where F jµ,ν are known functions. Choose ν = m, so that

∂2xj

∂ζµ∂ζn
=

d

dτ

(
∂xj

∂ζµ

)
.

Then, equation (3.28) becomes a system of ordinary differential equations

along normal geodesics for the matrix ( ∂x
j

∂ζµ (τ))nj,µ=1. Moreover, since diffeo-

morphism Ψ : ∂Ω → ∂M is given, the boundary derivatives ∂xj

∂ζµ , µ = 1, . . . ,

n− 1, are known for ζn = τ = 0. By relation (3.26),

∂xj

∂ζn
=
∂xj

∂τ
= α−1 ∂x

j

∂n
= −α−1nj
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for ζn = τ = 0 where n = (n1, . . . ,nn) is the Euclidean unit exterior nor-

mal vector. Thus, ∂xj

∂τ (z, 0) are also known. Solving a system of ordinary

differential equations (3.28) with these initial conditions at τ = 0, we can

construct ∂xj

∂ζµ (z, τ) everywhere on M \ ω. In particular, taking µ = n, we

find dxj

dτ (z, τ). Using again the fact that (x1(z, 0), . . . , xn(z, 0)) = ψ(z) are

known, we obtain the functions xj(z, τ), z fixed, 0 ≤ τ ≤ τ∂M (z), i.e., re-

construct all normal geodesics on Ω with respect to metric hij . Clearly, this

gives us the embedding of (M,g) onto (Ω, hij). �

Combining the above results we get the following result for the isotropic

wave equation.

Theorem 3.5. Let Ω ⊂ R
n to be a bounded open set with smooth boundary

and c(x) ∈ C∞(Ω) be a strictly positive function. Assume that we know

Ω, c|∂Ω, and the non-stationary Robin-to-Neumann map Λ∂Ω. Then it is

possible to determine the function c(x).

We note that in Theorem 3.5 the boundary value c|∂Ω of the wave speed

c(x) can be determined using the finite velocity of wave propagation (3.7)

and the knowledge of Ω and Λ∂Ω, but we will not consider this fact in this

chapter.

3.1.3 From boundary data to inner products of waves

Let uf (x, t) denote the solutions of the hyperbolic equation (3.1), Λ2T be

the finite time Robin-to-Dirichlet map for the equation (3.1) and let dSg
denote the Riemannian volume form on the manifold (∂M, g∂M ). We start

with the Blagovestchenskii identity.

Lemma 3.6. Let f, h ∈ C∞
0 (∂M × R+). Then

∫

M
uf (x, T )uh(x, T ) dVµ(x) = (3.29)

=
1

2

∫

L

∫

∂M
(f(x, t)(Λ2T h)(x, s) − (Λ2T f)(x, t)h(x, s)) dSg(x)dtds,

where

L = {(s, t) : 0 ≤ t+ s ≤ 2T, t < s, t, s > 0}.

Proof. Let

w(t, s) =

∫

M
uf (x, t)uh(x, s) dVµ(x).

Then, by integration by parts, we see that

(∂2
t − ∂2

s )w(t, s) =

∫

M
[∂2
t u

f (x, t)uh(x, s) − uf (x, t)∂2
su

h(x, s)] dVµ(x) =
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Figure 1: Domain of integration in the Blagovestchenskii identity
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L

= −
∫

M
[Auf (x, t)uh(x, s) − uf (x, t)Auh(x, s)] dVµ(x) =

= −
∫

∂M
[Bν,ηu

f (t)uh(s) − uf (t)Bν,ηu
h(s)] dSg(x) =

=

∫

∂M
[Λ2Tuf (x, t)uh(x, s) − uf (x, t)Λ2T uh(x, s)] dSg(x).

Moreover,

w|t=0 = w|s=0 = 0,

∂tw|t=0 = ∂sw|s=0 = 0.

Thus, w is the solution of the initial-boundary value problem for the one-

dimensional wave equation in the domain (t, s) ∈ [0, 2T ]×[0, 2T ] with known

source and zero initial and boundary data (3.8). Solving this problem, we

determine w(t, s) in the domain where t+ s ≤ 2T and t < s (see Fig. 1). In

particular, w(T, T ) gives the assertion. �

The other result is based on the following fundamental theorem by D.

Tataru [78, 80].

Theorem 3.7. Let u(x, t) solve the wave equation utt +Au = 0 in M × R

and u|Γ×(0,2T1) = ∂νu|Γ×(0,2T1) = 0, where ∅ 6= Γ ⊂ ∂M is open. Then

u = 0 in KΓ,T1 , (3.30)
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Figure 2: Double-cone of influence
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where

KΓ,T1 = {(x, t) ∈M × R : dg(x,Γ) < T1 − |t− T1|}

is the double cone of influence (see Fig. 2).

(The proof of this theorem, in full generality, is in [78]. A simplified

proof for the considered case is in [43].)

The observability Theorem 3.7 gives rise to the following approximate

controllability:

Corollary 3.8. For any open Γ ⊂ ∂M and T1 > 0,

clL2(M){uf (·, T1) : f ∈ C∞
0 (Γ × (0, T1))} = L2(M(Γ, T1)).

Here

M(Γ, T1) = {x ∈M : dg(x,Γ) < T1} = KΓ,T1 ∩ {t = T1}
is the domain of influence of Γ at time T1 and L2(M(Γ, T1)) = {a ∈ L2(M) :

supp(a) ⊂M(Γ, T1)}.
Proof. Let us assume that a ∈ L2(M(Γ, T1)) is orthogonal to all uf (·, T1), f ∈
C∞

0 (Γ × (0, T1))}. Denote by v the solution of the wave equation

(∂2
t +A)v = 0; v|t=T1 = 0, in M × R,

∂tv|t=T1 = a; Bν,ηv|∂M×R = 0.

Using integration by parts we obtain for all f ∈ C∞
0 (Γ × (0, T1))

∫ T1

0

∫

∂M
f(x, s)v(x, s) dSg(x) ds =

∫

M
a(x)uf (x, T1)dVµ(x) = 0,
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due to the orthogonality of a and the solutions uf (t). Thus v|Γ×(0,T1) =

0. Moreover, as v is odd with respect to t = T1, that is, v(x, T1 + s) =

−v(x, T1 − s), we see that v|Γ×(T1,2T1) = 0. As u satisfies the wave equation,

standard energy estimates yield that u ∈ C(R;H1(M)), and hence u|∂M×R ∈
C(R;H1/2(∂M)). Combining the above, we see that v|Γ×(0,2T1) = 0, and as

Bν,ηv|Γ×(0,2T1) = 0, we see using Theorem 3.7 that a = 0. �

Recall that we denote uf (t) = uf (· , t).

Lemma 3.9. Let T > 0 and Γj ⊂ ∂M , j = 1, . . . , J , be non-empty, rel-

atively compact open sets, 0 ≤ T−
j < T+

j ≤ T . Assume we are given

(∂M, g∂M ) and the response operator Λ2T . This data determines the inner

product

JTN (f1, f2) =

∫

N
uf1(x, t)uf2(x, t) dVµ(x)

for given t > 0 and f1, f2 ∈ C∞
0 (∂M × R+), where

N =

J⋂

j=1

(M(Γj , T
+
j ) \M(Γj , T

−
j )) ⊂M.

Proof. Let us start with the case when f1 = f2 = f and T−
j = 0 for all

j = 1, 2, . . . , J .

Let B =
⋃J
j=1(Γj × [T − Tj, T ]). For all h ∈ C∞

0 (B) it holds by (3.7)

that supp(uh(· , T )) ⊂ N , and thus

‖uf (T ) − uh(T )‖2
L2(M,dVµ)

=

∫

N
(uf (x, T ) − uh(x, T ))2dVµ(x) +

∫

M\N
(uf (x, T ))2dVµ(x).

Let χN (x) be the characteristic function of the set N . By Corollary 3.8,

there is h ∈ C∞
0 (B) such that the norm ‖χNuf (T ) − uh(T )‖L2(M,dVµ) is

arbitrarily small. This shows that JTN (f1, f2) can be found by

JTN (f, f) = ‖uf (T )‖2
L2(M,dVµ) − inf

h∈C∞

0 (B)
F (h), (3.31)

where

F (h) = ‖uf (T ) − uh(T )‖2
L2(M,dVµ).

As F (h) can be computed with the given data (3.8) by Lemma 3.6, it follows

that we can determine JTN (f, f) for any f ∈ C∞
0 (∂M × R+). Now, since

JTN (f1, f2) =
1

4
(JTN (f1 + f2, f1 + f2) − JTN (f1 − f2, f1 − f2)),
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the claim follows in the case when T−
j = 0 for all j = 1, 2, . . . , J .

Let us consider the general case when T−
j may be non-zero. We ob-

serve that we can write the characteristic function χN (x) of the set N =⋂J
j=1(M(Γj , T

+
j ) \M(Γj , T

−
j )) as

χN (x) =

K1∑

k=1

ckχNk
(x) −

K2∑

k=K1+1

ckχNk
(x)

where ck ∈ R are constants which can be determined by solving a simple

linear system of equations and the sets Nk are of the form

Nk =
⋃

j∈Ik

M(Γj , tj)

where Ik ⊂ {1, 2, . . . , J} and tj ∈ {T+
j : j = 1, 2, . . . , J} ∪ {T−

j : j =

1, 2, . . . , J}. Thus

JTN (f1, f2) =

K1∑

k=1

ckJ
T
Nk

(f1, f2) −
K2∑

k=K1+1

ckJ
T
Nk

(f1, f2),

where all the terms JTNk
(f1, f2) can be computed using the boundary data

(3.8). �

3.1.4 From inner products of waves to boundary distance func-

tions

Let us consider open sets Γj ⊂ ∂M, j = 1, 2, . . . , J and numbers T+
j > T−

j ≥
0. For a collection {(Γj , T+

j , T
−
j ) : j = 1, . . . , J} we define the number

P ({(Γj , T+
j , T

−
j ) : j = 1, . . . , J}) = sup

f
JTN (f, f),

where T = (maxT+
j ) + 1,

N =
J⋂

j=1

(M(Γj , T
+
j ) \M(Γj, T

−
j ))

and the supremum is taken over functions f ∈ C∞
0 (∂M × (0, T )) satisfying

‖uf (T )‖L2(M) ≤ 1. When Γqj ⊂ ∂M are open sets so that Γqj → {zj} as

q → ∞, that is, {zj} ⊂ Γqj ⊂ Γq−1
j for all q and

⋂∞
q=1 Γ

q
j = {zj}, we denote

P ({(zj , T+
j , T

−
j ) : j = 1, . . . , J}) = lim

q→∞
P ({(Γqj , T+

j , T
−
j ) : j = 1, . . . , J}).
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Theorem 3.10. Let {zn}∞n=1 be a dense set on ∂M and r(·) ∈ C(∂M) be an

arbitrary continuous function. Then r ∈ R(M) if and only if for all N > 0

it holds that

P ({(zj , r(zn) +
1

N
, r(zn) −

1

N
) : j = 1, . . . ,N}) > 0. (3.32)

Moreover, condition (3.32) can be verified using the boundary data (3.8).

Hence the boundary data determine uniquely the boundary distance rep-

resentation R(M) of (M,g) and therefore determines the isometry type of

(M,g).

Proof. “If”–part. Let x ∈ M and denote for simplicity r(·) = rx(·).
Consider a ball B1/N (x) ⊂ M of radius 1/N and center x in (M,g). Then,

for z ∈ ∂M

B1/N (x) ⊂M(z, r(z) +
1

N
) \M(z, r(z) − 1

N
).

By Corollary 3.8, for any T > r(z) there is f ∈ C∞
0 (∂M × (0, T )) such that

the function uf (· , T ) does not vanish a.e. in B1/N (x). Thus for any N ∈ Z+

and T = max{r(zn) : n = 1, 2, . . . ,N} we have

P ({(zj , r(zn) +
1

N
, r(zn) −

1

N
) : j = 1, . . . ,N})

≥
∫

B1/N (x)
|uf (x, T )|2 dVµ(x) > 0

”Only if”–part. Let (3.32) be valid. Then for all N > 0 there are points

xN ∈ AN =

N⋂

n=1

(
M(zn, r(zn) +

1

N
) \M(zn, r(zn) −

1

N
)

)
(3.33)

as the set AN has to have a non-zero measure. By choosing a suitable sub-

sequence of xN (denoted also by xN ), there exists a limit x = limN→∞ xN .

Let j ∈ Z+. It follows from (3.33) that

r(zj) −
1

N
≤ dg(xN , zj) ≤ r(zj) +

1

N
for all N ≥ j.

As the distance function dg on M is continuous, we see by taking limit

N → ∞ that

dg(x, zj) = r(zj), j = 1, 2, . . . .

Since {zj}∞j=1 are dense in ∂M , we see that r(z) = dg(x, z) for all z ∈ ∂M ,

that is, r = rx. �

Note that this proof provides an algorithm for construction of an iso-

metric copy of (M,g) when the boundary data (3.8) are given.
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3.1.5 Alternative reconstruction of metric via Gaussian beams

Next we consider an alternative construction of the boundary distance repre-

sentation R(M), developed in [6, 42, 43]. In the previous considerations, we

used in Lemma 3.9 the sets of type N =
⋂J
j=1(M(Γj , T

+
j )\M(Γj, T

−
j )) ⊂M

and studied the norms ‖χNuf (· , T )‖L2(M). In the alternative construc-

tion considered below we need to consider only the sets N of the form

N = M(Γ0, T0). For this end, we consider solutions uf (x, t) with special

sources f which produce wave packets, called the Gaussian beams [3, 64].

For simplicity, we consider just the case when

A = −∆g + q,

and give a very short exposition on the construction of the Gaussian beam

solutions. Details can be found in e.g. in [43, Ch. 2.4] where the properties of

Gaussian beams are discussed in detail. In this section, we consider complex

valued solutions uf (x, t).

Gaussian beams, called also “quasiphotons”, are a special class of solu-

tions of the wave equation depending on a parameter ε > 0 which propagate

in a neighborhood of a geodesic γ = γy,ξ([0, L]), g(ξ, ξ) = 1. Below, we

consider first the construction in the case when γ is in the interior of M .

To construct Gaussian beams we start by considering an asymptotic sum,

called formal Gaussian beam,

Uε(x, t) = Mε exp {−(iε)−1θ(x, t)}
N∑

k=0

uk(x, t)(iε)
k , (3.34)

where x ∈M , t ∈ [t−, t+], and Mε = (πε)−n/4 is the normalization constant.

The function θ(x, t) is called the phase function and uk(x, t), k = 0, 1, . . . ,N

are the amplitude functions. A phase function θ(x, t) is associated with a

geodesic t 7→ γ(t) ∈M if

Im θ(γ(t), t) = 0, (3.35)

Im θ(x, t) ≥ C0dg(x, γ(t))
2, (3.36)

for t ∈ [t−, t+]. These conditions guarantee that for any t the absolute value

of Uε(x, t) looks like a Gaussian function in the x variable which is centered

at γ(t). Thus the formal Gaussian beam can be considered to move in time

along the geodesic γ(t). The phase function can be constructed so that it

satisfies the eikonal equation

(
∂

∂t
θ(x, t))2 − gjl(x)

∂

∂xj
θ(x, t)

∂

∂xl
θ(x, t) ≍ 0, (3.37)
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where ≍ means the coincidence of the Taylor coefficients of both sides con-

sidered as functions of x at the points γ(t), t ∈ [t−, t+], that is,

v(x, t) ≍ 0 if ∂αx v(x, t)|x=γ(t) = 0 for all α ∈ N
n and t ∈ [t−, t+].

The amplitude functions uk, k = 0, . . . ,N can be constructed as solutions

of the transport equations

Lθuk ≍ (∂2
t − ∆g + q)uk−1, with u−1 = 0. (3.38)

Here Lθ is the transport operator

Lθu = 2∂tθ∂tu− 2〈∇θ,∇u〉g + (∂2
t − ∆g)θ · u, (3.39)

where ∇u(x, t) =
∑

j g
jk(x) ∂u

∂xk (x, t) ∂
∂xk is the gradient on (M,g). The

following existence result is proven e.g. in [3, 64, 43]:

Theorem 3.11. Let y ∈M int, ξ ∈ TxM be a unit vector and γ = γy,ξ(t), t ∈
[t−, t+] ⊂ R be a geodesic lying in M int when t ∈ (t−, t+).

Then there are functions θ(x, t) and uk(x, t) satisfying (3.36)–(3.38) and

a solution uε(x, t) of equation

(∂2
t − ∆g + q)uε(x, t) = 0, (x, t) ∈M × [t−, t+], (3.40)

such that

|uε(x, t) − φ(x, t)Uε(x, t)| ≤ CNε
eN(N), (3.41)

where Ñ(N) → ∞ when N → ∞. Here φ ∈ C∞
0 (M ×R) is a smooth cut-off

function satisfying φ = 1 near the trajectory {(γ(t), t) : t ∈ [t−, t+]} ⊂
M × R.

In the other words, for an arbitrary geodesic in the interior of M there

is a Gaussian beam that propagates along this geodesic.

Next we consider a class of boundary sources in (3.1) which generate

Gaussian beams. Let z0 ∈ ∂M , t0 > 0, and let x 7→ z(x) = (z1(x), . . . , zn−1(x))

be a local system of coordinates on W ⊂ ∂M near z0. For simplicity, we

denote these coordinates as z = (z1, . . . , zn−1) and make computations with-

out reference to the point x. Consider a class of functions fε = fε,z0,t0(z, t)

on the boundary cylinder ∂M × R, where

fε(z, t) = Bν,η((πε)
−n/4φ(z, t) exp {iε−1Θ(z, t)}V (z, t)). (3.42)

Here φ ∈ C∞
0 (∂M × R) is one near near (z0, t0) and

Θ(z, t) = −(t− t0) +
1

2
〈H0(z − z0), (z − z0)〉 +

i

2
(t− t0)

2, (3.43)
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where 〈· , · 〉 is the complexified Euclidean inner product, 〈a, b〉 =
∑
ajbj,

and H0 ∈ C
n×n is a symmetric matrix with a positive definite imaginary

part, i.e., (H0)jk = (H0)kj and ImH0 > 0, where (ImH0)jk = Im (H0)jk.

Finally, V (z, t) is a smooth function supported in W ×R+, having non-zero

value at (z0, t0). The solution ufε(x, t) of the wave equation

∂2
t u− ∆gu+ qu = 0, in M × R+,

u|t=0 = ∂tu|t=0 = 0, (3.44)

Bν,ηu|∂M×R+
= fε(z, t)

is a Gaussian beam propagating along the normal normal geodesic γz0,ν . Let

S(z0) ∈ (0,∞] be the smallest values s > 0 so that γz0,ν(s) ∈ ∂M , that is,

the first time when the geodesic γz0,ν hits to ∂M , or S(z0) = ∞ if no such

value s > 0 exists. Then the following result in valid (see e.g. [43]).

Lemma 3.12. For any function V ∈ C∞
0 (W × R+) being one near (z0, t0),

t0 > 0, and 0 < t1 < S(z0) and N ∈ Z+ there are CN so that the solution

ufε(x, t) of problem (3.44) satisfies estimates

|ufε(x, t) − φ(x, t)Uε(x, t)| ≤ CNε
eN(N), 0 ≤ t < t0 + t1 (3.45)

where Uε(x, t) is of the form (3.34), for all 0 < ε < 1, where Ñ(N) → ∞
when N → ∞ and φ ∈ C∞

0 (M×R) is φ one near the trajectory {(γz0,ν(t), t+
t0) : t ∈ [0, t1]} ⊂M × R.

Let us denote

Py,τv(x) = χM(y,τ)(x)v(x).

Then, the boundary data (∂M, g∂M ) and the operator Λ uniquely determine

the values ‖Py,τuf (t)‖L2(M) for any f ∈ C∞
0 (∂M×R+), y ∈ ∂M and t, τ > 0.

Let fε be of form (3.42)–(3.43) and uε(x, t) = uf (x, t), f = fε be a Gaussian

beam propagating along γz0,ν described in Lemma 3.12. The asymptotic

expansion (3.34) of a Gaussian beam implies that for s < S(z0) and τ > 0,

lim
ε→0

‖Py,τuε(· , s + t0)‖L2(M) =

{
h(s), for dg(γz0,ν(s), y) < τ,

0, for dg(γz0,ν(s), y) > τ,
(3.46)

where h(s) is a strictly positive function. By varying τ > 0, we can find

dg(γz0,ν(s), y) = rx(y), where x = γz0,ν(t). Moreover, we see that S(z0) can

be determined using the boundary data and (3.46) by observing that S(z0)

is the smallest number S > 0 such that if tk → S is an increasing sequence,

then

dg(γz0,ν(sk), ∂M) = inf
y∈∂M

dg(γz0,ν(sk), y) → 0 as k → ∞.
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Summarizing, for any z0 ∈ ∂M we can find S(z0) and furthermore, for

any 0 ≤ t < S(z0) we can find the boundary distance function rx(y) with

x = γz0,ν(t). As any point x ∈ M can be represented in this form, we see

that the boundary distance representation R(M) can be constructed from

the boundary data using the Gaussian beams.

3.2 Travel times and scattering relation

We will show in this section that if (Ω, g) is a simple Riemannian mani-

fold then by looking at the singularities of the response operator we can

determine the boundary distance function dg(x, y), x, y ∈ ∂Ω, that is, the

travel times of geodesics going through the domain. The boundary distance

function is a function of 2n − 2 variables. Thus the inverse problem of

determining the Riemannian metric from the boundary distance function

is formally determined in two dimensions and formally overdetermined in

dimensions n ≥ 3.

Let Ω ⊂ R
n be a bounded domain with smooth boundary. If the response

operators for the two manifolds (Ω, g1) and (Ω, g2) are the same then we can

assume, after a change of variables which is the identity at the boundary,

the two metrics g1 and g2 have the same Taylor series at the boundary [77].

Therefore we can extend both metrics smoothly to be equal outside outside

Ω and Euclidean outside a ball of radius R. We denote the extensions to

R
n gj , j = 1, 2, as before. Let uj(t, x, ω), be the solution of the continuation

problem





∂2u

∂t2
− ∆gjuj = 0, in R

n × R

uj(x, t) = δ(t− x · ω), t < −R,
(3.47)

where ω ∈ S
n−1 = {x ∈ R

n; |x| = 1}.
It was shown in [77] that if the response operators for (Ω, g1) and (Ω, g2)

are equal then the two solutions coincide outside Ω, namely

u1(t, x, ω) = u2(t, x, ω), x ∈ R
n \ Ω. (3.48)

In the case that the manifold (Ω, gj), j = 1, 2 is simple, we will use

methods of geometrical optics to construct solutions of (3.47) to show that

if the response operators of g1 and g2 are the same then the boundary

distance functions of the metrics g1 and g2 coincide.

3.2.1 Geometrical optics

Let g denote a smooth Riemannian metric which is Euclidean outside a ball

of radius R.
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We will construct solutions to the continuation problem for the metric g

(which is either g1 or g2). We fix ω. Let us assume that there is a solution

to equation (3.47) of the form

u(x, t, ω) = a(x, ω)δ(t − φ(x, ω)) + v(x, ω), u = 0, t < −R, (3.49)

where a, φ are functions to be determined and v ∈ L2
loc Notice that in order

to satisfy the initial conditions in (3.47), we require that

a = 1, φ(x, ω) = x · ω for x · ω < −R. (3.50)

By replacing equation (3.49) in equation (3.47), it follows that

∂2u

∂t2
− ∆gu = (3.51)

Aδ′′(t− φ(x, ω)) +Bδ′(t− φ(x, ω)) − (∆ga)δ(t − φ(x, ω)) +
∂2v

∂t2
− ∆gv,

where

A = a(x, ω)


1 −

n∑

i,j=1

gij
∂φ

∂xi
∂φ

∂xj


 (3.52)

B = 2
n∑

j,k=1

gjk
∂a

∂xk
∂φ

∂xj
+ a∆gφ (3.53)

(3.54)

We choose the functions φ, a in the expansion (3.51) to eliminate the singu-

larities δ′′ and δ′ and then construct v so that

∂2v

∂t2
− ∆gv = (∆ga)δ(t − φ(x, ω)), v = 0, t < −R. (3.55)

The eikonal equation

In order to solve the equation A = 0, it is sufficient to solve the equation

n∑

i,j=1

gij
∂φ

∂xi
∂φ

∂xj
= 1, φ(x, ω) = x · ω, x · ω < −R. (3.56)

Equation (3.56) is known as the eikonal equation. Here we will describe

a method, using symplectic geometry, to solve this equation.

Let Hg(x, ξ) = 1
2 (

∑n
i,j=1 g

ij(x)ξiξj − 1) the Hamiltonian associated to

the metric g. Note that the metric induced by g in the cotangent space

T ∗
R
n is given by the principal symbol of the Laplace-Beltrami operator
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g−1(x, ξ) =
∑n

i,j=1 g
ij(x)ξiξj . The equation (3.56) together with the initial

condition can be rewritten as

Hg(x, dφ) = 0, φ(x, ω) = x · ω, x · ω < −R

where dφ =
∑n

i=1
∂φ
∂xi dx

i is the differential of φ.

Let S = {(x, ξ) : Hg(x, ξ) = 0}, and let Mφ = {(x,∇φ(x)) : x ∈ R
n},

then solving equation (3.56), is equivalent to finding φ such that

Mφ ⊂ S, with Mφ = {(x, ω);x · ω < −R}. (3.57)

In oder to find φ so that (3.57) is valid we need to find a Lagrangian

submanifold L so that L ⊂ S, L = {(x, ω);x ·ω < −R} and the projection of

T ∗
R
n to R

n is a diffeomorphism [32]. We will construct such a Lagrangian

manifold by flowing out from N = {(x, ω) : x · ω = s and s < −R} by the

geodesic flow associated to the metric g. We recall the definition of geodesic

flow.

We define the Hamiltonian vector field associated to Hg

Vg = (
∂Hg

∂ξ
,−∂Hg

∂x
). (3.58)

The bicharacteristics are the integral curves of Hg

d

ds
xm =

n∑

j=1

gmjξj,
d

ds
ξm = −1

2

n∑

i,j=1

∂gij

∂xm
ξiξj,m = 1, ..., n. (3.59)

The projections of the bicharacteristics in the x variable are the geodesics

of the metric g and the parameter s denotes arc length. We denote the

associated geodesic flow by

Xg(s) = (xg(s), ξg(s)).

If we impose the condition that the bicharacteristics are in S initially,

then they belong to S for all time, since the Hamiltonian vector field Vg
is tangent to S. The Hamiltonian vector field is transverse to N then the

resulting manifold obtained by flowing N along the integral curves of Vg will

be a Lagrangian manifold L contained in S. We shall write L = Xg(N).

Now the projection of N into the base space is a diffeomorphism so that

L = {(x, dxφ)} locally near a point of N. We can construct a global solution

of (3.57) near Ω if the manifold is simple. We recall:

Definition. Let Ω be a bounded domain of Euclidean space with smooth

boundary and g a Riemannian metric on Ω. We say that (Ω, g) is simple

if given two points on the boundary there is a unique minimizing geodesic

joining the two points on the boundary and, moreover, ∂Ω is geodesically

convex.
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If (Ω, g) is simple then we extend the metric smoothly in a small neigh-

borhood so that the metric g is still simple. In this case we can solve the

eikonal equation globally in a neighborhood of Ω.

The transport equation

The equation B = 0 is equivalent to solving the following equation:

n∑

i,j=1

gij
∂φ

∂xj
∂a

∂xi
+
a

2
∆gφ = 0. (3.60)

Equation (3.60) is called the transport equation. It is a vector field equation

for a(x, ω), which is solved by integrating along the integral curves of the

vector field v =
∑n

i,j=1 g
ij ∂φ
∂xj

∂
∂xi . It is an easy computation to prove that v

has length 1 and that the integral curves of v are the geodesics of the metric

g.

The solution of the transport equation (3.60) is then given by:

a(x, ω) = exp

(
−1

2

∫

γ
∆gφ

)
, (3.61)

where γ is the unique geodesic such that γ(0) = y, γ̇(0) = ω, y · ω = 0 and

γ passes through x. If (Ω, g) is a simple manifold then a ∈ C∞(Rn).

To end the construction of the geometrical optics solutions we observe

that the function v(t, x, ω) ∈ L2
loc by using standard regularity results for

hyperbolic equations.

Now we state the main result of this section:

Theorem 3.13. Let (Ω, gi), i = 1, 2 be simple manifolds, and assume that

the response operators for (Ω, g1) and (Ω, g2) are equal. Then dg1 = dg2 .

Sketch of proof. Assume that we have two metrics g1, g2 with the same

response operator. Then by (3.48) the solutions of (3.47) are the same

outside Ω. Therefore the main singularity of the solutions in the geometrical

optics expansion must be the same outside Ω. Thus we conclude that

φ1(x, ω) = φ2(x, ω), x ∈ R
n \ Ω. (3.62)

Now φj(x, ω) measures the geodesic distance to the hyperplane x · ω =

−R in the metric g. From this we can easily conclude that the geodesic

distance between two points in the boundary for the two metrics is the

same, that is dg1(x, y) = dg2(x, y), x, y ∈ ∂Ω.

This type of argument was used in [62] to study a similar inverse prob-

lem for the more complicated system of elastodynamics. In particular it

is proven in [62] that from the response operator associated to the equa-

tions of isotropic elastodynamics one can determine, under the assumption
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of simplicity of the metrics, the lengths of geodesics of the metrics defined

by

ds2 = cp(x)ds
2
e, ds2 = cs(x)

2ds2e, (3.63)

where dse is the length element corresponding to the Euclidian metric, and

cp(x) =
√

(λ+2µ)
ρ , cs(x) =

√
µ
ρ denote the speed of compressional waves

and shear waves respectively. Here λ, µ are the Lamé parameters and ρ the

density.

Using Mukhometov’s result [57], [58] we can then recover both speeds

from the response operator. This shows in particular that if we know the

density one can determine the Lamé parameters from the response operator.

By using the transport equation of geometrical optics, similar to (3.60), and

the results on the ray transform (see for instance [67]), Rachele shows that

under certain a-priori conditions one can also determine the density ρ [63].

3.2.2 Scattering relation

In the presence of caustics (i.e. the exponential map is not a diffeomorphism)

the expansion (3.49) is not valid since we cannot solve the eikonal equation

globally in Ω. The solution of (3.48) is globally a Lagrangian distribution

(see for instance [38]). These distributions can locally be written in the form

u(t, x, ω) =

∫

Rm

eiφ(t,x,ω,θ)a(t, x, ω, θ) dθ (3.64)

where φ is a phase function and a(t, x, ω) is a classical symbol.

Every Lagrangian distribution is determined (up to smoother terms) by

a Lagrangian manifold and its symbol. The Lagrangian manifold associated

to u(t, x, ω) is the flow out from t = x·ω, t < −R by the Hamilton vector field

of pg(t, x, τ, ξ) = τ2−∑n
j,k=1 gjk(x)ξ

jξk. Here (τ, ξ) are the dual variables to

(t, x) respectively. The projection in the (x, ξ) variables of the flow is given

by the flow out from N by geodesic flow, that is the Lagrangian submanifold

L described above.

The scattering relation (also called lens map), Cg ⊂
(
T ∗(R×∂Ω)\0

)
×(

T ∗(R × ∂Ω) \ 0
)

of a metric g = (gij) on Ω with dual metric g−1 = (gij) is

defined as follows. Consider bicharacteristic curves, γ : [a, b] → T ∗(Ω×R), of

the Hamilton function pg(t, x, τ, ξ) which satisfy the following: γ(]a, b[) lies

in the interior, γ intersects the boundary non-tangentially at γ(a) and γ(b),

and time increases along γ. Then the canonical projection from (T ∗
R×∂Ω

(
R×

Ω) \ 0
)
× (T ∗

R×∂Ω

(
R×Ω) \ 0

)
onto

(
T ∗(R× ∂Ω) \ 0

)
×T ∗(R× ∂Ω) \ 0

)
maps

the endpoint pair (γ(b), γ(a)) to a point in Cg. In other words Cg gives the

geodesic distance between points in the boundary and also the points of exit

and direction of exit of the geodesic if we know the point of entrance and

direction of entrance.
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It is well-known that Cg is a homogeneous canonical relation on (
(
T ∗(R×

∂Ω)\0
)
×

(
T ∗(R×∂Ω)\0

)
. (See [35] for the concept of a scattering relation.)

Cg is, in fact, a diffeomorphism between open subsets of T ∗(R × ∂Ω) \ 0.

In analogy with Theorem 3.13 we have

Theorem 3.14. Let gi, i = 1, 2 be Riemannian metrics on Ω such that the

response operators for (Ω, g1) and (Ω, g2) are equal. Then

Cg1 = Cg2 .

Sketch of proof. Since by (3.48) we know the solutions of (3.47) outside

Ω. Therefore the associated Lagrangian manifolds to the Lagrangian distri-

butions uj must be the same outside Ω. By taking the projection of these

Lagrangians onto the boundary we get the desired claim.

In the case that (Ω, g) is simple then the scattering relation doesn’t give

any new information. In fact ((t1, x1, τ, ξ1), (t0, x0, τ, ξ0)) ∈ Cg if t1 − t0 =

dg(x1, x0) and ξj = −τ ∂dg(x1,x0)
∂xj , j = 0, 1. In other words dg is the generating

function of the scattering relation.

This result was generalized in [36] to the case of the equations of elastody-

namics with residual stress. It is shown that knowing the response operator

we can recover the scattering relations associated to P and S waves. For

this one uses Lagrangian distributions with appropriate polarization.

The scattering relation contains all travel time data; not just information

about minimizing geodesics as is the case of the boundary distance function.

The natural conjecture is that on a nontrapping manifold this is enough to

determine the metric up to isometry. We refer to [73] and the references

therein for results on this problem.

3.3 Curvelets and wave imaging

In this section we will discuss in more detail the use of curvelets in wave imag-

ing. We begin by explaining the curvelet decomposition of functions, using

the standard second dyadic decomposition of phase space. The curvelets

provide tight frames of L2(Rn) and give efficient representations of sharp

wave fronts. We then discuss why curvelets are useful for solving the wave

equation. This is best illustrated in terms of the half-wave equation (a first

order hyperbolic equation), where a good approximation to the solution is

obtained by decomposing the initial data in curvelets and then by trans-

lating each curvelet along the Hamilton flow for the equation. Then we

explain how one deals with wave speeds of limited smoothness, and how one

can convert the approximate solution operator into an exact one by doing a

Volterra iteration.

The treatment below follows the original approach of Smith [68] and

focuses on explaining the theoretical aspects of curvelet methods for solving
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Figure 3: A curvelet ϕγ with γ = (k, ω, x) is concentrated (a) in the fre-

quency domain near a box of length ∼ 2k and width ∼ 2k/2, and (b) in the

spatial side near a box of length ∼ 2−k and width ∼ 2−k/2.

wave equations. We refer to the works mentioned in the introduction for

applications and more practical considerations.

3.3.1 Curvelet decomposition

We will explain the curvelet decomposition in its most standard form, as

given in [68]. In a nutshell, curvelets are functions which are frequency

localized in certain frequency shells and certain directions, according to

the second dyadic decomposition and parabolic scaling. On the space side

curvelets are concentrated near lattice points which correspond to the fre-

quency localization.

To make this more precise, we recall the dyadic decomposition of the fre-

quency space {ξ ∈ R
n} into the ball {|ξ| ≤ 1} and dyadic shells {2k ≤ |ξ| ≤

2k+1}. The second dyadic decomposition further subdivides each frequency

shell {2k ≤ |ξ| ≤ 2k+1} into slightly overlapping ”boxes” of width roughly

2k/2 (thus each box resembles a rectangle whose major axis has length ∼ 2k

and all other axes have length ∼ 2k/2). See Figure 3(a) for an illustration.

The convention that the width (2k/2) of the boxes is the square root of the

length (2k) is called parabolic scaling ; this scaling is crucial for the wave

equation as will be explained later.

In the end, the second dyadic decomposition amounts to having a col-

lection of nonnegative functions h0, h
ω
k ∈ C∞

c (Rn) which form a partition of

unity in the sense that

1 = h0(ξ)
2 +

∞∑

k=0

∑

ω

hωk (ξ)2.

Here, for each k, ω runs over roughly 2(n−1)k/2 unit vectors uniformly dis-
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tributed over the unit sphere, and hωk is supported in the set

2k−1/2 ≤ |ξ| ≤ 2k+3/2,

∣∣∣∣
ξ

|ξ| − ω

∣∣∣∣ ≤ 2−k/2.

We also require a technical estimate for the derivatives

|〈ω, ∂ξ〉j∂αξ hωk (ξ)| ≤ Cj,α2
−k(j+|α|/2),

with Cj,α independent of k and ω. Such a partition of unity is not hard to

construct, we refer to [74, Section 9.4] for the details.

On the frequency side, a curvelet at frequency level 2k with direction ω

will be supported in a rectangle with side length ∼ 2k in direction ω and side

lengths ∼ 2k/2 in the orthogonal directions. By the uncertainty principle,

on the spatial side one expects a curvelet to be concentrated in a rectangle

with side length ∼ 2−k in direction ω and ∼ 2−k/2 in the other directions.

Motivated by this, we define a rectangular lattice Ξωk in R
n which has spacing

2−k in direction ω and spacing 2−k/2 in the orthogonal directions, thus

Ξωk = {x ∈ R
n ; x = a2−kω +

n∑

j=2

bj2
−k/2ωj where a, bj ∈ Z}

and {ω, ω2, . . . , ωn} is a fixed orthonormal basis of R
n. See Figure 3(b).

We are now ready to give a definition of the curvelet frame.

Definition. For a triplet γ = (k, ω, x) with ω as described above and for

x ∈ Ξωk , we define the corresponding fine scale curvelet ϕγ in terms of its

Fourier transform by

ϕ̂γ(ξ) = (2π)−n/22−k(n+1)/4e−ix·ξhωk (ξ).

The coarse scale curvelets for γ = (0, x) with x ∈ Z
n are given by

ϕ̂γ(ξ) = (2π)−n/2e−ix·ξh0(ξ).

The distinction between coarse and fine scale curvelets is analogous to

the case of wavelets. The coarse scale curvelets are used to represent data

at low frequencies {|ξ| ≤ 1} and they are direction independent, whereas

the fine scale curvelets depend on the direction ω.

The next list collects some properties of the (fine scale) curvelets ϕγ .

• Frequency localization. The Fourier transform ϕ̂γ(ξ) is supported in

the shell {2k−1/2 < |ξ| < 2k+3/2} and in a rectangle with side length

∼ 2k in the ω direction and side length ∼ 2k/2 in directions orthogonal

to ω.

37



• Spatial localization. The function ϕγ(y) is concentrated in (that is,

decays away from) a rectangle centered at x ∈ Ξωk , having side length

2−k in the ω direction and side lengths 2−k/2 in directions orthogonal

to ω.

• Tight frame. Any function f ∈ L2(Rn) may be written in terms of

curvelets as

f(y) =
∑

γ

cγϕγ(y)

where cγ are the curvelet coefficients of f :

cγ =

∫

Rn

f(y)ϕγ(y) dy.

One has the Plancherel identity

∫

Rn

|f(y)|2 dy =
∑

γ

|cγ |2.

The last statement about how to represent a function f ∈ L2(Rn) in

terms of curvelets can be proved by writing

f̂(ξ) = h0(ξ)
2f̂(ξ) +

∞∑

k=0

∑

ω

hωk (ξ)2f̂(ξ)

and then by expanding the functions hωk (ξ)f̂(ξ) in Fourier series in suitable

rectangles, and finally by taking the inverse Fourier transform. Note that

any L2 function can be represented as a superposition of curvelets ϕγ , but

that the ϕγ are not orthogonal and the representation is not unique.

3.3.2 Curvelets and wave equations

Next we explain, in a purely formal way, how curvelets can be used to solve

the Cauchy problem for the wave equation

(∂2
t +A(x,Dx))u(t, x) = F (t, x) in R × R

n,

u(0, x) = u0(x),

∂tu(0, x) = u1(x).

Further details and references are given in the next section. Here A(x,Dx) =∑n
j,k=1 g

jk(x)DxjDxk
is a uniformly elliptic operator, meaning that gjk =

gkj and 0 < λ ≤ ∑n
j,k=1 g

jk(x)ξjξk ≤ Λ < ∞ uniformly over x ∈ R
n and

ξ ∈ Sn−1. We assume that gjk are smooth and have uniformly bounded

derivatives of all orders.
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It is enough to construct an operator S(t) : u1 7→ u(t, · ) such that

u(t, x) = (S(t)u1)(x) solves the above wave equation with F ≡ 0 and u0 ≡ 0.

Then, by Duhamel’s principle, the general solution of the above equation

will be

u(t, x) =

∫ t

0
S(t− s)F (s, x) ds + (∂tS(t)u0)(x) + (S(t)u1)(x).

To construct S(t), we begin by factoring the wave operator ∂2
t + A(x,Dx)

into two first order hyperbolic operators, known as half wave operators.

Let P (x,Dx) =
√
A(x,Dx) be a formal square root of the elliptic operator

A(x,Dx). Then we have

∂2
t +A(x,Dx) = (∂t − iP )(∂t + iP )

and the Cauchy problem for the wave equation with data F ≡ 0, u0 ≡ 0,

u1 = f is reduced to solving the two first order equations

(∂t − iP )v = 0, v(0) = f,

(∂t + iP )u = v, u(0) = 0.

If one can solve the first equation, then solvability of the second equation

will follow from Duhamel’s principle (the sign in front of P is immaterial).

Therefore, we only need to solve

(∂t − iP )v(t, x) = 0,

v(0, x) = f(x).

For the moment, let us simplify even further and assume that A(x,Dx) is

the Laplacian −∆, so that P will be the operator given by

P̂ f(ξ) = |ξ|f̂(ξ).

Taking the spatial Fourier transform of the equation for v and solving the

resulting ordinary differential equation gives the full solution

v(t, y) = (2π)−n
∫

Rn

ei(y·ξ+t|ξ|)f̂(ξ) dξ.

Thus, the solution is given by a Fourier integral operator acting on f :

v(t, y) = (2π)−n
∫

Rn

eiΦ(t,y,ξ)a(t, y, ξ)f̂ (ξ) dξ.

In this particular case the phase function is Φ(t, y, ξ) = y · ξ + t|ξ| and the

symbol is a(t, y, ξ) ≡ 1.
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So far we have not used any special properties of f . Here comes the key

point. If f is a curvelet, then the phase function is well approximated on

supp(f) by its linearization in ξ:

Φ(t, y, ξ) ≈ ∇ξΦ(t, y, ω) · ξ for ξ ∈ supp(f).1

Thus, if f = ϕγ then the solution v with this initial data is approximately

given by

v(t, y) ≈ (2π)−n
∫

Rn

ei(y+tω)·ξϕ̂γ(ξ) dξ = ϕγ(y + tω).

Thus the half wave equation for P =
√
−∆, whose initial data is a curvelet

in direction ω, is approximately solved by translating the curvelet along a

straight line in direction ω.

We now return to the general case where A(x, ξ) is a general elliptic

symbol
∑n

j,k=1 g
jk(x)ξjξk. We define

p(x, ξ) =
√
A(x, ξ).

Then p is homogeneous of order 1 in ξ, and it generates a Hamilton flow

(x(t), ξ(t)) in the phase space T ∗
R
n = R

n×R
n, determined by the ordinary

differential equations

ẋ(t) = ∇ξp(x(t), ξ(t)),

ξ̇(t) = −∇xp(x(t), ξ(t)).

If A(x, ξ) is smooth then the curves (x(t), ξ(t)) starting at some point

(x(0), ξ(0)) = (x, ω) are smooth and exist for all time. Note that if p(x, ξ) =

|ξ| then one has straight lines (x(t), ξ(t)) = (x+ tω, ω).

Similarly as above, the half wave equation

(∂t − iP )v(t, x) = 0,

v(0, x) = f(x),

can be approximately solved as follows:

1This statement may seem somewhat mysterious, but it really is one reason why
curvelets are useful for wave imaging. A slightly more precise statement is as follows:
if Ψ(t, y, ξ) is smooth for ξ 6= 0, homogeneous of order 1 in ξ, and its derivatives are
uniformly bounded over t ∈ [−T, T ] and y ∈ R

n and ξ ∈ Sn−1, then

|Ψ(t, y, ξ) −∇ξΨ(t, y, ω) · ξ| . 1

whenever ξ·ω ∼ 2k and |ξ−(ξ·ω)ω| . 2k/2. Also the derivatives of Ψ(t, y, ξ)−∇ξΨ(t, y, ω)·ξ
satisfy suitable symbol bounds. Parabolic scaling is crucial here, we refer to [18, Section
3.2] for more on this point.
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1. Write the initial data f in terms of curvelets as f(y) =
∑

γ cγϕγ(y).

2. For a curvelet ϕγ(y) centered at x pointing in direction ω, let ϕγ(t, y)

be another curvelet centered at x(t) pointing in direction ξ(t). That

is, translate each curvelet ϕγ for time t along the Hamilton flow for P .

3. Let v(t, y) =
∑

γ cγϕγ(t, y) be the approximate solution.

Thus the wave equation can be approximately solved by decomposing the

initial data into curvelets and then by translating each curvelet along the

Hamilton flow.

3.3.3 Low regularity wave speeds and Volterra iteration

Here we give some further details related to the formal discussion in the

previous section, following the arguments in [68]. The precise assumption

on the coefficients will be

gjk(x) ∈ C1,1(Rn).

This means that ∂αgjk ∈ L∞(Rn) for |α| ≤ 2, which is a minimal assumption

which guarantees a well defined Hamilton flow.

As discussed in Section 3.3.2, by Duhamel’s formula it is sufficient to

consider the Cauchy problem

(∂2
t +A(x,Dx))u(t, x) = 0 in R × R

n,

u(0, x) = 0,

∂tu(0, x) = f.

Here A(x,Dx) =
∑n

j,k=1 g
jk(x)DxjDxk

and gjk ∈ C1,1(Rn), gjk = gkj , and

0 < λ ≤ ∑n
j,k=1 g

jk(x)ξjξk ≤ Λ <∞ uniformly over x ∈ R
n and ξ ∈ Sn−1.

To deal with the nonsmooth coefficients, we introduce the smooth ap-

proximations

Ak(x, ξ) =

n∑

i,j=1

gijk (x)ξiξj, gijk = χ(2−k/2Dx)g
ij

where χ ∈ C∞
c (Rn) satisfies 0 ≤ χ ≤ 1, χ(ξ) = 1 for |ξ| ≤ 1/2, and χ(ξ) = 0

for |ξ| ≥ 1. We have written (χ(2−k/2Dx)g)̂ (ξ) = χ(2−k/2ξ)ĝ(ξ). Thus gijk
are smooth truncations of gij to frequencies ≤ 2k/2. We will use the smooth

approximation Ak in the construction of the solution operator at frequency

level 2k, which is in keeping with paradifferential calculus.

Given a curvelet ϕγ(y) where γ = (k, ωγ , xγ), we wish to consider a

curvelet ϕγ(t, y) which corresponds to a translation of ϕγ for time t along

the Hamilton flow for Hk(x, ξ) =
√
Ak(x, ξ). In fact, we shall define

ϕγ(t, y) = ϕγ(Θγ(t)(y − xγ(t)) + xγ)
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Figure 4: The translation of a curvelet ϕγ for time t along the Hamilton

flow..

where xγ(t) and the n×n matrix Θγ(t) arise as the solution of the equations

ẋ = ∇ξHk(x, ω),

ω̇ = −∇xHk(x, ω) + (ω · ∇xHk(x, ω))ω,

Θ̇ = −Θ(ω ⊗∇xHk(x, ω) −∇xHk(x, ω) ⊗ ω)

with initial condition (xγ(0), ωγ(0),Θγ(0)) = (xγ , ωγ , I). Here v ⊗ w is

the matrix with (v ⊗ w)x = (w · x)v. The idea is that (xγ(t), ωγ(t)) is

the Hamilton flow for Hk restricted to the unit cosphere bundle S∗
R
n =

{(x, ξ) ∈ T ∗
R
n ; |ξ| = 1}, and Θγ(t) is a matrix which tracks the rotation of

ωγ along the flow and satisfies Θγ(t)ωγ(t) = ωγ for all t. See Figure 4 for an

illustration.

We define an approximate solution operator at frequency level 2k by

Ek(t)f(y) =
∑

γ′:k′=k

(f, ϕγ′)L2(Rn)ϕγ′(t, y).

Summing over all frequencies, we consider the operator

E(t)f =
∞∑

k=0

Ek(t)f.

This operator essentially takes a function f , decomposes it into curvelets,

and then translates each curvelet at frequency level 2k for time t along the

Hamilton flow for Hk.

It is proved in [68, Theorem 3.2] that E(t) is an operator of order 0,

mapping Hα(Rn)to Hα(Rn) for any α. The fact that E(t)is an approximate

solution operator is encoded in the result that the wave operator applied to

E(t),

T (t) = (∂2
t +A(x,Dx))E(t),
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which is a priori a second order operator, is in fact an operator of order

1 and maps Hα+1(Rn)to Hα(Rn) for −1 ≤ α ≤ 2. This is proved in [68,

Theorem 4.5], and is due to the two facts. The first one is that when A is

replaced by the smooth approximation Ak, the corresponding operator
∑

k

(∂2
t +Ak(x,Dx))Ek(t)

is of order 1 because the second order terms cancel. Here one uses that

translation along Hamilton flow approximately solves the wave equation.

The second fact is that the part involving the nonsmooth coefficients,
∑

k

(Ak(x,Dx) −A(x,Dx))Ek(t)

is also of order 1 using that Ak is truncated to frequencies ≤ 2k/2 and using

estimates for A−Ak obtained from the C1,1 regularity of the coefficients.

To obtain the full parametrix one needs to consider the Hamilton flows

both for
√
Ak and −√

Ak, corresponding to the two half-wave equations

appearing in the factorization of the wave operator, and one also needs to

introduce corrections to ensure that the initial values of the approximate

solution are the given functions. For simplicity we will not consider these

details here and only refer to [68, Section 4]. The outcome of this argument

is an operator s(t, s) which is strongly continuous in t and s as a bounded

operator Hα(Rn) → Hα+1(Rn), satisfies s(t, s)f |t=s = 0 and ∂ts(t, s)f |t=s =

f , and further the operator

T (t, s) = (∂2
t +A(x,Dx))s(t, s)

is bounded Hα(Rn) → Hα(Rn) for −1 ≤ α ≤ 2.

We conclude this discussion by explaining the Volterra iteration scheme

which is used for converting the approximate solution operator to an exact

one, as in [68, Theorem 4.6]. We look for a solution in the form

u(t) = s(t, 0)f +

∫ t

0
s(t, s)G(s) ds

for some G ∈ L1([−t0, t0] ; Hα(Rn)). From the properties of s(t, s), we see

that u satisfies

(∂2
t +A(x,Dx))u = T (t, 0)f +G(t) +

∫ t

0
T (t, s)G(s) ds.

Thus, u is a solution if G is such that

G(t) +

∫ t

0
T (t, s)G(s) ds = −T (t, 0)f.

Since T (t, s) is bounded on Hα(Rn) for −1 ≤ α ≤ 2, with norm bounded

by a uniform constant when |t|, |s| ≤ t0, the last Volterra equation can be

solved by iteration. This yields the required solution u.
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4 Conclusion

In this chapter inverse problems for the wave equation were considered with

different types of data. All considered data correspond to measurements

made on the boundary of a body in which the wave speed is unknown and

possibly anisotropic. The case of the complete data, that is, with mea-

surements of amplitudes and phases of waves corresponding to all possi-

ble sources on the boundary, was considered using the boundary control

method. We showed that the wave speed can be reconstructed from the

boundary measurements up to a diffeomorphism of the domain. This cor-

responds to the determination of the wave speed in the local travel-time

coordinates. Next, the inverse problem with less data, the scattering rela-

tion, was considered. The scattering relation consists of the travel times

and the exit directions of the wave fronts produced by the point sources

located on the boundary of the body. Such data can be considered to be

obtained by measuring the waves up to smooth errors, or measuring only

the singularities of the waves. The scattering relation is a generalization of

the travel time data, that is, the travel times of the waves through the body.

Finally, we considered the use of wavelets and curvelets in the analysis of

the waves. Using the curvelet representation of the waves, the singularities

of the waves can be efficiently analyzed. In particular, the curvelets are suit-

able for the simulation of the scattering relation, even when the wave speed

is non-smooth. Summarizing, in this chapter modern approaches to study

inverse problems for wave equations, based on control theory, geometry, and

microlocal analysis, were presented.

5 Cross-references

Inverse scattering, Mathematics of photoacoustic and thermoacoustic to-

mography, Photoacoustic and thermoacoustic tomography: image formation

principles.
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vent. Math. 65(1981), 71–83.

[56] R. G. Mukhometov, The reconstruction problem of a two-dimensional

Riemannian metric, and integral geometry (Russian), Dokl. Akad.

Nauk SSSR 232(1977), no. 1, 32–35.

[57] R. G. Mukhometov, A problem of reconstructing a Riemannian metric,

Siberian Math. J., 22 (1982), 420-433.

[58] R. G. Mukhometov, The reconstruction problem of a two-dimensional

Riemannian metric, and integral geometry (Russian), Dokl. Akad.

Nauk SSSR 232 (1977), no. 1, 32–35

[59] R. G. Mukhometov and V. G. Romanov, On the problem of finding

an isotropic Riemannian metric in an n-dimensional space (Russian),

Dokl. Akad. Nauk SSSR 243(1978), no. 1, 41–44.

[60] J. P. Otal, Sur les longuer des géodésiques d’une métrique a courbure
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