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Abstract

We study the inverse problem of determining an electrical inclusion from
boundary measurements. We derive a stability estimate for the linearized
map with explicit formulae on generic constants that shows that the problem
becomes more ill-posed as the inclusion is farther from the boundary. We also
show that this estimate is optimal.

1 Introduction

Electrical Impedance Tomography (EIT) is an inverse method that attempts to
determine the conductivity distribution inside a body by making voltage and cur-
rent measurements at the boundary. The boundary information is encoded in the
Dirichlet-to-Neumann map associated to the conductivity equation. More precisely,
let Ω be an open bounded domain with smooth boundary in Rd with d = 2 or 3. As-
sume that γ(x) > 0 in Ω possesses a suitable regularity. The conductivity equation
is described by the following elliptic equation:

∇ · (γ(x)∇u) = 0 in Ω. (1)

For an appropriate function f defined on ∂Ω, there exists a unique solution u(x)
to the boundary value problem for (1) with Dirichlet condition u|∂Ω = f . Thus, one
can define a map Λγ sending the Dirichlet data to the Neumann data by

Λγ(f) = γ
∂u

∂ν

∣∣∣∣
∂Ω

.

The map Λγ is the Dirichlet-to-Neumann map associated with the conductivity
equation (1). It is worth to mention that even though the equation (1) is linear, the
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map Λγ depends nonlinearly on γ. The famous Calderón problem [3] is to determine
γ from the knowledge of Λγ. The EIT problem is notoriously known to be ill-posed.
A log-type stability was obtained by Alessandrini [1] and, in fact, this estimate is
optimal [8]. A Lipschitz type stability estimate for the values of the conductivity
from the Dirichlet-to-Neumann map was proven in [9].

In several practical situations we only need to get partial information on the
conductivity. An important example is the determination of electrical inclusions.
In this situation, the conductivity function γ(x) = γ0(x) + γ1(x)χD, where D b Ω
is called an inclusion and χD is the characteristic function of D. Here γ0 is the
background medium and γ1, D are the abnormalities. For this problem, assuming
γ0 is known. We are interested in determining the shape of D by the Dirichlet-
to-Neumann map, denoted by ΛD. Under some natural assumptions on γ0 and γ1,
uniqueness was shown by Isakov [7]. Numerical methods based on special complex
geometrical optics solutions for ∇ · γ0∇u = 0 are given in [4], [10] (also see [5],
[6], [11] for related results). It has been observed numerically that the deeper the
inclusion, the worst the numerical reconstruction. See for instance [4], [10], and
[11]. In this paper we give a precise quantitative description of this phenomenon in
a model case.

We consider the problem in two dimensions, i.e., Ω ⊂ R2. Let k > 0, k 6= 1
and define LDu := ∇ · ((1 + (k − 1)χD)∇u). For any f ∈ H1/2(∂Ω), there exists a
unique weak solution to {

LDu = 0 in Ω,

u = f on ∂Ω.

The Dirichlet-to-Neumann map is given by ΛD : H1/2(∂Ω)→ H−1/2(∂Ω) as

ΛDf =
∂u

∂ν

∣∣∣∣
∂Ω

,

where ν is the unit outer normal of ∂Ω. The inverse problem is to determine D from
ΛD. As mentioned above, the uniqueness for this problem is known [7]. A log-type
stability was obtained in [2]. More precisely, it was proved in [2] that under some
minor a priori assumptions on the inclusions, if ‖ΛD1 − ΛD2‖L(H1/2,H−1/2) < ε with
ε > 0, then the Hausdorff distance between ∂D1 and ∂D2 satisfies

dH(∂D1, ∂D2) < ω(ε),

where ω(t) is an increasing function in [0,∞) and satisfies

ω(t) ≤ C| log t|−η for t ∈ (0, 1).

The constants C and 0 < η < 1 depend on the a priori data of the inclusions,
but their dependence is not explicitly given in [2]. As a matter of fact, to our best
knowledge, we do not know any available stability estimates for inverse problems
having explicit descriptions of the data-dependent constants.
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Our concern here is to understand how the stability estimate depends on the
depth of the inclusion. In this paper, we consider the linearized map of ΛD around
a known inclusion. We believe that, either from numerical or theoretical viewpoint,
the stability estimate using ΛD should behave similarly to the estimate using the
linearized map of ΛD. To set up our problem, we let Ω = {|x| < R} and B = {|x| <
r}, where 0 < r < R. We introduce a smooth function

ψ : ∂B → R

in order to describe a perturbation Bs of the domain B, namely, the boundary ∂Bs

of the domain Bs is described by the image of

y = Fs(x) := x+ sψ(x)νx(x), x ∈ ∂B,

where νx(x) is the unit outward normal vector to ∂B at x ∈ ∂B. For f ∈ H1/2(∂Ω),
let u0 be the solution to the problem{

LBu0 = 0 in Ω,

u0 = f on ∂Ω.
(2)

Likewise, let us be the solution to the problem{
LBsus = 0 in Ω,

us = f on ∂Ω.
(3)

The linearized map of the Dirichlet-to-Neumann map at the direction ψ(x), denoted
by dΛB(ψ), is formally defined by

dΛB(ψ) = lim
s→0

1

s
(ΛBs − ΛB).

We will show that dΛB(ψ) is legitimately defined in the later section. We now state
our main theorem.

Theorem 1. Let k > 0 satisfy k 6= 1. Let m > 0. Given M0, r0 > 0 and X0 > 1.
Assume that

M ≥M0, r ≤ r0,
R

r
≥ X0.

Then for any ψ ∈ Hm(∂B) satisfying

‖ψ‖Hm(∂B) ≤M and ‖dΛB(ψ)‖L < 1,

the following estimate holds:

‖ψ‖L2(∂B) ≤ CM

[
log

(
R

r

)]m ∣∣log ‖dΛB(ψ)‖L
∣∣−m, (4)

where a positive constant C depends only on k,m,M0, r0, X0.
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Here ‖ · ‖L denotes the operator norm on the space of bounded linear operators
between H1/2(∂Ω) and H−1/2(∂Ω). Moreover, this estimate (4) is optimal in the
sense of Propositions 12 and 13 (See Section 4).

Remark 2. Estimate (4) clearly indicates that the determination of an inclusion
by boundary measurements is getting more ill-posed when the inclusion is hidden
deeper inside of the conductor, i.e., R/r becomes large.

The paper is organized as follows. In Section 2, we discuss the linearized map
dΛB(ψ) of the Dirichlet-to-Neumann map. In Section 3, we state some technical
lemmas which we need and then we prove our main theorem. In Section 4, we
discuss the optimality of the stability estimate.

2 The linearized map

In this section, we discuss the linearized map dΛB(ψ) of the Dirichlet-to-Neumann
map ΛD. We first remark that it is known that the map γ 7→ Λγ is bounded and
analytic in the subset of L∞(D) consisting of functions which are real and have
a positive lower bound (see [3]). We now introduce polar coordinates (ρ, θ), that
is, x = ρ(cos θ, sin θ) ∈ R2, in order to express the linearized operator explicitly

as the solution to some transmission problem. We put ψ̃(θ) := ψ(r cos θ, r sin θ)

and ψl :=
∫ 2π

0
ψ̃(θ) e−ilθ dθ for a function ψ ∈ L2(∂B). We remark that ψ̃(θ) =

(2π)−1
∑

l∈Z ψle
ilθ,

‖ψ‖2
L2(∂B) =

r

2π

∑
l∈Z

|ψl|2 and ‖ψ‖2
Hm(∂B) =

r

2π

∑
l∈Z

(1 + l2)m|ψl|2. (5)

Let f̃(θ) := f(R cos θ, R sin θ) and fl :=
∫ 2π

0
f̃(θ) e−ilθ dθ for a function f defined

on ∂Ω in the same way. Throughout this paper the subscripts + (respectively −)
denote the limit from outside (respectively inside) the inclusion.

Lemma 3. The linearized operator dΛB(ψ) satisfies

dΛB(ψ)(f) =
∂U

∂ν

∣∣∣∣
∂Ω

(6)

for any f ∈ H1/2(∂Ω), where U is the solution to the problem

∆U = 0 in Ω \ ∂B,

U |+ − U |− =
1− k
k

ψ
∂u0

∂ν

∣∣∣∣
+

on ∂B,

∂U

∂ν

∣∣∣∣
+

− k ∂U
∂ν

∣∣∣∣
−

= r−2(1− k) ∂θ

(
ψ̃(θ) ∂θu0|+

)
on ∂B,

U = 0 on ∂Ω

(7)

and u0 is the solution to (2).
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Proof. The solutions u0 and us to the problems (2) and (3) satisfy

∆u0 = 0 in Ω,

u0|+ = u0|− on ∂B,

∂u0

∂ν

∣∣∣∣
+

= k
∂u0

∂ν

∣∣∣∣
−

on ∂B,

u0 = f on ∂Ω

and



∆us = 0 in Ω,

us|+ = us|− on ∂Bs,

∂us
∂ν

∣∣∣∣
+

= k
∂us
∂ν

∣∣∣∣
−

on ∂Bs,

us = f on ∂Ω,

respectively. Now we put

U(x) := lim
s→0

us(x)− u0(x)

s
.

and formula (6) is obvious. Moreover, if we write y = Fs(x), we have

1

s

(
us(y)|± − u0(x)|±

)
→ U(x)|± + ψ(x)

∂u0

∂ν
(x)

∣∣∣∣
±

and

1

s

(
∂us
∂νy

(y)

∣∣∣∣
±
− ∂us
∂νx

(x)

∣∣∣∣
±

)
→ ∂ρU(x)|± − r−2ψ̃′(θ) ∂θu0(x)|± + ψ̃(θ) ∂2

ρu0(x)|±

on ∂B as s→ 0. Thus we prove this lemma by using

∂2
ρu0(x)|± = −1

r
∂ρu0(x)|± −

1

r2
∂2
θu0(x)|±

on ∂B.

Using Fourier series, we can write the linearized operator dΛB(ψ) more explicitly.

Lemma 4. For f ∈ H1/2(∂Ω) we have

dΛB(ψ)(f)(R cos θ, R sin θ) =
∑
l∈Z

λle
ilθ,

where we put λ0 := 0 and

λ−l :=
k − 1

π2
(Rr)−1Sl

∞∑
p=1

Sp {(k + 1)ψ−l+pf−p + (k − 1)ψ−l−pfp} ,

λl :=
k − 1

π2
(Rr)−1Sl

∞∑
p=1

Sp {(k + 1)ψl−pfp + (k − 1)ψl+pf−p} ,

Sl :=
l

(k − 1)R−lrl − (k + 1)Rlr−l

for any positive integer l.
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Proof. Note that the solution to the problem (2) is expressed as follows:

u0(ρ cos θ, ρ sin θ)

=


1

2π

[
∞∑
l=1

Sl
l

{
(k − 1)rlρ−l − (k + 1)r−lρl

} (
f−le

−ilθ + fle
ilθ
)

+ f0

]
, r < ρ < R,

1

2π

[
−2

∞∑
l=1

Sl
l
r−lρl

(
f−le

−ilθ + fle
ilθ
)

+ f0

]
, 0 < ρ < r.

In particular, the right-hand sides of the transmission conditions on ∂B in (7) can
be written as:

1− k
k

ψ
∂u0

∂ν

∣∣∣∣
+

= −(1− k)r−1

2π2

∑
p∈Z

∞∑
j=1

Sj(ψp+jf−j + ψp−jfj)e
ipθ,

r−2(1− k) ∂θ

(
ψ̃(θ) ∂θu0|+

)
=

(1− k)r−2

2π2

∑
p∈Z

p

∞∑
j=1

Sj(−ψp+jf−j + ψp−jfj)e
ipθ.

Hence, the solution to the problem (7) is given by

U(ρ cos θ, ρ sin θ)

=



2

(2π)2
(1− k)r−1

∞∑
l=1

Sl
l

(Rlρ−l −R−lρl)

×
∞∑
p=1

Sp
{

(k + 1)(ψ−l+pf−pe
−ilθ + ψl−pfpe

ilθ)

+ (k − 1)(ψ−l−pfpe
−ilθ + ψl+pf−pe

ilθ)
}
, r < ρ < R,

− 4

(2π)2
(1− k)r−1

∞∑
l=1

Sl
l
ρl

×
∞∑
p=1

Sp
{
R−l(ψ−l+pf−pe

−ilθ + ψl−pfpe
ilθ)

+Rlr−2l(ψ−l−pfpe
−ilθ + ψl+pf−pe

ilθ)
}

+
2

(2π)2
(1− k)r−1

∞∑
p=1

Sp(ψpf−p + ψ−pfp), 0 < ρ < r.

We then finish the proof of the lemma using formula (6).

With the help of Lemma 4, we can given an estimate of the size of dΛB(ψ) in
terms of r and R.
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Lemma 5. The operator dΛB(ψ) : H1/2(∂Ω) → H−1/2(∂Ω) is a bounded linear
operator. In particular, we have the following estimate:

‖dΛB(ψ)(f)‖H−1/2(∂Ω)

≤ 23/2|k − 1|
(k + 1)π

1

(1− (r/R)2)2
(Rr)−1

×

[
∞∑
l=1

l
( r
R

)2l
∞∑
j=1

j
( r
R

)2j (
|ψ−l+j|2 + |ψ−l−j|2 + |ψl−j|2 + |ψl+j|2

)]1/2

× ‖f‖H1/2(∂Ω). (8)

Proof. We first remark that

|Sl| =
l

k + 1

( r
R

)l 1

1− ((k − 1)/(k + 1))(r/R)2l
<

l

k + 1

1

1− (r/R)2

( r
R

)l
.

So, it follows from Lemma 4 that

|λ±l| ≤
|k − 1|

(k + 1)π2

1

(1− (r/R)2)2
(Rr)−1

× l
( r
R

)l ∞∑
p=1

p
( r
R

)p
(|ψ±l−p||fp|+ |ψ±l+p||f−p|)

for any positive integer l. Hence we have

‖dΛB(ψ)(f)‖2
H−1/2(∂Ω) = 2πR

∑
l∈Z

(1 + l2)−1/2|λl|2 ≤ 2πR
∞∑
l=1

l−1(|λl|+ |λ−l|)2

≤ 2|k − 1|2

(k + 1)2π3

1

(1− (r/R)2)4
R−1r−2

∞∑
l=1

l
( r
R

)2l

×

[
∞∑
p=1

p
( r
R

)p
(|ψ−l−p||fp|+ |ψ−l+p||f−p|+ |ψl−p||fp|+ |ψl+p||f−p|)

]2

.
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We immediately obtain this lemma since we have[
∞∑
p=1

p
( r
R

)p
(|ψ−l−p||fp|+ |ψ−l+p||f−p|+ |ψl−p||fp|+ |ψl+p||f−p|)

]2

≤

[
∞∑
p=1

p
( r
R

)2p (
|ψ−l−p|2 + |ψ−l+p|2 + |ψl−p|2 + |ψl+p|2

)]

×

[
∞∑
p=1

p
(
|fp|2 + |f−p|2 + |fp|2 + |f−p|2

)]

=

[
∞∑
p=1

p
( r
R

)2p (
|ψ−l−p|2 + |ψ−l+p|2 + |ψl−p|2 + |ψl+p|2

)]
× 2

∞∑
p∈Z

|p||fp|2

≤

[
∞∑
p=1

p
( r
R

)2p (
|ψ−l−p|2 + |ψ−l+p|2 + |ψl−p|2 + |ψl+p|2

)]
× 4π

R
‖f‖2

H1/2(∂Ω)

by the Schwarz inequality.

Remark 6. By changing the index, we can write the term on the right-hand side
of (8) as follows:

∞∑
l=1

l
( r
R

)2l
∞∑
j=1

j
( r
R

)2j (
|ψ−l+j|2 + |ψ−l−j|2 + |ψl−j|2 + |ψl+j|2

)
= 2(1− s2)−3(1 + s2)s2|ψ0|2

+
∞∑
p=1

sp
[
p3 − p

6
+ 2(1− s2)−3s2

[
p(1− s2) + (1 + s2)

]] (
|ψp|2 + |ψ−p|2

)
,

where we put s := (r/R)2 for simplicity.

Corollary 7. We have the estimate

‖dΛB(ψ)‖L ≤
8|k − 1|

π1/2(k + 1)

1

{1− (r/R)2}4 r
1/2R−3‖ψ‖L2(∂B).

Proof. We obtain this corollary by Lemma 5 and the estimate |ψl|2 ≤ (2π/r)‖ψ‖2
L2(∂B)

since we have
∑∞

j=1 jt
j = (1− t)−2t for |t| < 1.

In the following corollary, we consider a particular case, which will be needed in
the proof of the optimality of the stability estimate (see Section 4).

Corollary 8. Let a > 0 and µ be a positive integer. Let ψ̃(θ) = 2a cosµθ. Then we
have the following estimate:

‖dΛB(ψ)‖L ≤ C0aµ
3/2 1

{1− (r/R)2}7/2
(Rr)−1

( r
R

)µ
, (9)

where the positive constant C0 depends only on k.
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Proof. By Lemma 5 and Remark 6, we get that

‖dΛB(ψ)‖L

≤ 8a|k − 1|
k + 1

1

{1− (r/R)2}2 (Rr)−1
( r
R

)µ
×

[
µ3 − µ

6
+ 2

(
1−

( r
R

)4
)−3 ( r

R

)4
[
µ

{
1−

( r
R

)4
}

+

{
1 +

( r
R

)4
}]]1/2

because of ψ±µ = 2πa and ψl = 0 for l 6= ±µ. This corollary follows from

µ3 − µ
6

+ 2

(
1−

( r
R

)4
)−3 ( r

R

)4
[
µ

{
1−

( r
R

)4
}

+

{
1 +

( r
R

)4
}]

≤
(

1−
( r
R

)4
)−3(

µ3

6
+ 2(µ+ 2)

)
≤ 37

6
µ3

(
1−

( r
R

)2
)−3

,

where the constant C0 = (37/6)1/2 · 8|k − 1|/(k + 1).

3 The proof of the stability estimate

In this section, we prove our main theorem. We first state some useful identities.

Lemma 9. For f, g ∈ H1/2(∂Ω) we have the identity∫
∂Ω

dΛB(ψ)(f) g dσ

= −(1− k)

(
r−2

∫
∂B

ψ ∂θu0|+ ∂θv0|+ dσ +
1

k

∫
∂B

ψ
∂u0

∂ν

∣∣∣∣
+

∂v0

∂ν

∣∣∣∣
+

dσ

)
, (10)

where u0 and v0 are the solutions to the problem (2) with the boundary conditions
u0 = f and v0 = g, respectively.

Proof. Applying Green’s formula yields

0 =

∫
Ω\B

∆U v0 dx−
∫

Ω\B
U ∆v0 dx

=

∫
∂Ω

dΛB(ψ)(f) g dσ −
∫
∂B

∂U

∂ν

∣∣∣∣
+

v0|+ dσ +

∫
∂B

U |+
∂v0

∂ν

∣∣∣∣
+

dσ and

0 =

∫
B

∆U v0 dx−
∫
B

U ∆v0 dx =

∫
∂B

∂U

∂ν

∣∣∣∣
−
v0|− dσ −

∫
∂B

U |−
∂v0

∂ν

∣∣∣∣
−
dσ,

where U is the solution to the problem (7). Using these identities and the transmis-
sion conditions for U and v0, we obtain this lemma.
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Lemma 10. Let gj on ∂Ω be given by gj = eijθ for any integer j, where i =
√
−1.

Then we have∫
∂Ω

dΛB(ψ)(g±l) g±p dσ = 4(1− k)2r−1SlSpψ∓(l+p), (11)∫
∂Ω

dΛB(ψ)(g±l) g∓p dσ = −4(1− k)(1 + k)r−1SlSpψ∓(l−p) (12)

for positive integers l and p.

Proof. We first remark that the solution u0 to the problem (2) with the boundary
condition u0 = g±l is

u0(ρ sin θ, ρ cos θ) =


Sl
l

{
(k − 1)rlρ−l − (k + 1)r−lρl

}
e±ilθ, r < ρ < R,

− 2
Sl
l
r−lρle±ilθ, ρ < r

for any positive integer l and in particular we have

∂u0

∂ρ

∣∣∣∣
+

= −2kr−1Sle
±ilθ and

∂u0

∂θ

∣∣∣∣
+

= ∓2iSle
±ilθ

on ∂B. So, by taking f = g±l and g = g±p (or g = g∓p) and applying Lemma 9, we
obtain this lemma.

Now we denote X := R/r. It is important to estimate each ψj in view of formula
(5).

Lemma 11. We have that

|ψ0| ≤ C1r
2X3‖dΛB(ψ)‖L, |ψ±1| ≤ C1r

2X4‖dΛB(ψ)‖L

and

|ψ±l| ≤
C1

l
r2X l+1‖dΛB(ψ)‖L

for any integer l ≥ 2, where the positive constant C1 depends only on k.

Proof. We first note that ‖g±l‖H1/2(∂Ω) = (1 + l2)1/4R1/2 for any positive integer l.
It is easy to see that∣∣∣∣∫

∂Ω

dΛB(ψ)(gj) gj′ dσ

∣∣∣∣ ≤ ‖dΛB(ψ)(gj)‖H−1/2(∂Ω)‖gj′‖H1/2(∂Ω)

≤ ‖dΛB(ψ)‖L‖gj‖H1/2(∂Ω)‖gj′‖H1/2(∂Ω)

= (1 + j2)1/4(1 + (j′)2)1/4R ‖dΛB(ψ)‖L
= (1 + j2)1/4(1 + (j′)2)1/4rX ‖dΛB(ψ)‖L
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for any integers j, j′ 6= 0. On the other hand, we have

1

|Sl|
=
k + 1

l
X l

[
1− k − 1

k + 1

(
1

X

)2l
]
≤ 2(k + 1)

l
X l.

By taking l = p = 1 in the identity (12), we get

|ψ0| =
r

4|1− k|(1 + k)

1

S2
1

∣∣∣∣∫
∂Ω

dΛB(ψ)(g1) g−1 dσ

∣∣∣∣ ≤ 21/2(k + 1)

|1− k|
r2X3‖dΛB(ψ)‖L.

Likewise, taking l = 2 and p = 1 in the identity (12) gives

|ψ±1| ≤
101/4(k + 1)

2|1− k|
r2X4‖dΛB(ψ)‖L.

On the other hand, taking p = l ≥ 1 in the identity (11), we obtain

|ψ∓2l| =
r

4(1− k)2

1

S2
l

∣∣∣∣∫
∂Ω

dΛB(ψ)(g±l) g±l dσ

∣∣∣∣
≤ (k + 1)2

(1− k)2

(1 + l2)1/2

l2
r2X2l+1 ‖dΛB(ψ)‖L

≤ 23/2(k + 1)2

(1− k)2

1

2l
r2X2l+1 ‖dΛB(ψ)‖L.

In the same way, taking l ≥ 1 and p = l + 1 in the identity (11), we get

|ψ±(2l+1)| ≤
2 · 101/4(k + 1)2

(1− k)2

1

2l + 1
r2X(2l+1)+1 ‖dΛB(ψ)‖L.

The proof of the lemma is complete.

We now prove our main theorem.

Proof of Theorem 1. Note that the a priori assumption ‖ψ‖Hm(∂B) ≤ M is equiva-
lent to ∑

l∈Z

(1 + l2)m|ψl|2 ≤
2π

r
M2. (13)

We first consider A := ‖dΛB(ψ)‖2
L sufficiently small. Let 0 < t < 2 · 3−2mπM2r−1

be given. We remark that (2πM2/rt)1/2m > 3. Let N be the minimum integer
satisfying 2πM2N−2mr−1 ≤ t, namely,

N − 1 <

(
2πM2

rt

)1/2m

≤ N. (14)

11



One can see that N ≥ 4. Using Lemma 11, we have∑
|l|≤N−1

|ψl|2

≤ C2
1r

4X6‖dΛB(ψ)‖2
L + 2C2

1r
4X8‖dΛB(ψ)‖2

L + 2
N−1∑
l=2

C2
1

l2
r4X2(l+1)‖dΛB(ψ)‖2

L

≤ C2
1r

4

(
X6 + 2X8 + 2X2N

N−1∑
l=2

1

l2

)
A ≤ 5C2

1r
4X2NA.

On the other hand, we can estimate∑
|l|≥N

|ψl|2 ≤ (1 +N2)−m
∑
|l|≥N

(1 + l2)m|ψl|2 ≤ (1 +N2)−m
2π

r
M2 ≤ N−2m2π

r
M2 ≤ t

by estimate (13). Combining the estimates above and (14), we get that∑
l∈Z

|ψl|2 ≤ F (t),

where

F (t) := 5C2
1r

4X2
{

(2πM2/r)
1/2m

t−1/2m+1
}
A+ t.

Now we would like to show the estimate

F (t0) ≤ C2M
2r−1(logX)2m(− logA)−2m for some 0 < t0 < 2 · 3−2mπM2r−1, (15)

where the positive constant C2 depends only on k and m. We choose t0 such that

r4X2
{

(2πM2/r)
1/2m

t
−1/2m
0 +1

}
A = M2r−1(logX)2m(− logA)−2m,

i.e., we pick

t0 = 22m+1πM2r−1(logX)2m (logG(A,M, r,X))−2m ,

where G(A,M, r,X) := A−1(− logA)−2mM2r−5(logX)2mX−2. Then we have

F (t0) = 5C2
1M

2r−1(logX)2m(− logA)−2m + t0.

Therefore, it is enough to estimate t0. Now we fix η, η′ ∈ (0, 1) small enough such
that η + 2mη′ < 1 and put

A0 :=
[
(eη′)2mM2r−5(logX)2mX−8

]1/(1−η−2mη′)
.

Let 0 < A < min{A0, 1}, then we have

A1−η−2mη′ ≤ A1−η−2mη′

0 = (eη′)2mM2r−5(logX)2mX−8.

12



Consequently, we obtain

G(A,M, r,X) ≥ A−η(− logA)−2m
{

(eη′)−1A−η
′}2m

X6 ≥ A−ηX6 ≥

{
X6

A−η

since 0 < − log t ≤ (eη′)−1t−η
′

for all 0 < t < 1. Thus we deduce that

t0 ≤ 22m+1πM2r−1(logX)2m
(
logA−η

)−2m

= 22m+1πη−2mM2r−1(logX)2m (− logA)−2m

and
t0 ≤ 22m+1πM2r−1(logX)2m

(
logX6

)−2m
= 2 · 3−2mπM2r−1.

Summing up, we have proved that if 0 < A < min{A0, 1} then the estimate (15)
holds with C2 = 5C2

1 + 22m+1πη−2m. In other words, we obtain

‖ψ‖L2(∂B) =

(
r

2π

∑
l∈Z

|ψl|2
)1/2

≤
( r

2π
F (t0)

)1/2

≤
(
C2

2π

)1/2

M(logX)m(− logA)−m

for 0 < A < min{A0, 1}.
Next we consider the case where A0 ≤ A < 1. Note that

A0 =
[
(eη′)2mM2r−5(logX)2mX−8

]1/(1−η−2mη′) ≥ cX−8/(1−η−2mη′),

where c := min
{[

(eη′)2mM2
0 r
−5
0 (logX0)2m

]1/(1−η−2mη′)
, 1/2

}
. We remark that− log c >

0. So we can estimate

‖ψ‖L2(∂B) ≤ ‖ψ‖Hm(∂B) ≤M

≤ (− logA0)mM(− logA)−m ≤ Cm
3 M(logX)m(− logA)−m

for A0 ≤ A < 1 since

− logA0 ≤ − log(cX−8/(1−η−2mη′)) = − log c+
8

1− η − 2mη′
logX ≤ C3 logX,

where C3 := (− log c)/(logX0)+8/(1−η−2mη′). Thus we obtain estimate (4) with
C = 2−m min{(C2/2π)1/2, Cm

3 }.

4 Optimality of the stability estimate

In this section, we discuss the optimality of the stability estimate in the sense that
the polylogarithmic order m in estimate (4) can not be improved. We divide our
discussion into two parts. For the first part, we fix the constants k,m,R, r,M > 0.
In Theorem 1, we derived the estimate

‖ψ‖L2(∂B) ≤ C∗
∣∣log ‖dΛB(ψ)‖L

∣∣−m (16)

for any ψ ∈ Hm(∂B) satisfying ‖ψ‖Hm(∂B) ≤ M and ‖dΛB(ψ)‖L < 1, where C∗ is
independent of ψ. We now prove that the polylogarithmic order in (16) is optimal.
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Proposition 12. Let k,m,R, r,M, ε > 0 be fixed. Assume k 6= 1 and R > r. Then
there exists no positive constant C ′ which is independent of ψ such that the following
estimate holds:

‖ψ‖L2(∂B) ≤ C ′
∣∣log ‖dΛB(ψ)‖L

∣∣−m−ε (17)

for any ψ ∈ Hm(∂B) satisfying

‖ψ‖Hm(∂B) ≤M (18)

and
‖dΛB(ψ)‖L < 1. (19)

Proof. We prove this proposition by contradiction. That is, we assume that there ex-
ists C ′ which is independent of ψ such that (17) holds for all ψ ∈ Hm(∂B) satisfying
(18) and (19). Let µ be a positive integer. Put aµ := 2−1π−1/2r−1/2(1 + µ2)−m/2M .

Define a function ψ on ∂B by ψ̃(θ) = 2aµ cosµθ. Then we have

‖ψ‖Hm(∂B) = M and ‖ψ‖L2(∂B) = (1 + µ2)−m/2M. (20)

So, the function ψ satisfies the condition (18) in particular. Moreover, using Corol-
lary 8, we can see that

‖dΛB(ψ)‖L ≤ C0aµµ
3/2 1

{1− (r/R)2}7/2
(Rr)−1

( r
R

)µ
= C ′0(1 + µ2)−m/2µ3/2

( r
R

)µ
< C ′0µ

−m+3/2
( r
R

)µ
, (21)

where C ′0 := 2−1π−1/2C0MR−1r−3/2 {1− (r/R)2}−7/2
. Note that the constant C ′0 is

independent of µ. Hence the function ψ satisfies the condition (19) when µ is large
enough. Consequently, the estimate (17) holds for µ sufficiently large. By (20), (21)
and (17), we then obtain

(1 + µ2)−m/2M = ‖ψ‖L2(∂B) ≤ C ′
∣∣log ‖dΛB(ψ)‖L

∣∣−m−ε
< C ′

(
− log

{
C ′0µ

−m+3/2
( r
R

)µ})−m−ε
= C ′

(
− logC ′0 +

(
m− 3

2

)
log µ+ µ logX

)−m−ε
,

i.e.,

M ≤ C ′(1 + µ2)m/2
(
− logC ′0 +

(
m− 3

2

)
log µ+ µ logX

)−m−ε
(22)

for µ � 1. Recall that X := R/r. However, the right-hand side of (22) tends to
zero as µ→ +∞. This is a contradiction.
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In the second part, we discuss the dependency of the constant C∗ in (16) on R
and r. Fix r0 > 0 and X0 > 1. We have shown in Theorem 1 that C∗ in (16) satisfies

C∗ ≤ C]

[
log

(
R

r

)]m
(23)

for R, r > 0 with r ≤ r0 and R/r ≥ X0, where C] depends only on k,m, r0, X0,M .
Similar to Proposition 12, we can prove that the polylogarithmic order in (23) is
optimal, at least, when the constant R and the ratio R/r are large.

Proposition 13. Let k > 0 satisfy k 6= 1, m > 0, and M > 0. Given R0 > 0 and
X0 > 1. Let ε > 0. Then there exists no positive constant C ′′, depending only on
k,m,R0, X0,M and ε, such that for any

R ≥ R0,
R

r
≥ X0 (24)

and for any ψ ∈ Hm(∂B) satisfying

‖ψ‖Hm(∂B) ≤M and ‖dΛB(ψ)‖L < 1, (25)

the following estimate holds:

‖ψ‖L2(∂B) ≤ C ′′
[
log

(
R

r

)]m−ε ∣∣log ‖dΛB(ψ)‖L
∣∣−m. (26)

Proof. We also prove this proposition by contradiction. We assume that there exists
a positive constant C ′′ which depends only on k,m,R0, X0,M and ε such that for
any R, r > 0 satisfying (24) and for any ψ ∈ Hm(∂B) satisfying (25) the estimate
(26) holds.

Define a function ψ on ∂B by ψ̃(θ) = 2a2 cos 2θ, where a2 := 2−15−m/2 ×
π−1/2r−1/2M . Then we have that

‖ψ‖L2(∂B) = 5−m/2M, ‖ψ‖Hm(∂B) = M

and

‖dΛB(ψ)‖L ≤
21/25−m/2C0

π1/2
MR−5/2

{
1−

( r
R

)2
}−7/2 ( r

R

)1/2

≤ C ′′0

( r
R

)1/2

for r, R > 0 satisfying (24) as in the proof of Proposition 12, where

C ′′0 := 21/2π−1/25−m/2C0MR
−5/2
0 (1−X−2

0 )−7/2.

We remark that the constant C0 is independent of r, R > 0. Thus, the conditions
in (25) hold whenever R/r is large enough. By the assumptions, the estimate (26)
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holds for R/r � 1. It follows that

5−m/2M = ‖ψ‖L2(∂B) ≤ C ′′
[
log

(
R

r

)]m−ε ∣∣log ‖dΛB(ψ)‖L
∣∣−m

≤ C ′′
[
log

(
R

r

)]m−ε(
− log

{
C ′′0

( r
R

)1/2
})−m

= C ′′
[
log

(
R

r

)]m−ε [
1

2
log

(
R

r

)
− logC ′′0

]−m
→ 0 as

R

r
→ +∞,

which leads to a contradiction. The proposition is now proved.
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