
Reconstruction of discontinuities in systems

Gunther Uhlmann1 and Jenn-Nan Wang2

1Department of Mathematics, University of Washington, Box 354305, Seattle, WA 98195-4350,
USA.
2Department of Mathematics, Taida Institute for Mathematical Sciences, and NCTS (Taipei),
National Taiwan University, Taipei 106, Taiwan.

E-mail: gunther@math.washington.edu, jnwang@math.ntu.edu.tw

Abstract. We survey some recent results on the reconstruction of discontinuities by boundary
measurements for elasticity and related systems in two dimensions. Our main tool is a new type
of complex geometrical optics solutions.

1. Introduction

In this paper we consider the inverse boundary problem of reconstructing discontinuities inside
a plane domain filled with elastic, thermoelastic media, or incompressible fluid. We are
interested in designing a reconstruction algorithm which can determine as much information
of the discontinuities as possible by boundary measurements. In this study, we assume that the
medium is isotropic for those systems. A common feature of those systems is that they can be
reduced to a larger system with Laplacian as the leading term.

In general, inverse boundary value problems are a class of inverse problems where one
attempts to determine the internal parameters of body by making measurements only at
the surface of the body. A prototypical example that has received a lot of attention is
Electrical Impedance Tomography (EIT). In this inverse method one would like to determine
the conductivity distribution inside a body by making voltage and current measurements at the
boundary. This is also called Calderón problem [3]. The boundary information is encoded in
the Dirichlet to Neumann map associated to the conductivity equation. Sylvester and Uhlmann
[25] constructed complex geometrical optics (CGO) solutions for the conductivity equation. The
phase functions of these solutions are linear. CGO optics have been used in EIT and have been
instrumental in solving several inverse problems. We will not review these developments in
detail here; see [27] and [26] for references; other reviews in EIT are [2] and [4]. There are many
applications of EIT ranging from early breast cancer detection [29] to geophysical sensing for
underground objects, see [16, 21, 22, 24]. The article [25] and the ones reviewed in [26] assumes
that the measurements are made on the whole boundary. However, it is often possible to make
the measurements only on part of the boundary; this is the partial data problem. This is the
case for the applications in breast cancer detection and geophysical sensing mentioned above.
Recently, new CGO solutions that are useful for the partial data problem were constructed in
[18] for the conductivity equation and zeroth order perturbations of the Laplacian. The real part
of the phase of these solutions are limiting Carleman weights. They have been generalized to
first order perturbation of the Laplacian for scalar equations or systems in [5], [8], [23], and [28].
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Constructions of CGO solutions for the conductivity equation and zeroth order perturbations
of the Laplacian using hyperbolic geometry can be found in [15]; these have been applied to
determine electrical inclusions in [9].

In two dimensions, when the underlying equation has Laplacian as the leading part, we have
more freedom in choosing the complex phases for the CGO solutions. In particular any harmonic
function is a limiting Carleman weight and can be the real part of a CGO solution. Motivated
by this idea, a framework of constructing CGO solutions with general phases for systems with
Laplacian as the leading term has been given in [30]. Applications of these CGO solutions to the
reconstruction of discontinuities for the conductivity and the isotropic elasticity systems were
given in [30] and [31], respectively. The main theme of this paper is to give an overview of the
method used in [30] and [31]. To demonstrate the flexibility of our method, we also consider the
thermoelasticity system here. This is a new application.

The method developed here shares the same spirit as Ikehata’s enclosure method [10]. For
the two-dimensional problem, we would like to mention a very interesting result by Ikehata
in [12] where he introduced the Mittag-Leffler function in the object identification problem.
This has the property that its modulus grows exponentially in some cone and decays to zero
algebraically outside the same cone. Using the Mittag-Leffler function and shrinking the opening
angle of the cone, one can reconstruct precisely the shapes of some embedded objects such as
star-shaped objects. The numerical implementation of the Mittag-Leffler functions was carried
out by Ikehata and Siltanen in [13]. The main restriction of the method using the Mittag-Leffler
function is that it can be only applied to scalar equations with homogeneous background. That
is, they probe the region with harmonic functions.

The novelty of our method is its flexibility in treating scalar equations, and even
two-dimensional systems, with inhomogeneous background. Furthermore, for the object
identification problem in such general systems, we are able to achieve for these general systems
the analogous results as those in [12] and [13] for the conductivity equation with homogeneous
background. We would also like to point out that the Mittag-Leffler function is in the form of
infinite series. Therefore, to implement the Mittag-Leffler function numerically, one needs first
to do a suitable truncation. This clearly introduces a priori errors in the input (Dirichlet) data.
On the other hand, our special CGO solutions are in closed form. So we can prescribe the exact
Dirichlet data in the inverse problem using our method.

We also would like to compare our method and that in [9]. The real parts of the phase
functions of CGO solutions in [9] are radially symmetric. So their probing fronts are circles or
spheres. Moreover, the construction of CGO solutions in [9] is based on the hyperbolic geometry.
It has not been developed to studying more general equations or systems. The advantage of our
method lies in the freedom of choosing the phase functions of CGO solutions. Consequently,
we are able to determine more information in the object identification problem in the two
dimensional case than [9] does. On the other hand, since the real parts of the phase functions in
our CGO solutions are not necessarily radially symmetric, we can create different probing fronts
by simply rotating the phase functions.

2. Elasticity and related systems

In this section we list the systems considered in this work. Let Ω be an open domain in R2 with
smooth boundary ∂Ω.

2.1. Isotropic elasticity
The domain Ω is now modeled as an inhomogeneous, isotropic, elastic medium characterized
by the Lamé parameters λ(x) and µ(x). Assume that λ(x) ∈ C2(Ω), µ(x) ∈ C4(Ω) and the
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following inequalities hold

µ(x) > 0 and λ(x) + 2µ(x) > 0 ∀ x ∈ Ω (strong ellipticity).

We consider the static isotropic elasticity system without sources

div(λ(divu)I + 2µS(∇u)) = 0 in Ω. (2.1)

Here and below, S(A) = (A + AT )/2 denotes the symmetric part of the matrix A ∈ C2×2.
Equivalently, if we denote σ(u) = λ(divu)I + 2µS(∇u) the stress tensor, then (2.1) becomes

divσ = 0 in Ω.

We will use the reduced system derived by Ikehata [11]. This reduction was also mentioned

in [26]. Let
(

w
g

)
satisfy

∆
(

w
g

)
+ A(x)

( ∇g
divw

)
+ Q(x)

(
w
g

)
= 0,

where

A(x) =

(
2µ−1/2(−∇2 + ∆)µ−1 −∇ log µ

(0†)T λ+µ
λ+2µµ1/2

)
, 0† =

(
0
0

)
,

and

Q(x) =

(
−µ−1/2(2∇2 + ∆)µ1/2 2µ−5/2(∇2 −∆)µ ∇µ

− λ−µ
λ+2µ(∇µ1/2)T −µ∆µ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := µ−1/2w + µ−1∇g − g∇µ−1

satisfies (2.1). A similar form was also used in [6] for studying the inverse boundary value
problem for the isotropic elasticity system.

2.2. Stokes system
Let µ(x) ∈ C4(Ω̄) and µ(x) > 0 for all x ∈ Ω̄. Here µ is called the viscosity function. In most
literature µ is a constant. But our method works equally well even when µ is a variable function.
Suppose that u = (u1, u2) and p satisfy the Stokes system:

{
div(µS(∇u))−∇p = 0 in Ω,

divu = 0 in Ω.
(2.2)

Here u and p represent the velocity field and the pressure, respectively. Motivated by the
isotropic elasticity, we set u = µ−1/2w + µ−1∇g − (∇µ−1)g and

p = ∇µ1/2 · w + µ1/2divw + 2∆g = div(µ1/2w) + 2∆g,

then (u, p) is a solution of (2.2) provided
(

w
g

)
satisfies

∆
(

w
g

)
+ A(x)

( ∇g
divw

)
+ Q(x)

(
w
g

)
= 0 (2.3)
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with

A(x) =
(−2µ1/2∇2µ−1 −µ−1∇µ

(0†)T µ1/2

)

and

Q =
(−2µ−1/2∇2µ1/2 − µ−1/2∆µ1/2 −4∇2µ−1∇µ1/2 − 2µ1/2div(∇µ−1)

µ(∇µ−1/2)T −µ∆µ−1

)
.

The relation between the isotropic elasticity and the Stokes system was first observed in [7].

2.3. Thermoelasticity
We consider a linear elastic body with mechanically and thermically isotropic medium. Let q
be the temperature and u the thermoelastic displacement. The static thermoelastic equations
are described as follows: {

div(σ(u)− γq) = 0 in Ω,

∆q = 0 in Ω,
(2.4)

where γ = 2µα(1+τ)
3(1−2τ) . Here α is the thermo expansion coefficient and τ is the Poisson ratio. Since

the addition of temperature function q is a lower order in the first equation of (2.4), the same

reduction for the isotropic elasticity still works for (2.4). Precisely, let




w
g
q
q


 satisfy

∆




w
g
q
q


 + A(x)



∇g

divw
∇q


 + Q(x)




w
g
q
q


 = 0,

where

A(x) =




2µ−1/2(−∇2 + ∆)µ−1 −∇ log µ −γI2

(0†)T λ+µ
λ+2µµ1/2 (0†)T

0‡ 0† 0‡


 ,

0‡ =
(

0 0
0 0

)
,

and a suitable Q. Then u = µ−1/2w + µ−1∇g − g∇µ−1 and q satisfy (2.4).

In summary, all systems considered in this section can be transformed to the following general
form:

PU := ∆xU + A1(x)∂x1U + A2(x)∂x2U + Q(x)U = 0 in Ω, (2.5)

where U(x) = (u1(x1, x2), · · · , un(x1, x2))T with n ∈ N, ∆x = ∂2
x1

+∂2
x2

, and A1, A2, Q are n×n
matrices. To construct special solutions for systems (2.1), (2.2), and (2.4), it is enough to work
on system (2.5).

3. Complex Geometrical Optics Solutions

A framework for constructing special CGO solutions for (2.5) has already given in [30]. We
review the procedure here. Let Ω̃ be an open bounded domain in R2 and V (y) = V (y1, y2)
satisfy

∆yV + Ã1∂y1V + Ã2∂y2V + Q̃V = 0 in Ω̃. (3.1)
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Assume that Ã1, Ã2 ∈ C2( ¯̃Ω) and Q̃ ∈ L∞(Ω̃). Given ω ∈ R2 with |ω| = 1, we can find V (y) of
(3.1) having the form

V (y) = ey·(ω+iω⊥)/h(L̃ + R̃), (3.2)

where L̃ is independent of h and R̃ satisfies

‖∂αR̃‖L2(Ω̃) ≤ Ch1−α, ∀ |α| ≤ 2. (3.3)

To construct V having the form (3.2), (3.3), we can follow the approach in [8] and [28] which
are based on [5] and [18]. The main tool are Carleman estimates.

With V (y) at hand, we can construct CGO solutions with general phases. We now choose
ω = (1, 0), ω⊥ = (0, 1), i.e., y · (ω + iω⊥) = y1 + iy2, and denote y = y1 + iy2, x = x1 + ix2.
Let Ω0 be an open subdomain of Ω. Suppose that A1, A2 ∈ C2(Ω̄0) and Q ∈ L∞(Ω0). Let
y = ρ(x) = y1(x1, x2) + iy2(x1, x2) be a conformal map in Ω0. Define U(x) = V (y(x))
and Ω̃ = ρ(Ω0). Suppose that ρ−1 exists on Ω̃. Let Â1(y) = (A1∂x1y1 + A2∂x2y1) ◦ ρ−1(y),
Â2(y) = (A1∂x1y2 +A2∂x2y2)◦ρ−1(y), and Q̂(y) = (Q◦ρ−1)(y) and g(y) = |(ρ′ ◦ρ−1)(y)|2. Now
if we choose V (y) satisfying

∆yV + g(y)−1Â1(y)∂y1V + g(y)−1Â2(y)∂y2V + g(y)−1Q̂V = 0 in Ω̃, (3.4)

then U(x) satisfies (2.5) in Ω0. According to the construction given previously, let V (y) be a
solution of (3.4) having the form

V (y) = e(y1+iy2)/h(L̃ + R̃),

where
‖∂αR̃‖L2(Ω̃) ≤ Ch1−α, ∀ |α| ≤ 2.

Denote y1(x1, x2) = ϕ(x1, x2) and y2(x1, x2) = ψ(x1, x2). We then obtain CGO solutions for
(2.5) in Ω0:

U(x) = e(ϕ+iψ)/h(L + R)

with L = L̃ ◦ ρ, R = R̃ ◦ ρ, and

‖∂αR‖L2(Ω0) ≤ Ch1−α, ∀ |α| ≤ 2. (3.5)

Due to the conformality of ρ, ϕ and ψ are harmonic functions in Ω0. Conversely, given any
ϕ harmonic in Ω0 with ∇ϕ 6= 0 in Ω0, we can find a harmonic conjugate ψ of ϕ in Ω0 so that
ρ = ϕ+ iψ is conformal in Ω0. The freedom of choosing ϕ plays a key role in our reconstruction
method for the object identification problem. One useful example is ρ = cN (x−x0)N for N ≥ 2,
where cN ∈ C with |cN | = 1 and x0 /∈ Ω̄. Another issue is that we only construct CGO solutions
in a domain Ω0, which is a subdomain of Ω. We shall discuss how to extend these CGO solutions
to Ω when we consider the concrete cases described in Section 2.

4. Inverse problem for the Stokes system

Using CGO solutions constructed above, we can investigate the reconstruction of inclusions
or cavities embedded in a body with isotropic elastic medium. A complete discussion of this
problem including numerical results will appear in a forthcoming paper [31]. In this work
we consider the problem of reconstructing an obstacle immersed in an incompressible fluid
by boundary measurements. The uniqueness of this inverse problem was proved in [1] and a
reconstruction method based on complex spherical waves was given in [8]. Assume that D is
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a subset of Ω such that D ⊂ Ω and Ω \ D is connected. Let u = (u1, u2) be a vector-valued
function satisfying 




div(µS(∇u))−∇p = 0 in Ω \D,

divu = 0 in Ω \D,

u = 0 on ∂D,

u = f on ∂Ω.

(4.1)

The boundary condition f satisfies the compatibility condition
∫

∂Ω
f · nds = 0, (4.2)

where n is the unit outer normal to ∂Ω. For any given f ∈ H1/2(∂Ω), there exists a unique
solution (u, p) ∈ H1(Ω)× L2(Ω) satisfying (4.1) provided

∫

Ω
p dx = 0. (4.3)

From now on, we assume that p satisfies the normalizing condition (4.3). Therefore, we can
define the Dirichlet-to-Neumann map (or velocity-to-force map) ΛD : H1/2(∂Ω) → H−1/2(∂Ω)
by

ΛDf = σ(u, p)n|∂Ω,

where σ(u, p) = µS(∇u)− pI2. The inverse problem we study here is to reconstruct D from the
knowledge of ΛD.

The starting point of our method is the following energy gap relation:
∫

D
|S(∇u0)|2dx ≤ 〈(ΛD − Λ0)(f̄), f〉 ≤ C

( ∫

D
|S(∇u0)|2dx +

∫

D
|u0|2dx

)
, (4.4)

where Λ0 is the Dirichlet-to-Neumann map associated with the unperturbed system:




div(µS(∇u0))−∇p0 = 0 in Ω,

divu0 = 0 in Ω,

u0 = f on ∂Ω.

(4.5)

Next, we want to construct special solutions of (4.5) such that (4.4) will yield the information
of ∂D.

Let ρN = cN (x − x0)N = ϕN + iψN be defined as in the previous section. Without loss of
generality, we take x0 = 0. We observe that ϕN > 0 in some open cone ΓN with an opening
angle π/N . Pick a such cone ΓN and assume that ΓN ∩ Ω = Ω0 6= ∅. As outlined in Section 2,
let

UN,h(x) =
(

wN,h

gN,h

)
= e(ϕN+iψN )/h(L + R)

solve (2.3) in Ω0. Then

uN,h = µ−1/2wN,h + µ−1∇gN,h − gN,h∇µ−1

with a suitable pN,h satisfy the unperturbed Stokes system (2.2) in Ω0. Now to get solutions of
(2.2) in the whole domain Ω, we use a cut-off technique. For s > 0, let `s = {x ∈ ΓN : ϕN = s−1}.
This is the level curve of φN in ΓN . Let 0 < t < t0 such that

(∪s∈(0,t)`s) ∩ Ω 6= ∅
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and choose a small ε > 0. Define a cut-off function φN,t(x) ∈ C∞(R2) so that φN,t(x) = 1 for
x ∈ (∪s∈(0,t+ε/2)`s) ∩ Ω and is zero for x ∈ Ω̄ \ (∪s∈(0,t+ε)`s). We now define

uN,t,h(x) = φN,te
−t−1/huN,h

for x ∈ (∪s∈(0,t+ε)`s) ∩ Ω. So uN,t,h can be regarded as a function in Ω which is zero outside of
Ω0. The pressure pN,t,h is defined similarly. Unfortunately, (uN,t,h, pN,t,h) is not a solution of
(2.2) in Ω. Furthermore, the boundary value uN,t,h|∂Ω can not be used in (4.5) since it does not
satisfy the compatibility condition (4.2).

To set up appropriate Dirichlet conditions, we adopt the arguments used in [8]. We are going
to use the Dirichlet data fN,t,h = uN,t,h|∂Ω − cN,t,hn = φN,t,he−t−1/huN,h|∂Ω − cN,t,hn, where

cN,t,h =
∫

∂Ω
uN,t,h|∂Ω · nds.

It is clear that fN,t,h satisfies (4.2). At the first look, the addition of the constant cN,t,h seems
a bit awkward. So we may be able to omit cN,t,h in practice. But we can show that cN,t,h is
actually decaying exponentially as h → 0. To see this, we first observe that

∫

∂Ωt+ε

uN,h · nds = 0,

where Ωt+ε = ∪s∈(0,t+ε)`s. Thus we have that

cN,t,h =
∫

(∪s∈(0,t+ε)`s)∩∂Ω
φN,t,he−t−1/huN,h · nds

=
∫

∂Ωt+ε

φN,t,he−t−1/huN,h · nds

=
∫

∂Ωt+ε

(1− φN,t,h)e−t−1/huN,h · nds.

Using the decaying property of e−t−1/huN,h, we can derive the decaying behavior of cN,t,h.
To handle the fact that (uN,t,h, pN,t,h) is not a solution for the Stokes system, we consider

the boundary value problem:




div(µS(∇vN,t,h))−∇qN,t,h = 0 in Ω,

divvN,t,h = 0 in Ω,

vN,t,h = fN,t,h on ∂Ω.

(4.6)

Using the regularity theorem for the Stokes system, arguing as in [8], we can show that

‖uN,t,h − vN,t,h‖H1(Ω) ≤ Ce−ε′/h (4.7)

as h → 0.
Now going back to the integral identities (4.4), we define

E(N, t, h) = 〈(ΛD − Λ0)fN,t,h, fN,t,h〉
and obtain∫

D
|S(∇vN,t,h)|2dx ≤ E(N, t, h) ≤ C

( ∫

D
|S(∇vN,t,h)|2dx +

∫

D
|vN,t,h|2dx

)
. (4.8)

Since the difference of uN,t,h and vN,t,h is exponentially small in h, we are allowed to replace
vN,t,h by uN,t,h in (4.8). Using the method in [30] or [31], we can prove the following theorem.
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Theorem 4.1 Let the curve `t be defined as above. Then we have:
(i) if `t ∩ D̄ = ∅ then there exist C1 > 0, ε1 > 0, and h1 > 0 such that E(N, t, h) ≤ C1e

−ε1/h for
all h ≥ h1;
(ii) if `t ∩D 6= ∅ then there exist C2 > 0, ε2 > 0, and h2 > 0 such that E(N, t, h) ≥ C2e

ε2/h for
all h ≥ h2.

Using Theorem 4.1, we can identify some part of ∂D by examining the asymptotic behavior
of E(N, t, h) in h for various t’s. Moreover, by taking N arbitrarily large (the opening angle of
ΓN becomes arbitrarily small), we can reconstruct even more information of ∂D. For instance,
theoretically, we are able to reconstruct the full information of a star-shaped obstacle D from
ΛD. To end this paper, we provide an algorithm of our method.

Step 1. Pick x0 /∈ Ω̄. Given N ∈ N and choose a cone ΓN which intersects Ω.
Step 2. Start with t > 0 such that `t ∩ Ω 6= ∅. Construct uN,t,h and determine the Dirichlet

data fN,t,h = uN,t,h|∂Ω − cN,t,hn.
Step 3. Evaluate E(N, t, h).
Step 4. If E(N, t, h) is arbitrarily small, then increase t and repeat Step 2 and 3; if E(N, t, h)

is arbitrarily large, then decrease t and repeat Step 2 and 3.
Step 5. Repeat Step 4 to get a good approximation of ∂D in ΓN .
Step 6. Move the cone ΓN around x0 by taking a different cN in ϕN = Re(cNxN ). Repeat Step

2–5.
Step 7. Choose a larger N and a new cone ΓN . Repeat Step 2–6.
Step 8. Pick a different x0 and repeat Step 1–7.
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