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Abstract

In this work we study the inverse boundary value problem of determin-
ing the refractive index in the acoustic equation. It is known that this inverse
problem is ill-posed. Nonetheless, we show that the ill-posedness decreases
when we increase the frequency and the stability estimate changes from log-
arithmic type for low frequencies to a Lipschitz estimate for large frequen-
cies.

1 Introduction
In this paper we study the issue of stability for determining the refractive index in
the acoustic equation by boundary measurements. It is well known that this in-
verse problem is ill-posed. However, one anticipates that the stability will increase
if one increases the frequency. This phenomenon was observed numerically in the
inverse obstacle scattering problem [5]. Several rigorous justifications of the in-
creasing stability phenomena in different settings were obtained by Isakov et al
[6, 7, 8, 10, 11]. Especially, in [8], Isakov considered the Helmholtz equation with
a potential

−∆u− k2u+ qu = 0 in Ω. (1.1)
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He obtained stability estimates of determining q by the Dirichlet-to-Neumann map
for different ranges of k’s. All of these results demonstrate the increasing stability
phenomena in k. For the case of the inverse source problem for Helmholtz equa-
tion and an homogeneous background it was shown in [3] that the ill-posedness
of the inverse problem decreases as the frequency increases.

In this paper, we study the acoustic wave equation. Let Ω ⊂ Rn be a bounded
domain, where n ≥ 3. Let ∂Ω be smooth. We consider the equation(

∆ + k2q(x)
)
u(x) = 0 in Ω, (1.2)

where the real-valued q(x) is the refractive index. Assume that the kernel of the
operator ∆ + k2q(x) on H1

0 (Ω) is trivial. Associated with (1.2), we define the
Dirichlet-to-Neumann map (DN map) Λ : H1/2(∂Ω)→ H−1/2(∂Ω) by

Λf =
∂u

∂ν

∣∣∣∣
∂Ω

,

where u is the solution to (1.2) with the Dirichlet condition u = f on ∂Ω, and ν
is the unit outer normal vector of ∂Ω. The uniqueness of this inverse problem is
well known [13]. This inverse problem is notoriously ill-posed. For this aspect,
Alessandrini proved that the stability estimate for this problem is of log type [1]
and Mandache showed that the log type stability is optimal [9]. In this paper, we
would like to focus on how the stability behaves when the frequency k increases.
Now we state the main result.

Theorem 1.1. Assume that q1(x) and q2(x) are two sound speeds with associ-
ated DN maps Λ1 and Λ2, respectively. Let s > (n/2) + 1, M > 0. Suppose
‖ql‖Hs(Ω) ≤ M (l = 1, 2) and supp(q1 − q2) ⊂ Ω. Denote q̃ a zero extension of
q1 − q2. Then there exists a constant C1, depending only on n, s, and Ω, such that
if k2 ≥ 1/(C1M) and ‖Λ1 − Λ2‖∗ ≤ 1/e then

‖q̃‖H−s(Rn) ≤
C

k2
exp(Ck2)‖Λ1 − Λ2‖∗ + C

(
k2 + log

1

‖Λ1 − Λ2‖∗

)−(2s−n)

(1.3)
holds, where C > 0 depends only on n, s,Ω,M and supp(q1 − q2). Here ‖·‖∗ is
the operator norm from H1/2(∂Ω) into H−1/2(∂Ω).

Remark 1.2. 1. The estimate (1.3) consists two parts – Lipschitz and logarithmic
estimates. As k increases, the logarithmic part decreases and the Lipschitz part
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becomes dominated. In other words, the ill-posedness is alleviated when k is
large.

2. We would like to remark on the constant C exp(Ck2)/k2 appearing in the Lips-
chitz part of (1.3). 1/k2 comes from k2q in the equation, which appears naturally,
while, exp(Ck2) is due to the fact that we use the complex geometrical optics so-
lutions in the proof. Even so, we expect that the there is an exponential growth of
the constant with frequency since we do not assume any geometrical restriction
on q(x) other than regularity. For the wave equation it has been shown by Burq
for the obstacle problem [4] that the local energy decay is log-slow and this is due
to the presence of trapped rays. Notice that in our case we can have trapped rays.
For the case of simple sound speeds we expect that there is no exponential increase
in the constant. In [12] a Hölder stability estimate was obtained for the hyperbolic
DN map for generic simple metrics. For very general metrics there is not known
modulus of continuity for the hyperbolic DN map, see [2] for convergence results.

However, in practice, k is fixed and so is the constant. Therefore, one should
expect to obtain a better resolution of q from boundary measurements when the
chosen k is large.

3. Unlike the result in [8, Theorem 2.1] (for equation (1.1)) where the stability
estimates were derived in different ranges of k, estimate (1.3) is valid for all range
of k provided k2 ≥ 1/(C1M) .

The proof of Theorem 1.1 makes use of Alessandrini’s arguments [1] and the
CGO solutions constructed in [13]. The main task is to keep track of how k
appears in the proof of the stability estimates.

2 Complex geometrical optics solutions
In this section, we construct CGO solutions to the equation (1.2) by using the idea
in [13]. The main point is to express the dependence of constants on k explicitly.
We first state two easy consequences from the results in [13].

Lemma 2.1 (see [13, Proposition 2.1 and Corollary 2.2]). Let s ≥ 0 be an integer.
Let ε0 > 0. Let ξ ∈ Cn satisfy ξ · ξ = 0 and |ξ| ≥ ε0. Then for any f ∈ Hs(Ω)
there exists w ∈ Hs(Ω) such that w is a solution to

∆w + ξ · ∇w = f in Ω
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and satisfies the estimate

‖w‖Hs(Ω) ≤
C0

|ξ|
‖f‖Hs(Ω),

where a positive constant C0 depends only on n, s, ε0 and Ω.

By using this lemma, we can obtain a solution to the equation

∆ψ + ξ · ∇ψ + gψ = f (2.1)

satisfying some decaying property as in the following lemma.

Lemma 2.2 ([13, Theorem 2.3 and Corollary 2.4]). Let s > n/2 be an integer.
Let ε0 > 0. Let ξ ∈ Cn satisfy ξ · ξ = 0 and |ξ| ≥ ε0. Let f, g ∈ Hs(Ω). Then
there exists C1 > 0 depending only on n, s, ε0 and Ω such that if

|ξ| ≥ C1‖g‖Hs(Ω)

then there exists a solution ψ ∈ Hs(Ω) to the equation (2.1) satisfying the estimate

‖ψ‖Hs(Ω) ≤
2C0

|ξ|
‖f‖Hs(Ω),

where C0 is the positive constant in Lemma 2.1.

The needed CGO solutions are constructed as follows.

Proposition 2.3. Let s > n/2 be an integer. Let ε0 > 0. Let ξ ∈ Cn satisfy
ξ · ξ = 0 and |ξ| ≥ ε0. Define the constants C0 and C1 as in Lemma 2.2. Then if

|ξ| ≥ C1k
2‖q‖Hs(Ω)

then there exists a solution u to the equation (1.2) with the form of

u(x) = exp

(
ξ

2
· x
)(

1 + ψ(x)
)
, (2.2)

where ψ has the estimate

‖ψ‖Hs(Ω) ≤
2C0k

2

|ξ|
‖q‖Hs(Ω).

Proof. Substituting (2.2) into (1.2), we have

∆ψ + ξ · ∇ψ + k2qψ = −k2q.

Then by Lemma 2.2, we obtain this proposition.
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3 Proof of stability estimate
This section is devoted to the proof of Theorem 1.1. We begin with Alessandrini’s
identity.

Proposition 3.1. Let ul be a solution to (1.2) with q = ql, then we have

k2

∫
Ω

(q2 − q1)u1u2 dx =
〈
(Λ1 − Λ2)u1|∂Ω, u2|∂Ω

〉
.

Now we would like to estimate the Fourier transform of the difference of two
q’s. We denote F(f) the Fourier transformation of a function f .

Lemma 3.2. Let s > (n/2) + 1 be an integer and M > 0. Assume ‖ql‖Hs(Ω) ≤
M , supp(q1 − q2) ⊂ Ω and k2 ≥ 1/C1M , where C1 is the constant defined in
Lemma 2.2 corresponding to ε0 = 1. Let q̃ be a zero extension of q1 − q2 and
a0 ≥ C1. Suppose that χ ∈ C∞0 (Ω) satisfies χ ≡ 1 near supp(q1 − q2). Then for
r ≥ 0 and η ∈ Rn with |η| = 1 the following statements hold: if 0 ≤ r ≤ a0k

2M
then

|F q̃(rη)| ≤
C‖χ‖Hs(Ω)

a0

‖q̃‖H−s(Rn) +
C

k2
exp(Ca0k

2M)‖Λ1 − Λ2‖∗ (3.1)

holds; if r ≥ C1k
2M then

|F q̃(rη)| ≤
CMk2‖χ‖Hs(Ω)

r
‖q̃‖H−s(Rn) +

C

k2
exp(Cr)‖Λ1 − Λ2‖∗ (3.2)

holds, where C > 0 depends only on n, s and Ω.

Proof. In the following proof, the letter C stands for a general constant depending
only on n, s and Ω. By Proposition 2.3, we can construct CGO solutions ul(x) to
the equation (1.2) with q = ql having the form of

ul(x) = exp

(
ξl
2
· x
)(

1 + ψl(x)
)

for l = 1, 2, and we have∫
Ω

(q2 − q1) exp

(
1

2
(ξ1 + ξ2) · x

)
(1 + ψ1 + ψ2 + ψ1ψ2) dx

=
1

k2

〈
(Λ1 − Λ2)u1|∂Ω, u2|∂Ω

〉
(3.3)
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from Proposition 3.1, where ψl satisfies

‖ψl‖Hs(Ω) ≤
Ck2

|ξl|
‖ql‖Hs(Ω)

if ξl ∈ Cn satisfies ξl · ξl = 0, |ξl| ≥ 1 and

|ξl| ≥ C1k
2‖ql‖Hs(Ω). (3.4)

We remark that ‖ψl‖Hs(Ω) ≤ C also holds. Indeed, we have

‖ψl‖Hs(Ω) ≤
Ck2‖ql‖Hs(Ω)

|ξl|
≤

Ck2‖ql‖Hs(Ω)

C1k2‖ql‖Hs(Ω)

=
C

C1

= C.

Now, let r ≥ 0, and η ∈ Rn satisfy |η| = 1. We assume that α, ζ ∈ Rn satisfy

α · η = α · ζ = η · ζ = 0 and |ζ|2 = |α|2 + r2. (3.5)

Define ξ1 and ξ2 as

ξ1 = ζ + iα− irη and ξ2 = −ζ − iα− irη.

Then we have

ξl · ξl = 0, |ξl|2 = |ζ|2 + |α|2 + r2 = 2|ζ|2 (l = 1, 2) and
1

2
(ξ1 + ξ2) = −irη.

Hence by (3.3), we immediately obtain that

F q̃(rη) = −
∫

Ω

(q2 − q1) exp(−irη · x)(ψ1 + ψ2 + ψ1ψ2) dx

+
1

k2

〈
(Λ1 − Λ2)u1|∂Ω, u2|∂Ω

〉
(3.6)

provided |ξl| ≥ 1 and (3.4) are satisfied. We first estimate the first term on the
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right hand side of (3.6) by∣∣∣∣∫
Ω

(q2 − q1) exp(−irη · x)(ψ1 + ψ2 + ψ1ψ2) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

(q2 − q1) exp(−irη · x)χ(ψ1 + ψ2 + ψ1ψ2) dx

∣∣∣∣
≤ ‖q2 − q1‖H−s(Ω)

∥∥χ(ψ1 + ψ2 + ψ1ψ2)
∥∥
Hs(Ω)

≤ ‖q̃‖H−s(Rn)‖χ‖Hs(Ω)

(
‖ψ1‖Hs(Ω) + ‖ψ2‖Hs(Ω) + ‖ψ1‖Hs(Ω)‖ψ2‖Hs(Ω)

)
≤ ‖q̃‖H−s(Rn)‖χ‖Hs(Ω)

(
Ck2

√
2|ζ|

+
Ck2

√
2|ζ|

+ C
Ck2

√
2|ζ|

) 2∑
l=1

‖ql‖Hs(Ω)

=
Ck2‖χ‖Hs(Ω)

|ζ|
‖q̃‖H−s(Rn)

2∑
l=1

‖ql‖Hs(Ω).

since χ(ψ1 + ψ2 + ψ1ψ2) ∈ Hs
0(Ω) and s > n/2.

On the other hand, by taking R large enough such that Ω ⊂ BR(0), we have

∥∥ul|∂Ω

∥∥
L2(∂Ω)

≤ |∂Ω|1/2‖ul‖C0(Ω) ≤ |∂Ω|1/2 exp

(
|Re ξl|

2
R

)(
1 + ‖ψl‖L∞(Ω)

)
≤ C exp

(
|Re ξl|

2
R

)(
1 + ‖ψl‖Hs(Ω)

)
≤ C exp

(
|Re ξl|

2
R

)
(1 + C) = C exp

(
|ζ|
2
R

)
.

Likewise, we can get that

∥∥∇ul|∂Ω

∥∥
L2(∂Ω)

=

∥∥∥∥ξl2 ul + exp

(
ξl
2
· •
)

(∇ψl)
∥∥∥∥
L2(∂Ω)

≤
√

2|ζ|
2

C exp

(
|ζ|
2
R

)
+ |∂Ω|1/2 exp

(
|ζ|
2
R

)
‖∇ψl‖C0(Ω)

≤ C|ζ| exp

(
|ζ|
2
R

)
+ C exp

(
|ζ|
2
R

)
‖∇ψl‖Hs−1(Ω)

≤ C|ζ| exp

(
|ζ|
2
R

)
+ C exp

(
|ζ|
2
R

)
‖ψl‖Hs(Ω)

≤ C exp(C|ζ|)
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since s− 1 > n/2. Consequently, we have∥∥ul|∂Ω

∥∥
H1/2(∂Ω)

≤ C exp(C|ζ|).

Therefore, we can estimate the second term of the right-hand side of (3.6) by∣∣〈(Λ1 − Λ2)u1|∂Ω, u2|∂Ω

〉∣∣ ≤ ‖Λ1 − Λ2‖∗
∥∥u1|∂Ω

∥∥
H1/2(∂Ω)

∥∥u2|∂Ω

∥∥
H1/2(∂Ω)

≤ C exp(C|ζ|)‖Λ1 − Λ2‖∗.

Summing up, we have shown that for r > 0 and for η ∈ Rn with |η| = 1 if we
take α and ζ satisfying the conditions (3.5), |ζ| ≥ 2−1/2 and

|ζ| ≥ 2−1/2C1k
2‖ql‖Hs(Ω) (3.7)

then

|F q̃(rη)| ≤
Ck2‖χ‖Hs(Ω)

|ζ|
‖q̃‖H−s(Rn)

2∑
l=1

‖ql‖Hs(Ω)

+
C

k2
exp(C|ζ|)‖Λ1 − Λ2‖∗ (3.8)

holds.
Now assume that ‖ql‖Hs(Ω) ≤M and k2 ≥ 1/C1M . Thus if

|ζ| ≥ C1k
2M (3.9)

holds, then (3.7) and |ζ| ≥ 2−1/2 are satisfied. Pick a0 ≥ C1. We first consider
the case where 0 ≤ r ≤ a0k

2M . By choosing α and ζ satisfying

α · η = α · ζ = η · ζ = 0, |ζ| = a0k
2M(≥ r) and |α| =

√
(a0k2M)2 − r2

both (3.5) and (3.9) are then satisfied since a0 ≥ C1. Hence we obtain (3.8), that
is (3.1). On the other hand, when r ≥ C1k

2M , we can choose α = 0, η · ζ = 0
and |ζ| = r. Then (3.5), (3.9) are satisfied and thus (3.8) holds and consequently
(3.2) is valid.

Now we prove our main result.
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Proof. As above, C denotes a general constant depending only on n, s and Ω.
Written in polar coordinates, we have

‖q̃‖2
H−s(Rn) = C

∫ ∞
0

∫
|η|=1

|F q̃(rη)|2(1 + r2)−srn−1 dη dr

= C

(∫ a0k2M

0

∫
|η|=1

|F q̃(rη)|2(1 + r2)−srn−1 dη dr

+

∫ T

a0k2M

∫
|η|=1

|F q̃(rη)|2(1 + r2)−srn−1 dη dr

+

∫ ∞
T

∫
|η|=1

|F q̃(rη)|2(1 + r2)−srn−1 dη dr

)
=: C(I1 + I2 + I3), (3.10)

where a0 ≥ C1 and T ≥ a0k
2M are parameters which will be chosen later. Here

C1 is the constant given in Lemma 3.2. From now on, we take k2 ≥ 1/(C1M).
Our task now is to estimate each integral separately. We begin with I3. Since

|F q̃(rη)| ≤ C‖q1 − q2‖L2(Ω), q1 − q2 ∈ Hs
0(Ω), and s > n/2, we have that

I3 ≤ C

∫ ∞
T

‖q1 − q2‖2
L2(Ω)(1 + r2)−srn−1 dr ≤ CT−m‖q1 − q2‖2

L2(Ω)

≤ CT−m
(
ε‖q1 − q2‖2

H−s(Ω) +
C

ε
‖q1 − q2‖2

Hs(Ω)

)
≤ CT−m

(
ε‖q̃‖2

H−s(Rn) +
M2

ε

)
(3.11)

for ε > 0, where m := 2s− n.
On the other hand, by Lemma 3.2, we can estimate

I1 ≤ C

∫ a0k2M

0

(1 + r2)−srn−1 dr

×

[
‖χ‖2

Hs(Ω)

a2
0

‖q̃‖2
H−s(Rn) +

exp(2Ca0k
2M)

k4
‖Λ1 − Λ2‖2

∗

]

≤ C

∫ ∞
0

(1 + r2)−srn−1 dr

[
C2
χ

a2
0

‖q̃‖2
H−s(Rn) +

exp(Ca0k
2M)

k4
‖Λ1 − Λ2‖2

∗

]
=
CC2

χ

a2
0

‖q̃‖2
H−s(Rn) +

C exp(Ca0k
2M)

k4
‖Λ1 − Λ2‖2

∗, (3.12)
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where χ ∈ C∞0 (Ω) satisfies χ ≡ 1 near supp(q2 − q1) and Cχ := ‖χ‖Hs(Ω). In
view of∫ T

a0k2M

(1 + r2)−srn−3 dr ≤
∫ T

a0k2M

r−2s+n−3 dr ≤ C(a0k
2M)−2s+n−2

≤ C(a0k
2M)−2(C1k

2M)−m ≤ C

a2
0k

4M2

and ∫ T

a0k2M

exp(Cr)(1 + r2)−srn−1 dr ≤ exp(CT )

∫ T

a0k2M

(1 + r2)−srn−1 dr

≤ exp(CT )

∫ ∞
0

(1 + r2)−srn−1 dr

≤ C exp(CT ),

we have that

I2 ≤ CM2k4‖χ‖2
Hs(Ω)‖q̃‖2

H−s(Rn)

∫ T

a0k2M

(1 + r2)−srn−3 dr

+
C

k4
‖Λ1 − Λ2‖2

∗

∫ T

a0k2M

exp(Cr)(1 + r2)−srn−1 dr

≤
CC2

χ

a2
0

‖q̃‖2
H−s(Rn) +

C

k4
exp(CT )‖Λ1 − Λ2‖2

∗. (3.13)

Combining (3.10)–(3.13) gives

‖q̃‖2
H−s(Rn) ≤ C(I1 + I2 + I3)

≤
CC2

χ

a2
0

‖q̃‖2
H−s(Rn) +

C exp(Ca0k
2M)

k4
‖Λ1 − Λ2‖2

∗

+
CC2

χ

a2
0

‖q̃‖2
H−s(Rn) +

C

k4
exp(CT )‖Λ1 − Λ2‖2

∗

+ CT−m
(
ε‖q̃‖2

H−s(Rn) +
M2

ε

)
=

(
C2

2C
2
χ

a2
0

+ C3T
−mε

)
‖q̃‖2

H−s(Rn)

+
C

k4

(
exp(Ca0k

2M) + exp(CT )
)
‖Λ1 − Λ2‖2

∗ +
CM2

ε
T−m,
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where positive constants C2 and C3 depend only on n, s and Ω.
Now we pick a0 and ε as

a0 = 2C2Cχ ≥ C1 and ε =
Tm

4C3

(if needed, we take C2 large enough). We then obtain that

‖q̃‖2
H−s(Rn) ≤

C

k4

[
exp(2C2CCχk

2M) + exp(CT )
]
‖Λ1 − Λ2‖2

∗ + CT−2mM2

=
C

k4
exp(Cak2)A+ CΦ(T ) (3.14)

for T ≥ a0k
2M = 2C2Cχk

2M = ak2, where

Φ(T ) :=
1

k4
exp(C4T )A+M2T−2m,

A := ‖Λ1 − Λ2‖2
∗, a := 2C2CχM

2 and C4 > 0 depends only on n, s and Ω.
To continue, we consider two cases:

ak2 ≤ p log
1

A
(3.15)

and
ak2 ≥ p log

1

A
, (3.16)

where p will be determined later (see (3.24)).
For the first case (3.15), our aim is to show that there exists T ≥ ak2 such that

Φ(T ) ≤ 2C5

(
k2 + log

1

A

)−2m

. (3.17)

Substituting (3.17) into (3.14) clearly implies (1.3). Now to derive (3.17), it is
enough to prove that

1

k4
exp(C4T )A ≤ C5

(
k2 + log

1

A

)−2m

(3.18)

and

M2T−2m ≤ C5

(
k2 + log

1

A

)−2m

. (3.19)

11



Remark that (3.19) in equivalent to

T ≥ C
−1/2m
5 M1/m

(
k2 + log

1

A

)
,

which holds if
T ≥ C

−1/2m
5 M1/m

(
1 +

p

a

)
log

1

A
(3.20)

because of (3.15). Setting T = p log(1/A) (≥ ak2 by (3.15)), then (3.20) holds
provided

p ≥ C
−1/2m
5 M1/m

(
1 +

p

a

)
. (3.21)

Now we turn to (3.18). It is clear that (3.18) is equivalent to

C4p log
1

A
≤ logC5 + 2 log k2 + log

1

A
− 2m log

(
k2 + log

1

A

)
(3.22)

since T = p log(1/A). It follows from (3.15) that

log

(
k2 + log

1

A

)
≤ log

(
p

a
log

1

A
+ log

1

A

)
= log

(p
a

+ 1
)

+ log log
1

A
.

Hence (3.22) is verified if we can show that

C4p log
1

A
≤ logC5 − 2 log(MC1) + log

1

A
− 2m

(
log
(p
a

+ 1
)

+ log log
1

A

)
,

i.e.

(1− C4p) log
1

A
− 2m log log

1

A
+ logC5 − 2 log(MC1)− 2m log

(p
a

+ 1
)
≥ 0

(3.23)
for log(1/A) ≥ 1. Now we choose

p =
1

2C4

. (3.24)

Then (3.23) becomes

log
1

A
− 4m log log

1

A
+ 2 logC5 − 4 log(MC1)− 4m log

(p
a

+ 1
)
≥ 0. (3.25)
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Notice that

inf
0<A≤1/e

(
log

1

A
− 4m log log

1

A

)
= inf

z≥1
(z − 4m log z)

≥ inf
z>0

(z − 4m log z) = 4m log
e

4m
.

Hence if we choose C5 such that

C5 ≥ (MC1)2
(p
a

+ 1
)2m

(
4m

e

)2m

(3.26)

then (3.25) follows. Finally, we take

C5 := max

{
C2

1

(
4m

e

)2m

, p−2m

}
M2

(
1 +

p

a

)2m

,

which depends only on n,Ω, s,M and χ. With such choice of C5, the conditions
(3.26) and (3.21) hold, and thus estimate (3.17) is satisfied.

Next we consider the second case (3.16). By (3.14) with T = ak2, we get that

‖q̃‖2
H−s(Rn) ≤

C

k4
exp(Cak2)A+

C

k4
exp(C4ak

2)A+ CM2(ak2)−2m

≤ C

k4
exp(Cak2)A+ CM2a−2mk−4m.

Hence it remains to show that

k−4m ≤ C6

(
k2 + log

1

A

)−2m

,

i.e.

k2 ≥ C
−1/2m
6

(
k2 + log

1

A

)
. (3.27)

Since

k2 + log
1

A
≤
(

1 +
a

p

)
k2

by (3.16), we have (3.27) if we take C6 large enough so that

C6 ≥
(

1 +
a

p

)2m

.

The proof is completed.
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