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Abstract. We discuss the inverse boundary value problem of determining the conduc-

tivity in two dimensions from the pair of all input Dirichlet data supported on an open

subset Γ+ and all the corresponding Neumann data measured on an open subset Γ−. We

prove the global uniqueness under some additional geometric condition, in the case where

Γ+ ∩ Γ− = ∅, and we prove also the uniqueness for a similar inverse problem for the sta-

tionary Schrödinger equation.

The key of the proof is the construction of appropriate complex geometrical optics solu-

tions using Carleman estimates with a singular weight.

1. Introduction

In a bounded simply connected domain Ω ⊂ R2 with smooth boundary ∂Ω, we consider

(1.1)
div(γ∇u) = 0 in Ω,

u
∣∣
∂Ω

= f,

where a positive function γ on Ω models the electrical conductivity, u ∈ H1(Ω) is a potential,

and f ∈ H 1
2 (∂Ω) is a given boundary voltage potential and is regarded as input. The inverse

problem of determining γ by all Cauchy data is called also the Calderón problem ([4]). It is

well known ([9]) that γ ∈ C2(Ω) is uniquely determined by the set of all Cauchy data f and
∂u
∂ν

on the whole boundary: (
u|∂Ω, γ

∂u

∂ν

∣∣∣
∂Ω

)
.

The regularity condition C2 on γ was relaxed in [2] and [1]. In particular in [1] the uniqueness

was shown for arbitrary L∞ conductivities. Since f is an input and ∂u
∂ν

is the corresponding

output, it is practically desirable that we take inputs and outputs on subboundaries, not on

the whole boundary ∂Ω. Let ∂Ω = Γ− ∪ Γ+ ∪ Γ0 where Γ− ∩ Γ+ = Γ0 ∩ Γ± = ∅. Then it is

important to discuss the uniqueness by all pairs of Dirichlet data on subboundary Γ+ and

the corresponding Neumann data on subboundary Γ−:

(1.2) Aγ =

{(
u|Γ+ , γ

∂u

∂ν

∣∣∣
Γ−

)
; div(γ∇u) = 0 in Ω, u

∣∣
Γ0∪Γ−

= 0, u|Γ+ = f

}
.

We consider that the input is located on Γ+, while the output is measured on Γ−. In the

case where Γ+ = Γ− and is an arbitrary open subset of the boundary, the global uniqueness

was shown in [7] within γ ∈ C3+α(Ω), with some α ∈ (0, 1).
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The result in [7] is the best possible within Γ+ = Γ−, but it is still desirable to exploit

the case Γ+ ∩ Γ− = ∅, because the input subboundary Γ+ and the output subboundary Γ−
should be separated from the practical viewpoint and one needs the uniqueness supporting

such practical configurations for determining a conductivity. To the best knowledge of the

authors, there are no publications discussing disjoint subboundaries. The main purpose of

this article is to establish the global uniqueness by the Cauchy data defined by (1.2) with

Γ+ ∩ Γ− = ∅.
For the statement of the main result, we need the following geometric assumption on the

position of the sets Γ+,Γ−,Γ0 on ∂Ω.

Assumption A. Let Γ+, Γ−, Γ0 ⊂ ∂Ω be non-empty open subsets of the boundary such

that ∂Ω = Γ+ ∪ Γ− ∪ Γ0, Γ+ ∩ Γ− = Γ± ∩ Γ0 = ∅, Γ± = ∪2
j=1Γ±,j, Γ0 = ∪4

k=1Γ0,k, where

Γ±,j, j = 1, 2, Γ0,k, k = 1, 2, 3, 4 are not empty open connected subsets of ∂Ω and mutually

disjoint. Then ∂Ω is separated into

Γ0,1,Γ−,1,Γ0,2,Γ+,1,Γ0,3,Γ−,2,Γ0,4,Γ+,2

with clockwise order.

We note that Γ+,Γ− can be arbitrarily small provided that the above separation condition

is satisfied.

Figure 1

Now we are ready to state our main result:

Theorem 1.1. We suppose Assumption A. Let γj > 0 on Ω and γj ∈ C4+α(Ω), j = 1, 2 for

some α > 0. Assume Aγ1 = Aγ2 and that γ1 = γ2 on Γ+ ∪ Γ−. Then γ1 ≡ γ2 on Ω.

Next for the Schrödinger equation

∆u+ qu = 0 in Ω,
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we discuss the problem of determining a complex-valued potential q by the set of Cauchy

data:

(1.3) Cq =

{(
u|Γ+ ,

∂u

∂ν

∣∣∣
Γ−

)
; (∆ + q)u = 0 in Ω, u|Γ0∪Γ− = 0, u ∈ H1(Ω)

}
.

Here, when the voltage is applied on Γ+, the current is measured on subboundary Γ−.

In the case of full Cauchy data: Γ+ = Γ− = ∂Ω, the uniqueness in determining the

potential q in the two dimensional case was initially proved under some restrictions on the

potential q in [9], [10], [11]. Recently [3] removed these restrictions for the case of full Cauchy

data.

In the case where Γ+ = Γ− and is an arbitrary open subset of the boundary, [7] showed

that the potential q can be uniquely determined.

We state our second main result for the Schrödinger equation in a case where Γ+∩Γ− = ∅:

Theorem 1.2. We suppose Assumption A. Let qj ∈ C2+α(Ω), j = 1, 2 for some α > 0 and

let qj be complex-valued. Then if

Cq1 = Cq2 ,

then we have

q1 ≡ q2 in Ω.

In terms of γ1 = γ2 on Γ+ ∪ Γ−, the proof of Theorem 1.1 is reduced to Theorem 1.2

because the change of variables

q = −
∆
√
γ

√
γ
, u∗ = u

√
γ

reduces the conductivity equation in u to the Schrödinger equation in u. Therefore we mainly

prove Theorem 1.2. A brief outline of the paper is as follows. In section 2 we show some

preliminary results and estimates needed in the construction of the appropriate complex

geometrical optics solutions. In section 3 we construct these solutions. In section 4 we prove

Theorem 2.

2. Preliminary results

Throughout the paper we use the following notations.

Notations. i =
√
−1, x1, x2, ξ1, ξ2 ∈ R1, z = x1 + ix2, ζ = ξ1 + iξ2, z denotes the complex

conjugate of z ∈ C. We identify x = (x1, x2) ∈ R2 with z = x1 + ix2 ∈ C. ∂z = 1
2
(∂x1− i∂x2),

∂z = 1
2
(∂x1 + i∂x2). The tangential derivative on the boundary is given by ∂~τ = ν2

∂
∂x1
−ν1

∂
∂x2
,

where ν = (ν1, ν2) is the unit outer normal to ∂Ω, B(x̂, δ) = {x ∈ R2; |x − x̂| < δ}. For

f : R2 → R1, f ′′ is the Hessian matrix with entries ∂2f
∂xk∂xj

, L(X, Y ) denotes the Banach space

of all bounded linear operators from a Banach space X to another Banach space Y . We set

[P,Q] = PQ−QP for operators P and Q.
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Let Φ(z) = ϕ(x1, x2)+iψ(x1, x2) ∈ C2(Ω) be a holomorphic function in Ω with real-valued

ϕ and ψ:

(2.1) ∂zΦ(z) = 0 in Ω.

Denote by H the set of critical points of the function Φ:

H = {z ∈ Ω; ∂zΦ(z) = 0}.

Assume that Φ has no critical points on Γ+ ∪ Γ−, and that all the critical points are nonde-

generate:

(2.2) H ∩ ∂Ω = {∅}, ∂2
zΦ(z) 6= 0, ∀z ∈ H.

Then we know that Φ has only a finite number of critical points which

H = {x̃1, ..., x̃`}.

Assume that Φ satisfies

(2.3) Γ0 = {x ∈ ∂Ω; (ν,∇ϕ) = 0}, Γ− = {x ∈ ∂Ω; (ν,∇ϕ) < 0}.

Consider the boundary value problem{
L(x,D)u = ∆u+ qu = f in Ω,

u|∂Ω = 0.

For this problem we have the following Carleman estimate with boundary terms.

Proposition 2.1. Suppose that Φ satisfies (2.1) - (2.3) and u ∈ H1
0 (Ω), q ∈ L∞(Ω). Then

there exist τ0 = τ0(L,Φ) and C1 = C1(L,Φ), independent of u and τ , such that for all |τ | > τ0

|τ |‖ueτϕ‖2
L2(Ω) + ‖ueτϕ‖2

H1(Ω) + ‖∂u
∂ν
eτϕ‖2

L2(Γ0∪Γ−) + τ 2

∥∥∥∥∣∣∣∣∂Φ

∂z

∣∣∣∣ueτϕ∥∥∥∥2

L2(Ω)

≤ C1

(
‖(L(x,D)u)eτϕ‖2

L2(Ω) + |τ |
∫

Γ+

∣∣∣∣∂u∂ν
∣∣∣∣2 e2τϕdσ

)
.(2.4)

Let us introduce the operators:

∂−1
z g =

1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1,

∂−1
z g = − 1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1 = ∂−1

z g.

Then we have (e.g., p.47 and p.56 in [12]):

Proposition 2.2. A) Let m ≥ 0 be an integer number and α ∈ (0, 1). Then

∂−1
z , ∂−1

z ∈ L(Cm+α(Ω), Cm+α+1(Ω)).

B) Let 1 ≤ p ≤ 2 and 1 < γ < 2p
2−p . Then ∂−1

z , ∂−1
z ∈ L(Lp(Ω), Lγ(Ω)).

We define two other operators:

RΦ,τg = eτ(Φ−Φ)∂−1
z (geτ(Φ−Φ)), R̃Φ,τg = eτ(Φ−Φ)∂−1

z (geτ(Φ−Φ)).

In [8] we prove the following:
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Proposition 2.3. Let g ∈ Cα(Ω) for some positive α. The function RΦ,τg is a solution to

(2.5) ∂zRΦ,τg − τ(∂zΦ)RΦ,τg = g in Ω.

The function R̃Φ,τg solves

(2.6) ∂zR̃Φ,τg + τ(∂zΦ)R̃Φ,τg = g in Ω.

Using the stationary phase argument we show

Proposition 2.4. Let g ∈ L1(Ω) and the function Φ satisfy (2.1), (2.2). Then

lim|τ |→+∞

∫
Ω

geτ(Φ(z)−Φ(z))dx = 0.

Denote

Oε = {x ∈ Ω; dist(x, ∂Ω) ≤ ε}.

We have

Proposition 2.5. Let α > 0, g ∈ C2+α(Ω), g|Oε = 0 and g|H = 0. Then

(2.7)

∥∥∥∥RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥R̃Φ,τg −
g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞.

Consider the following problem

(2.8) L(x,D)u = feτϕ in Ω, u|Γ0∪Γ− = geτϕ.

We have the following Carleman estimate.

Proposition 2.6. (see [8]) Let q ∈ L∞(Ω). There exists τ0 > 0 such that for all τ > τ0 there

exists a solution to the boundary value problem (2.8) such that

(2.9)
1√
|τ |
‖∇ue−τϕ‖L2(Ω) +

√
|τ |‖ue−τϕ‖L2(Ω) ≤ C2(‖f‖L2(Ω) + ‖g‖

H
1
2 ,τ (Γ0)

).

Let ε be a sufficiently small positive number. If suppf ⊂ Gε = {x ∈ Ω; dist(x,H) > ε} and

g = 0 then there exists τ0 > 0 such that for all τ > τ0 there exists a solution to the boundary

value problem (2.8) such that

(2.10) ‖∇ue−τϕ‖L2(Ω) + |τ |‖ue−τϕ‖L2(Ω) ≤ C3(ε)‖f‖L2(Ω).

We have

Proposition 2.7. Let q ∈ L∞(Ω), and let supp g ⊂ Γ− and g/
√
|∂νϕ| ∈ L2(Γ−). Then there

exists τ0 > 0 such that for all τ > τ0 there exists a solution to (2.8) such that√
|τ |‖ue−τϕ‖L2(Ω) ≤ C4‖g/

√
|∂νϕ|‖L2(Γ−).

For completeness, we give the proof of Proposition 2.7 in Appendix.
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3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions for the Schrödinger

equation ∆ + qj with qj satisfying the conditions of Theorem 1.2. Consider

(3.1) L1(x,D)u = ∆u+ q1u = 0 in Ω.

We will construct solutions to (3.1) of the form

(3.2)

u1(x) = eτΦ(z)(a(z)+a0(z)/τ)+eτΦ(z)(a(z) + a1(z)/τ)+eτϕu−+eτϕu11+eτϕu12, u1|Γ0∪Γ− = 0.

Thanks to Assumption A, the set Γ0 consists of four arcs : Γ0 = Γ0,1 ∪ Γ0,2 ∪ Γ0,3 ∪ Γ0,4,

the set Γ− consists of two arcs Γ− = Γ−,1 ∪ Γ−,2 and the set Γ+ also consists of two arcs

Γ+ = Γ+,1 ∪ Γ+,2. Denote the endpoints of the arc Γ0,j as x̂j,±. Henceforth let a sufficiently

large m ∈ N be fixed (e.g., m = 100).

Proposition 3.1. Let x̃ ∈ Ω be an arbitrary point. There exists a smooth holomorphic

function a in Ω such that

a(x̃) 6= 0, Re a|Γ0 = 0, ∇ka(x̂j,±) = 0 ∀k ∈ {1, . . . ,m}, ∀j ∈ {0, . . . , 4}.

Proof. Consider the following linear operator

R(v) = (w(x̃), w(x̂j,±), . . . , ∂mz w(x̂j,±)),

where

∂z̄w = 0 in Ω, Rew = v on ∂Ω, supp v ⊂ Γ+.

Clearly the image of the operator R is closed. Let b(x) be a holomorphic function in Ω such

that b(x̃) = 1 and Re b|Γ0∪Γ− = 0. By Proposition 5.1 in Appendix, there exists a sequence

of holomorphic functions {wk}∞k=1 ⊂ Cm+α(Ω̄) such that

wk → 0 + iIm b in Cm+α(Γ0 ∪ Γ−) and wk(x̃)→ 0.

Using classical results on solvability of the Cauchy-Riemann equations, we construct a se-

quence of holomorphic functions w̃k such that

w̃k → 0 in Cm+α(Ω̄), Re w̃k = Rewk on Γ0 ∪ Γ−.

Consider the sequence vk = b+ (w̃k − wk). We have R(vk)→ (1, 0, . . . , 0). The proof of the

proposition is completed. �

3.1. Construction of the phase function

Without loss of generality, using some conformal mapping if necessary, we may assume that

Γ− and Γ+ are part of the line {x2 = 0} and the domain Ω itself is located below the line

x2 = 0.

We construct a holomorphic function Φ with domain ΩΦ ⊃ Ω satisfying (2.1), (2.2) and

(3.3) Im Φ|Γ0 = 0,
∂Re Φ

∂ν
|Γ− < 0,

∂Re Φ

∂ν
|Γ+ > 0.
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Here the domain ΩΦ with sufficiently smooth boundary ∂ΩΦ can be chosen to satisfy:

(3.4) Ω ⊂ ΩΦ, Γ0 ⊂ ∂ΩΦ, (Γ+ ∪ Γ−) ∩ ∂ΩΦ = ∅.

Therefore, thanks to Assumption A, the set ∂ΩΦ \ ∂Ω consists of four disconnected curves

which we denote as ΓΦ,1,ΓΦ,2, ΓΦ,3,ΓΦ,4. Counting clockwise, we assume that ΓΦ,1 is located

between Γ0,1 and Γ0,2, ΓΦ,2 located between Γ0,2 and Γ0,3, ΓΦ,3 located between Γ0,3 and Γ0,4,

ΓΦ,4 located between Γ0,4 and Γ0,1. Assume in addition that each component ΓΦ,k can be

parameterize by the function γ̃k ∈ C12[x̂k,+, x̂k+1,−], where x̂k,+, x̂k+1,− are the endpoints of

the arcs Γ0,k and x̂5,− = x̂1,−.

Figure 2

Let us start the construction of the function Φ. Consider the functions γj with domain R1

such that γj is positive on (x̂j,+, x̂j+1,−), otherwise γj is zero. Moreover we require that

dkγj
dtk

(x̂j,+) =
dkγj
dtk

(x̂j+1,−) = 0 ∀k ∈ {0, . . . , 10}, d11γj
dt11

(x̂j,+) 6= 0,
d11γj
dt11

(x̂j+1,−) 6= 0.

There exists some small positive ε̂ such that

(3.5)

γj(x1) = (x1−x̂j,+)11 ∀x1 ∈ (x̂j,+, x̂j,++ε̂), γj(x1) = (x̂j+1,−−x1)11 ∀x1 ∈ (x̂j+1,−−ε̂, x̂j+1,−).

We introduce the domain Ωδ for any small positive δ as follows. From below it is bounded

by the boundary of ∂Ω and from above by segments Γ0,k and the graphs of δγj.

By νδ we denote the outward unit normal derivative to ∂Ωδ and by ~τδ we denote the

clockwise unit tangential vector on ∂Ωδ. We set

Γδ,k = {(x1, δγk(x1))|x1 ∈ [xk,+, xk+1,−]}.

Let C1, C2, C3, C4 be rational positive numbers:

(3.6) Ck =
mk

nk
mk, nk ∈ N, k = 1, 2, 3, 4,
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where the greatest common divisor of mk, nk ∈ Z is 1 and ψ̃ be a harmonic function in Ω

such that ψ̃ is continuous on Ω̄ and

(3.7)



ψ̃ = C1 on Γ0,1, ψ̃ = C3 on Γ0,3;

ψ̃ = −C2 on Γ0,2, ψ̃ = −C4 on Γ0,4;

∂~τ ψ̃ < 0 on (x̂1,+, x̂2,−) ∪ (x̂3,+, x̂4,−);

∂~τ ψ̃ > 0 on (x̂2,+, x̂3,−) ∪ (x̂4,+, x̂1,−);

ψ̃ ∈ C5(∂Ω), ψ̃ ∈ C∞(∂Ω \ ∪4
k=1Γ0,k).

Moreover we assume that

limx1→x̂k,++0∂x1ψ̃(x1, 0)/(x̂k,+ − x1)6 < 0 k = 1, 3,

limx1→x̂k,++0∂x1ψ̃(x1, 0)/(x̂k,+ − x1)6 > 0 k = 2, 4,

limx1→x̂k,−+0∂x1ψ̃(x1, 0)/(x̂k,− − x1)6 < 0 k = 2, 4,

limx1→x̂k,−−0∂x1ψ̃(x1, 0)/(x̂k,− − x1)6 > 0 k = 1, 3.

Let function ψδ be the harmonic function in Ωδ such that for any j ∈ {1, 2, 3, 4}

(3.8) ψδ = ψ̃ on ∪4
k=1 Γ0,k, ψ̃δ(x1, δγj(x1)) = ψ̃(x1, 0) on [x̂j,+, x̂j+1,−].

For all sufficiently small δ, by (3.7), counting clockwise, the function ψδ is monotone decreas-

ing on the arcs between Γ0,1 and Γ0,2, and Γ0,3 and Γ0,4, and ψδ is monotone increasing on the

arcs between Γ0,2 and Γ0,3, and between Γ0,4 and Γ0,1. Once the function ψδ is constructed,

using the Cauchy-Riemann equations, we construct the function ϕδ such that the function

ϕδ + iψδ is holomorphic. The following inequalities are true for all sufficiently small positive

δ

(3.9)
∂ϕδ
∂νδ
|Γδ,1∪Γδ,3 < 0,

∂ϕδ
∂νδ
|Γδ,2∪Γδ,4 > 0,

limx1→x̂k,++0
∂ϕδ
∂νδ

(x1, δγk(x1))/(x̂k,+ − x1)6 > 0 k = 1, 3,(3.10)

limx1→x̂k,+−0
∂ϕδ
∂νδ

(x1, δγk−1(x1))/(x̂k,− − x1)6 > 0 k = 2, 4.

limx1→x̂k,++0
∂ϕδ
∂νδ

(x1, δγk+1(x1))/(x̂k,+ − x1)6 < 0 k = 2, 4,(3.11)

limx1→x̂k,+−0
∂ϕδ
∂νδ

(x1, δγ5−k(x1))/(x̂k,− − x1)6 < 0 k = 1, 3.

At the endpoints of Γ0,2 and Γ0,4, the function ψδ reaches its minimum and at the endpoints

of Γ0,1 and Γ0,3, the function ψδ reaches its maximum. By (3.8) we have

(3.12) (ϕδ, ψδ)→ (ϕ̃, ψ̃) in C2(Ω̄) as δ → +0.

Here ϕ̃ is a harmonic function in Ω such that ∂z̄(ϕ̃+ iψ̃) ≡ 0.

By (3.9)-(3.11) for all sufficiently small positive δ, the holomorphic function ϕδ + iψδ
satisfies (2.3).
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Consider the domain

G− = {(x1, x2); x̂2,+ ≤ x1 ≤ x̂3,−,−δγ2(x1) ≤ x2 ≤ 0}
∪{(x1, x2); x̂4,+ ≤ x1 ≤ x̂1,−,−δγ4(x1) ≤ x2 ≤ 0}.

We claim that there exists a positive constant Cδ such that

(3.13) ϕδ(x)− ϕδ(x1,−x2) ≥ Cδ`(x) ∀x ∈ G−,
∂ϕδ
∂x2

(x) ≤ −Cδ`1(x) ∀x ∈ G−,

where `(x) = miny∈{x̂2,+,x̂4,+ x̂3,−,x̂1,−} |x1−y|7|x2| and `1(x) = miny∈{x̂2,+,x̂4,+ x̂3,−,x̂1,−} |x1−y|6.
Indeed, suppose that the second inequality in (3.13) fails for all small positive δ. By (3.9)

and (3.12), this is possible only for a sequence of the points xδ such that it converges to

the set D− = {x1,+, x2,−, x3,+, x4,−}. Taking a subsequence if necessary, we may assume

that xδ converges to one point of the set D−. Let it be the point x̂2,+. By the Cauchy-

Riemann equations, ∂ϕδ
∂νδ

= −∂ψδ
∂~τδ

for any point of ∂Ωδ. Therefore by (3.10), there exist

positive constants Ĉ and ε, independent of δ, such that

∂ϕδ
∂νδ
≤ −Ĉ(x1 − x̂1,+)6 on {x; x ∈ Γδ,2, dist(x̂2,+, x) < ε}.

Taking into account that by (3.5) ~νδ = (8(x1 − x̂2,+)7, 1)/(1 + 64(x1 − x̂2,+)14)
1
2 , we obtain

∂ϕδ
∂x2

(x) ≤ −Ĉ
2

(x1 − x̂2,+)6 ∀x ∈ {(x1, x2); x1 ∈ [x̂2,+, x̂2,+ + ε], x2 = δγ2(x1)}.

Using (3.5), (3.12) and the Taylor’s formula for any x ∈ {(x1, x2); x1 ∈ [x̂2,+, x̂2,+ +

ε],−δγ2(x1) ≤ x2 ≤ δγ2(x1)} we have

∂ϕδ
∂x2

(x1, x2) =
∂ϕδ
∂x2

(x1, δγ2(x1)) +
∂2ϕδ
∂x2

2

(x1, ζ)(x2 − δγ2(x1))

≤ −Ĉ
2

(x1 − x̂2,+)6 + 2C5γ2(x1)

= −Ĉ
4

(x1 − x̂2,+)6 + 2C(x1 − x̂2,+)11 ≤ −C6

4
(x1 − x̂2,+)6.(3.14)

Therefore we complete the proof of the second inequality in (3.13)

Let x ∈ G−. Using (3.14) we have

ϕδ(x)− ϕδ(x1,−x2) ≤ ϕδ(x1, 0)− ϕδ(x) =∫ 0

x2

∂ξϕδ(x1, ξ)dξ ≤ −
C6

2

∫ 0

x2

(x1 − x̂2,+)6dξ = −C6

2
(x1 − x̂2,+)6x2.(3.15)

The proof of (3.13) is completed.

Consider the domain

G+ = {(x1, x2); x̂2,+ ≤ x1 ≤ x̂3,−,−δγ2(x1) ≤ x2 ≤ 0}
∪{(x1, x2); x̂4,+ ≤ x1 ≤ x̂1,−,−δγ4(x1) ≤ x2 ≤ 0}.
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Similarly one can prove that for all sufficiently small positive δ, there exists a positive

constant C̃δ such that for any x in G+

(3.16) ϕδ(x)− ϕδ(x1,−x2) ≤ −C̃δ ˜̀(x) and
∂ϕδ
∂x2

(x) ≥ C̃δ ˜̀1(x),

where ˜̀(x) = miny∈{x̂2,+,x̂4,+,x̂1,−,x̂3,−} |x1−y|7|x2| and ˜̀
1(x) = miny∈{x̂2,+,x̂4,+,x̂1,−,x̂3,−} |x1−y|6.

At this point we fix the parameter δ such that (3.13) and (3.16) are valid. The holomorphic

function ϕδ + iψδ satisfies (2.3) and all the interior critical points (if they exist) are nonde-

generate. This function may have some critical points in the set {x̂j,±; j = 1, 2, 3, 4}. Let

the tangential derivative of ψδ be not equal to zero on some open set Γ̃. By Corollary 5.1 in

Appendix, there exists a harmonic function ϕ̂+ iψ̂ such that Im ψ̂ = 0 on ∂Ωδ and ∂ϕ̂
∂~τ
|x̂j,± is

not equal to zero for all j. Then the function ϕδ + εϕ̂+ i(ψδ + ψ̂) does not have critical points

on the set {x̂j,±; j = 1, 2, 3, 4} for all small positive ε. In fact this function can not have more

than one interior critical point. Indeed it is known (see e.g., [13]) that if x̂ is the interior

critical point of the harmonic function ψ, then the set {x ∈ ∂Ω; ψ(x) = ψ(x̂)} consists of

at least four points. Moreover the set {x; ψ(x) = ψ(x̂)} consists of two continuous curves

intersecting at x̂. These curves divide Ω into four domains: Ω = ∪4
k=1Ωk. If there exists

another interior critical point x̂1, then it belongs to some domain Ωk. However in this case

it is impossible that there exist four different points xj from ∂Ωk such that ψ(x̂1) = ψ(xj).

The construction of of the weight function Φ is completed. If an interior critical point of Φ

exists, then we denote it by x̃.

3.2. Construction of the amplitude

The amplitude function a(z) is not identically zero on Ω and has the following properties:

(3.17) a ∈ C6(ΩΦ), ∂za ≡ 0, Re a|Γ0 = 0, |a(x)| ≤ C7|x− x̂j,±|m ∀j ∈ {1, 2, 3, 4},

where m ∈ N is sufficiently large (e.g., m = 100). Such a function can be constructed in the

following way: Using a C4 conformal mapping Π we map the domain ΩΦ into a bounded

domain O with ∂O ∈ C∞. Applying Proposition 3.1 we construct a holomorphic function A
such that A is sufficiently smooth on O, ReA|Π(Γ0) = 0 and ∂kzA(x̂j,±) = 0 for k ∈ {0, ...,m}.
Then we set a(x) = A ◦ Π.

Let the polynomials M1(z) and M3(z̄) satisfy

(3.18) ∂jz(∂
−1
z (aq1)−M1)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, 2, 3, 4}, j = 0, 1, 2,

(3.19) ∂jz̄(∂
−1
z (aq1)−M3)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, 2, 3, 4}, j = 0, 1, 2,

and

(3.20) ∂kzM1(x̂j,±) = ∂kz̄M3(x̂j,±) = 0 ∀k ∈ {3, . . . ,m} and ∀j ∈ {1, 2, 3, 4}.

By (3.18)-(3.20) and (3.17) we have

(3.21)

|∂−1
z (aq1)−M1(z)| ≤ C8|x− x̂k,±|m, |∂−1

z (aq1)−M3(z)| ≤ C9|x− x̂k,±|m ∀k ∈ {1, 2, 3, 4}.



INVERSE BOUNDARY VALUE PROBLEM BY PARTIAL BOUNDARY DATA 11

Finally a0, a1 ∈ C6(Ω̄Φ) are holomorphic functions such that

(a0 + a1)|Γ0 =
(∂−1
z (aq1)−M1)

4∂zΦ
+

(∂−1
z (aq1)−M3)

4∂zΦ
,

and there exists a positive constant C such that

(3.22) |ak(x)| ≤ C9|x− x̂j,±|3 ∀j ∈ {1, 2, 3, 4}, ∀k ∈ {0, 1}.

3.3. Construction of u−
We introduce the function u−(τ, ·) by

(3.23) eτϕu−(τ, x) = −χτ (eτΨâ+ eτΨ̃â) + wτ (x)eτϕ,

where Ψ(z) is the holomorphic function defined by

(3.24) Ψ(z) = ϕ(x1,−x2)− iψ(x1,−x2) x ∈ G− ∪ G+.

In order to construct wτ , we introduce the following functions

(3.25) â(x1, x2) = Re a(x1,−x2)− iIm a(x1,−x2) x ∈ G− ∪ G+

and

(3.26) âk(x1, x2) = Re ak(x1,−x2)− iIm ak(x1,−x2) x ∈ G− ∪ G+, k ∈ {0, 1}.

The function χτ is constructed in the following way. Let µ ∈ C∞0 (−2, 2) and µ|[−1,1] = 1. We

set

(3.27) χτ (x) =



(1− µ((x1 − x̂2,+)τ
1
80 )− µ((x1 − x̂3,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V1 = {(x1, x2)|x̂2,+ ≤ x1 ≤ x̂3,−,−δγ2(x1) ≤ x2 ≤ 0},
(1− µ((x1 − x̂4,+)τ

1
80 )− µ((x1 − x̂1,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V2 = {(x1, x2)|x̂4,+ ≤ x1 ≤ x̂1,−,−δγ4(x1) ≤ x2 ≤ 0},
0 for x /∈ V1 ∪ V2.

For all sufficiently large τ

(3.28) suppχτ ∩ Ω ⊂ G−.

Let wτ be a solution to the boundary value problem:

∆(wτe
τϕ) + q1(wτe

τϕ) = rτ = χτq1(eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))

+[χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ)) in Ω,(3.29)

(wτe
τϕ)|Γ0∪Γ− = 0.(3.30)

Denote gτ = [χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ)). We claim that

(3.31) ‖gτe−τϕ‖L2(Ω) = O(
1

τ
) as τ → +∞.

Indeed the operator [χτ ,∆] is a first order operator :[χτ ,∆] = 2(∇χτ ,∇) + ∆χτ where

(3.32) ‖∇χτ‖L∞(Ω) = O(τ
1
10 ), ‖∆χτ‖L∞(Ω) = O(τ

1
5 ) as |τ | → +∞.
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By (3.27) there exists τ0 such that for all τ ≥ τ0 we have

supp ∆χτ , supp∇χτ ⊂ I1(τ) ∪ I2(τ),

where

I1(τ) =

{
(x1, x2);

1

τ
1
7

≤ x2 ≤
2

τ
1
7

, x1 ∈ [x̂2,+ +
2

τ
1
80

, x̂3,− −
2

τ
1
80

] ∪ [x̂4,+ +
2

τ
1
80

, x̂1,− −
2

τ
1
80

]

}
,

I2(τ) =

{
(x1, x2); 0 ≤ x2 ≤

2

τ
1
7

, x1 ∈ [x̂2,+ +
1

τ
1
80

, x̂2,+ +
2

τ
1
80

] ∪ [x̂3,− −
2

τ
1
80

, x̂3,− −
1

τ
1
80

]

∪[x̂4,+ +
1

τ
1
80

, x̂4,+ +
2

τ
1
80

] ∪ [x̂1,− −
2

τ
1
80

, x̂1,− −
1

τ
1
80

]

}
.

Observe that

(3.33) I1(τ) ∪ I2(τ) ⊂ G+.

Applying (3.17), (3.12), (3.32) and (3.33), we have

‖e−τϕ[χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))‖L∞(I1)(3.34)

≤ ‖e−τϕ∆χτ (e
τΨ(â+ â1/τ) + eτΨ(â+ â0/τ))‖L∞(I1)

+2‖e−τϕ(eτΨ(∇χτ ,∇)(â+ â1/τ) + eτΨ(∇χτ ,∇)(â+ â0/τ))‖L∞(I1)

+2‖τe−τϕ(eτΨ(∇χτ ,∇Ψ)(â+ â1/τ) + eτΨ(∇χτ ,∇Ψ)(â+ â0/τ))‖L∞(I1)

≤ |τ |3 sup
x∈I1(τ)

e−τϕ+τReΨ ≤ |τ |3 sup
x∈I1(τ)

e−τC̃δ`(x) ≤ |τ |3e−τC̃δτ
−7
80 τ

−1
7 = O(

1

τ 2
) as τ → +∞.

Using (3.17), (3.22) and (3.32), we obtain

‖e−τϕ[χτ ,∆](eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))‖L∞(I2)(3.35)

≤ ‖e−τϕ∆χτ (e
τΨ(â+ â1/τ) + eτΨ(â+ â0/τ))‖L∞(I2)

+2‖e−τϕ(eτΨ(∇χτ ,∇)(â+ â1/τ) + eτΨ(∇χτ ,∇)(â+ â0/τ))‖L∞(I2)

+2‖τe−τϕ(eτΨ(∇χτ ,∇Ψ)(â+ â1/τ) + eτΨ(∇χτ ,∇Ψ)(â+ â0/τ))‖L∞(I2)

≤ ‖∆χτ ((â+ â1/τ) + (â+ â0/τ))‖L∞(I2)

+2‖(∇χτ ,∇)(â+ â1/τ) + (∇χτ ,∇)(â+ â0/τ)‖L∞(I2)

+2‖τ((∇χτ ,∇Ψ)(â+ â1/τ) + (∇χτ ,∇Ψ)(â+ â0/τ))‖L∞(I2) = O(
1

τ 2
) as τ → +∞.

The inequalities (3.34) and (3.35) imply (3.31) immediately. By (3.13) and (3.24)

(3.36) ‖e−τϕχτq1(eτΨ(â+ â1/τ) + eτΨ(â+ â0/τ))‖L2(Ω) = o(1) as τ → +∞.

Using (3.31), (3.36) and suppχτ ∩H = ∅, we can apply Proposition 2.6 to obtain a solution

to the boundary value problem (3.29), (3.30) such that

(3.37) ‖wτ‖L2(Ω) = o(
1

τ
) as τ → +∞.
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3.4. Completion of the construction of the complex geometrical optics solution

u1

The function u11 is given by

(3.38) u11 = −1

4
eiτψR̃Φ,τ (e1(∂−1

z (aq1)−M1))− 1

4
e−iτψRΦ,−τ (e1(∂−1

z (aq1)−M3))

−e
iτψ

τ

e2(∂−1
z (aq1)−M1)

4∂zΦ
− e−iτψ

τ

e2(∂−1
z (aq1)−M3)

4∂zΦ
,

where e1, e2 ∈ C∞(Ω) are constructed so that

e1 + e2 ≡ 1 on Ω, e2 vanishes in some neighborhood of H(3.39)

and e1 vanishes in a neighborhood of ∂Ω.

Let u12 be a solution to the inhomogeneous problem

(3.40) ∆(u12e
τϕ) + q1u12e

τϕ = −q1u11e
τϕ + h1e

τϕ in Ω,

(3.41) u12 = d1,τ + d2,τ + d3,τ on Γ0 ∪ Γ−,

where

h1 = eτiψ∆

(
e2(∂−1

z (aq1)−M1)

4τ∂zΦ

)
+ e−τiψ∆

(
e2(∂−1

z (aq1)−M3)

4τ∂zΦ

)
−a0q1e

iτψ/τ − a1q1e
−iτψ/τ,(3.42)

and d1,τ = ( e
iτψ

4
R̃Φ,τ (e1(∂−1

z (aq1)−M1)) + e−iτψ

4
RΦ,−τ (e1(∂−1

z (aq1)−M3))),

d2,τ = χΓ−(1− χτ )Re {eiτψa}, d3,τ = eiτψ

τ

e2(∂−1
z (aq1)−M1)

4∂zΦ
+ e−iτψ

τ
e2(∂−1

z (aq1)−M3)

4∂zΦ
− a0eτiψ+a1e−τiψ

τ
.

By (3.17) and (3.22), there exists a constant C10, independent of τ , such that

(3.43)

∥∥∥∥∥d3,τ/

√
|∂ϕ
∂ν
|

∥∥∥∥∥
L2(Γ−)

≤ C10

|τ |
.

Consequently applying Proposition 2.7, we obtain a solution for the initial value problem

L1(x,D)(eτϕu12,I) = 0, u12,I |Γ0 = 0, u12,I |Γ− = d3,τ which satisfies the estimate

(3.44) ‖u12,I‖L2(Ω) = o(
1

τ
) as τ → +∞.

Since

‖q1u11 + h1‖L2(Ω) ≤ C11(δ)/|τ |1−δ ∀δ ∈ (0, 1)

and by the stationary phase argument ‖d1,τ‖L2(Γ0∪Γ−) = O( 1
τ2 ), there exists a solution to the

initial value problem L1(x,D)(eτϕu12,II) = 0, u12,II |Γ0∪Γ− = d1,τ which satisfies the estimate

(3.45) ‖u12,II‖L2(Ω) = o(
1

τ
) as τ → +∞.

Finally ‖d1,τ‖L2(Γ0∪Γ−) = O( 1
τ2 ) by (3.17). Therefore applying Proposition 2.6, we obtain

a solution to the initial value problem L1(x,D)(eτϕu12,III) = 0, u12,III |Γ0∪Γ− = d2,τ which

satisfies the estimate

(3.46) ‖u12,III‖L2(Ω) = o(
1

τ
) as τ → +∞.
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Setting u12 = u12,III + u12,II + u12,I , we obtain a solution to (3.40), (3.41) satisfying

(3.47) ‖u12‖L2(Ω) = o(
1

τ
) as τ → +∞.

Now consider a sequence of τj such that

(3.48) τj = 2πjn1n2n3n4,

where n1, n2, n3, n4 ∈ N are defined in (3.6). For each τj from this sequence, the solution u1

satisfies the zero Dirichlet boundary condition on Γ0 ∪ Γ−.

3.5. Construction of the complex geometrical optics solution v

Consider now the Schrödinger equation

(3.49) L2(x,D)v = ∆v + q2v = 0 in Ω.

We will construct solutions to (3.49) of the form

(3.50) v(x) = e−τΦ(a+ b0/τ) + e−τΦ(a+ b1/τ) + e−τϕv+ + e−τϕv11 + e−τϕv12, v|Γ0 = 0.

The construction of v repeats the corresponding steps of the construction of u1. The only

difference is that instead of q1 and τ , we use q2 and −τ respectively. We provide details of

the construction of v for the sake of completeness. Let polynomials M2(z),M4(z̄) satisfy

(3.51) ∂jz(∂
−1
z (aq1)−M2)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, 2, 3, 4}, j = 0, 1, 2,

(3.52) ∂jz̄(∂
−1
z (aq1)−M4)(x) = 0, x ∈ H ∪ {x̂k,±, k = 1, 2, 3, 4}, j = 0, 1, 2,

and

(3.53) ∂kzM2(x̂j,±) = ∂kz̄M4(x̂j,±) = 0 ∀k ∈ {3, . . . ,m} and ∀j ∈ {1, 2, 3, 4},

where m ∈ N can be chosen for example as 100. Finally b0, b1 are holomorphic functions

such that

(b0 + b1)|Γ0 = −(∂−1
z (aq2)−M2)

4∂zΦ
− (∂−1

z (aq2)−M4)

4∂zΦ

and there exists a positive constant C12 such that

(3.54) |bk(x)| ≤ C12|x− x̂j,±|3 ∀j ∈ {1, 2, 3, 4}, ∀k ∈ {0, 1}.

Let

(3.55) b̂j(x1, x2) = Re bj(x1,−x2)− iIm bj(x1,−x2) ∀x ∈ G+, j ∈ {0, 2}.

We set

(3.56) e−τϕv+(τ, x) = −χ̃τ (e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)) + w̃τ (x)e−τϕ.
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The function χ̃τ is constructed in the following way. We set

(3.57) χ̃τ (x) =



(1− µ((x1 − x̂1,+)τ
1
80 )− µ((x1 − x̂2,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V3 = {(x1, x2); x̂1,+ ≤ x1 ≤ x̂2,−,−δγ1(x1) ≤ x2 ≤ 0},
(1− µ((x1 − x̂3,+)τ

1
80 )− µ((x1 − x̂4,−)τ

1
80 ))µ(x2τ

1
7 )

for x ∈ V4 = {(x1, x2); x̂3,+ ≤ x1 ≤ x̂4,−,−δγ3(x1) ≤ x2 ≤ 0},
0 for x /∈ V3 ∪ V4.

Let w̃τ be a solution to the following boundary value problem:

∆(w̃τe
−τϕ) + q2(w̃τe

−τϕ) = χ̃τq2(e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ))

+[χ̃τ ,∆](e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)) in Ω,(3.58)

(w̃τe
−τϕ)|Γ0∪Γ− = −e−τΦ(a+ b̂0/τ) + e−τΦ (a+ b̂1/τ)

+χ̃τ (e
−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)).(3.59)

Denote g̃τ = [χ̃τ ,∆](e−τΨ(a+ b̂0/τ) + e−τΨ(a+ b̂1/τ)). We claim that

(3.60) ‖g̃τeτϕ‖L2(Ω) = o(
1

τ
) as |τ | → +∞.

Indeed the operator [χ̃τ ,∆] is the first order operator :[χ̃τ ,∆] = 2(∇χ̃τ ,∇) + ∆χ̃τ
where

(3.61) ‖∇χ̃τ‖L∞(Ω) = O(τ
1
10 ), ‖∆χ̃τ‖L∞(Ω) = O(τ

1
5 ) as |τ | → +∞.

By (3.57) we have

supp∇χ̃τ , supp ∆χ̃τ ⊂ Ĩ1(τ) ∪ Ĩ2(τ),

where

Ĩ1(τ) =

{
(x1, x2);

1

τ
1
7

≤ x2 ≤
2

τ
1
7

, x1 ∈ [x̂1,+ +
2

τ
1
80

, x̂2,− −
2

τ
1
80

] ∪ [x̂3,+ +
2

τ
1
80

, x̂4,− −
2

τ
1
80

]

}
,

Ĩ2(τ) =

{
(x1, x2); 0 ≤ x2 ≤

2

τ
1
7

, x1 ∈ [x̂1,+ +
1

τ
1
80

, x̂1,+ +
2

τ
1
80

] ∪ [x̂2,− −
2

τ
1
80

, x̂2,− −
1

τ
1
80

]

∪[x̂3,+ +
1

τ
1
80

, x̂3,+ +
2

τ
1
80

] ∪ [x̂4,− −
2

τ
1
80

, x̂4,− −
1

τ
1
80

]

}
.

Observe that

(3.62) Ĩ1(τ) ∪ Ĩ2(τ) ⊂ Γ−.
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Applying (3.17), (3.32) and (3.62), we have

‖eτϕ[χ̃τ ,∆](e−τΨ(â+ b̂0/τ) + e−τΨ(â+ b̂1/τ))‖L∞(Ĩ1)(3.63)

≤ ‖eτϕ∆χ̃τ (e
−τΨ(â+ b̂0/τ) + e−τΨ(â+ b̂1/τ))‖L∞(Ĩ1)

+2‖eτϕ(e−τΨ(∇χ̃τ ,∇)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇)(â+ b̂1/τ))‖L∞(Ĩ1)

+2‖τeτϕ(e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂1/τ))‖L∞(Ĩ1)

≤ |τ |3 sup
x∈Ĩ1(τ)

eτϕ−τReΨ ≤ |τ |3 sup
x∈Ĩ1(τ)

e−τC̃δ
˜̀(x) ≤ |τ |3e−ττ

−7
80 C̃δτ

−1
7 = O(

1

τ 2
) as |τ | → +∞.

Using (3.17), (3.22) and (3.32), we have

‖eτϕ[χ̃τ ,∆](eτΨ(â+ b̂0/τ) + eτΨ(â+ b̂1/τ)‖L∞(Ĩ2)(3.64)

≤ ‖eτϕ∆χ̃τ (e
−τΨ(â+ b̂0/τ) + e−τΨ(â+ b̂1/τ))‖L∞(Ĩ2)

+2‖eτϕ(e−τΨ(∇χ̃τ ,∇)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇)(â+ b̂1/τ))‖L∞(Ĩ2)

+2‖τeτϕ(e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂0/τ) + e−τΨ(∇χ̃τ ,∇Ψ)(â+ b̂1/τ))‖L∞(Ĩ2)

≤ ‖∆χ̃τ ((â+ b̂0/τ) + (â+ b̂1/τ))‖L∞(Ĩ2)

+2‖(∇χ̃τ ,∇)(â+ b̂0/τ) + (∇χ̃τ ,∇)(â+ b̂1/τ)‖L∞(Ĩ2)

+2‖τ((∇χ̃τ ,∇Ψ)(â+ b̂0/τ) + (∇χ̃τ ,∇Ψ)(â+ b̂1/τ))‖L∞(Ĩ2) = O(
1

τ 2
) as |τ | → +∞.

The inequalities (3.63) and (3.64) imply (3.60) immediately. Using (3.31), (3.36) and

suppχτ ∩ H = ∅, we can apply Proposition 2.6 to obtain a solution to the boundary value

problem (3.58) and (3.59) such that

(3.65) ‖w̃τ‖L2(Ω) = o(
1

τ
) as |τ | → +∞.

The function v11 is given by

(3.66) v11 = −1

4
e−iτψR̃Φ,−τ (e1(∂−1

z (q2a)−M2))− 1

4
eiτψRΦ,τ (e1(∂−1

z (q2a)−M4))

+
e−iτψ

τ

e2(∂−1
z (aq2)−M2)

4∂zΦ
+
eiτψ

τ

e2(∂−1
z (aq2)−M4)

4∂zΦ
.

Denote

h2 = e−τiψ∆

(
e2(∂−1

z (aq2)−M2)

4τ∂zΦ

)
+ eτiψ∆

(
e2(∂−1

z (aq2)−M4)

4τ∂zΦ

)
−b0

τ
q2e
−iτψ − b1

τ
q2e

iτψ.

The function v12 is a solution to

(3.67) ∆(v12e
−τϕ) + q2v12e

−τϕ = −q2v11e
−τϕ − h2e

−τϕ in Ω,

(3.68) v12|Γ0∪Γ+ = d̃1,τ + d̃2,τ + d̃3,τ ,
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where d̃1,τ = eiτψ

4
R̃Φ,−τ (e1(∂−1

z (aq2)−M2)) + e−iτψ

4
RΦ,τ (e1(∂−1

z (aq2)−M4)),

d̃2,τ = χΓ+(1−χτ )Re {e−τiψa}, d̃3,τ = eiτψ

τ

e2(∂−1
z (aq2)−M2)

4∂zΦ
+ e−iτψ

τ
e2(∂−1

z (aq2)−M4)

4∂zΦ
− b0e−τiψ+b1eτiψ

τ
.

By (3.17) and (3.22), there exists a constant C13, independent of τ , such that

(3.69)

∥∥∥∥∥d̃3,τ/

√
∂ϕ

∂ν

∥∥∥∥∥
L2(Γ+)

≤ C13

|τ |
.

Applying Proposition 2.7, we obtain a solution to the boundary value problem

L2(x,D)(e−τϕv12,I) = 0, v12,I |Γ0 = 0, v12,I |Γ+ = d̃3,τ which satisfies the estimate

(3.70) ‖v12,I‖L2(Ω) = o(
1

τ
) as τ → +∞.

Since

‖q2v11 + h2‖L2(Ω) ≤ C14(δ)/|τ |1−δ ∀δ ∈ (0, 1)

and by the stationary phase argument ‖d̃1,τ‖L2(Γ0∪Γ+) = O( 1
τ2 ), there exists a solution to the

initial value problem L2(x,D)(e−τϕv12,II) = 0, v12,II |Γ0∪Γ+ = d̃1,τ which satisfies the estimate

(3.71) ‖v12,II‖L2(Ω) = o(
1

τ
) as τ → +∞.

Finally ‖d̃1,τ‖L2(Γ0∪Γ+) = O( 1
τ2 ) by (3.17). Therefore, applying Proposition 2.6, we obtain

a solution to the initial value problem L2(x,D)(e−τϕv12,III) = 0, v12,III |Γ0∪Γ+ = d̃2,τ which

satisfies the estimate

(3.72) ‖v12,III‖L2(Ω) = o(
1

τ
) as τ → +∞.

Setting v12 = v12,III + v12,II + v12,I we obtain a solution to (3.40), (3.41) satisfying

(3.73) ‖v12‖L2(Ω) = o(
1

τ
) as τ → +∞.

For each τj defined by (4.19), the solution v satisfies the zero Dirichlet boundary condition

on Γ0 ∪ Γ−.

4. Proof of Theorem 1.2

Proposition 4.1. Let the function Ψ defined in (3.24) and the holomorphic function Φ

constructed in Section 3 have an internal critical point x̃. Then for any potentials q1, q2 ∈
C2+α(Ω), α > 0 satisfying Cq1 = Cq2 and for any holomorphic function a satisfying (3.17)

and M1(z),M2(z),M3(z),M4(z) as in Section 3, we have

(4.1) 2
π(q|a|2)(x̃)Re e2iτjImΦ(x̃)

|(det ImΦ′′)(x̃)| 12
+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx
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+
1

4

∫
Ω

(
qa
∂−1
z (aq2)−M2

∂zΦ
+ qa

∂−1
z (q2a)−M4

∂zΦ

)
dx

− 1

4

∫
Ω

(
qa
∂−1
z (aq1)−M1

∂zΦ
+ qa

∂−1
z (aq1)−M3

∂zΦ

)
dx

+

∫
Γ−

q|a|2Re

{
1

∂x2(Ψ− Φ)

}
dσ −

∫
Γ+

q|a|2Re

{
1

∂x2(Ψ− Φ)

}
dσ = o(1) as τj → +∞

where q = q1 − q2 and the sequence τj is given by (4.19).

Proof. Let u1 be a solution to (3.1) and satisfy (3.2), and u2 be a solution to

∆u2 + q2u2 = 0 in Ω, u2|∂Ω = u1|∂Ω.

Since Cq1 = Cq2 , we have

∇u2 = ∇u1 on Γ−.

Denoting u = u1 − u2, we obtain

(4.2) ∆u+ q2u = −qu1 in Ω, u|∂Ω =
∂u

∂ν
|Γ− = 0.

Let v satisfy (3.49) and (3.50). We multiply (4.2) by v, integrate over Ω and we use

v|Γ0 = 0 and ∂u
∂ν

= 0 on Γ̃ to obtain
∫

Ω
qu1vdx = 0. By (3.2), (3.50) and (3.47), (3.73), we

have

0 =

∫
Ω

qu1vdx =

∫
Ω

q(a2 + a2 + |a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ)

+
1

τj
(a(a0 + b0) + a(a1 + b1)) + u11e

τjϕ(ae−τjΦ + ae−τjΦ)

+(aeτjΦ + aeτjΦ)v11e
−τjϕ)dx

+

∫
Ω

q(e−τjΦa+ e−τjΦa)u−e
τjϕdx

+

∫
Ω

q(eτjΦa+ eτjΦa)v+e
−τjϕdx+ o

(
1

τj

)
, τj > 0.(4.3)

The first and second terms in the asymptotic expansion of (4.3) are independent of τj, so

that

(4.4)

∫
Ω

q(a2 + a2)dx = 0.

Let the functions e1, e2 be defined in (3.39). We have∫
Ω

q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx =

∫
Ω

e1q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx

+

∫
Ω

e2q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx.

By the Cauchy-Riemann equations, we see that sgn(Im Φ′′(x̃k)) = 0, where sgn A denotes

the signature of the invertible matrix A, that is, the number of positive eigenvalues of A
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minus the number of negative eigenvalues (e.g., [5], p.210). Moreover we note that

det Im Φ′′(z) = −(∂x1∂x2ϕ)2 − (∂2
x1
ϕ)2 6= 0.

To see this, suppose that det Im Φ′′(z) = 0. Then ∂x1∂x2ϕ(Re z, Im z) = ∂2
x1
ϕ(Re z, Im z) = 0

and the Cauchy-Riemann equations imply that all the second order partial derivatives of

the functions ϕ, ψ at the point z are zero. This contradicts the assumption that the critical

points of the function Φ are nondegenerate.

Observe that if Φ has a critical point on Ω, then it can not have any critical points on Γ0.

Then by (2.2) x̃ is the only critical point of this function on Ω̄. Using the stationary phase

(see p.215 in [5]), we obtain∫
Ω

e1q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx = 2
πq|a|2(x̃)Re e2τjiIm Φ(x̃)

τj|(det Im Φ′′)(x̃)| 12
+ o

(
1

τj

)
.(4.5)

Integrating by parts we have∫
Ω

e2q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx

=

∫
Ω

e2q|a|2
(

(∇ψ,∇eτj(Φ−Φ))

2iτj|∇ψ|2
− (∇ψ,∇eτj(Φ−Φ))

2iτj|∇ψ|2

)
dx

= −
∫

Ω

div

(
e2q|a|2∇ψ
2iτj|∇ψ|2

)
(eτj(Φ−Φ) − eτj(Φ−Φ))dx

+

∫
∂Ω

q|a|2

2iτj|∇ψ|2
∂ψ

∂ν
(eτj(Φ−Φ) − eτj(Φ−Φ))dσ

= −
∫

supp e2

div

(
e2q|a|2∇ψ
2iτj|∇ψ|2

)
(eτj(Φ−Φ) − eτj(Φ−Φ))dx

+

∫
Γ−∪Γ+

q|a|2

2iτj|∇ψ|2
∂ψ

∂ν
(e2τjiψ − e−2τjiψ)dσ + o(

1

τj
) as τj → +∞.

In the last equality, we used that eτj(Φ−Φ) − eτj(Φ−Φ) = 0 on Γ0 which follows by (2.3) and

Im Φ = 0 on Γ0, and applied (3.17) in order to show that div
(
e2q|a|2∇ψ
2iτj |∇ψ|2

)
and q|a|2

2iτj |∇ψ|2 are

bounded functions. Applying Proposition 2.4 we obtain∫
Ω

e2q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx = o(
1

τj
) as τj → +∞.

Since the function ψ is strictly monotone on Γ− ∪ Γ+, we have∫
Γ−∪Γ+

q|a|2

2iτj|∇ψ|2
∂ψ

∂ν
(e2τjiψ − e−2τjiψ)dσ = o(

1

τj
) as τj → +∞.

Therefore ∫
Ω

q(|a|2eτj(Φ−Φ) + |a|2eτj(Φ−Φ))dx = o

(
1

τj

)
.(4.6)
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Next we claim that

(4.7)

∫
Ω

q(e−τjΦa+ e−τjΦa)u−e
τjϕdx =

∫
Γ−

q|a|2

τj
Re

{
1

∂x2(Ψ− Φ)

}
dσ + o(

1

τj
)

and

(4.8)

∫
Ω

q(eτjΦa+ eτjΦa)v+e
−τjϕdx =

∫
Γ+

q|a|2

τj
Re

{
1

∂x2(Ψ− Φ)

}
dσ + o(

1

τj
)

as τj → +∞.

Indeed, by (3.56) and (3.24)

K =

∫
Ω

q(e−τjΦa+ e−τjΦa)u−e
τjϕdx =

∫
Ω

q(e−τjΦa+ e−τjΦa)χτj(e
τjΨ(a+ â0/τj)

+eτjΨ(a+ â1/τj))dx =

∫
Ω

qχτj(a(a+ â0/τj)e
τj(Ψ−Φ) + ā(a+ â0/τj)e

τj(Ψ−Φ̄)

+a(a+ â1/τj)e
τj(Ψ−Φ) + ā(a+ â1/τj)e

τj(Ψ−Φ̄))dx =∫
∂Ω

qχτj(a(a+ â0/τj)
ν2

τj∂x2(Ψ− Φ)
+ ā(a+ â0/τj)e

2τjiψ
1

2

(ν1 + iν2)

τj∂z̄(Ψ− Φ)

+a(a+ â1/τj)e
−2τjiψ

1

2

(ν1 − iν2)

τj∂z(Ψ− Φ)
+ ā(a+ â1/τj)

ν2

τj∂x2(Ψ− Φ̄)
)dσ −

− 1

τj

∫
Ω

(B1(x,D)∗(qχτja(a+ â0/τj))e
τj(Ψ−Φ) +B2(x,D)∗(qχτj ā(a+ â0/τj))e

τj(Ψ−Φ̄)

+B3(x,D)∗(qχτja(a+ â1/τj))e
τj(Ψ−Φ) +B4(x,D)∗(qχτj ā(a+ â1/τj))e

τj(Ψ−Φ̄))dx,

where

B1(x,D) =
∂x2

∂x2(Ψ− Φ)
, B2(x,D) =

∂z̄

∂z̄(Ψ− Φ)
,

B3(x,D) =
∂z

∂z(Ψ− Φ)
, B4(x,D) =

∂x2

∂x2(Ψ− Φ̄)
.

Obviously ∫
∂Ω

qχτj(a(a+ â0/τj)
ν2

τj∂x2(Ψ− Φ)
+ ā(a+ â0/τj)e

2τjiψ
1

2

(ν1 + iν2)

τj∂z̄(Ψ− Φ)

+a(a+ â1/τj)e
−2τjiψ

1

2

(ν1 − iν2)

τj∂z(Ψ− Φ)
+ ā(a+ â1/τj)

ν2

τj∂x2(Ψ− Φ̄)
)dσ =

∫
Γ−

q

(
aā

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ + o(

1

τj
).
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Using this equality and integrating one more time, we have

K =

∫
Γ−

q

(
aā

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ(4.9)

+
1

τj

∫
Ω

(B1(x,D)∗(qχτj(a(a+ â0/τj))e
τj(Ψ−Φ) +B2(x,D)∗(qχτj ā(a+ â0/τj))e

τj(Ψ−Φ̄)

+B3(x,D)∗(qχτja(a+ â1/τj))e
τj(Ψ−Φ) +B4(x,D)∗(qχτj ā(a+ â1/τj))e

τj(Ψ−Φ̄))dx =

K1 + o(
1

τj
) +

∫
Γ−

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

+

∫
∂Ω

(B1(x,D)∗(qχτja(a+ â0/τj))
ν2

τj2∂x2(Ψ− Φ)
+B2(x,D)∗(qχτj ā(a+ â0/τj))e

2τjiψ
1

2

(ν1 + iν2)

τj2∂z̄(Ψ− Φ)

+B3(x,D)∗(qχτja(a+ â1/τj))e
−2τjiψ

1

2

(ν1 − iν2)

τj2∂z(Ψ− Φ)
+B4(x,D)∗(qχτj ā(a+ â1/τj))

ν2

τj2∂x2(Ψ− Φ̄)
)dσ,

where

K1

=
1

τj2

∫
suppχτj∩G−

((B1(x,D)∗)2(qχτja(a+ â0/τj))e
τj(Ψ̄−Φ) + (B2(x,D)∗)2(qχτj ā(a+ â0/τj))e

τj(Ψ̄−Φ̄)

+(B3(x,D)∗)2(qχτja(a+ â1/τj))e
τj(Ψ−Φ) + (B4(x,D)∗)2(qχτj ā(a+ â1/τj))e

τj(Ψ−Φ̄))dx.

Since

(4.10) Re (Ψ− Φ) ≤ 0 ∀x ∈ G−

by (3.13), we have

|K1| ≤
1

τj2

∫
suppχτj∩G−

(|(B1(x,D)∗)2(qχτja(a+ â0/τj))|+ |(B2(x,D)∗)2(qχτj ā(a+ â0/τj))|

+|(B3(x,D)∗)2(qχτja(a+ â1/τj))|+ |(B4(x,D)∗)2(qχτj ā(a+ â1/τj))|)dx

≤ C

τj2

∫
suppχτj∩G−

1

|`1(x)|2
dx ≤ Cτj

12
80

τj2
= o(

1

τj
) as τj → +∞.(4.11)

Again, by (3.17) the last boundary integral in (4.9) can be estimated by o( 1
τj

). Then from

(4.9) and (4.11) we obtain (4.7).
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We prove (4.8) in the similar way.

K̃ =

∫
Ω

q(eτjΦa+ eτjΦa)v+e
−τjϕdx =

∫
Ω

q(eτjΦa+ eτjΦa)χ̃τj(e
−τjΨ(a+ b̂0/τj)(4.12)

+e−τjΨ(a+ b̂1/τj))dx =

∫
Ω

qχ̃τj(a(a+ b̂0/τj)e
−τj(Ψ−Φ) + ā(a+ b̂0/τj)e

−τj(Ψ−Φ̄)

+a(a+ b̂1/τj)e
−τj(Ψ−Φ) + ā(a+ b̂1/τj)e

−τj(Ψ−Φ̄))dx+ o(
1

τj
) =

−
∫
∂Ω

qχ̃τj(a(a+ b̂0/τj)
ν2

τj∂x2(Ψ− Φ)
+ ā(a+ b̂0/τj)e

−2τjiψ
1

2

(ν1 + iν2)

τj∂z̄(Ψ− Φ̄)

+a(a+ b̂1/τj)e
2τjiψ

1

2

(ν1 − iν2)

τj∂z(Ψ− Φ)
+ ā(a+ b̂1/τj)

ν2

τj∂x2(Ψ− Φ̄)
)dσ −

+
1

τj

∫
Ω

(B1(x,D)∗(qχ̃τja(a+ b̂0/τj))e
−τj(Ψ−Φ) +B2(x,D)∗(qχ̃τj ā(a+ b̂0/τj))e

−τj(Ψ−Φ̄)

+B3(x,D)∗(qχ̃τja(a+ b̂1/τj))e
−τj(Ψ−Φ) +B4(x,D)∗(qχ̃τj ā(a+ b̂1/τj))e

−τj(Ψ−Φ̄))dx

+o(
1

τj
) as τj → +∞.

Obviously ∫
∂Ω

qχ̃τj(a(a+ b̂0/τj)
ν2

τj∂x2(Ψ− Φ)
+ ā(a+ b̂0/τj)e

−2τjiψ
1

2

(ν1 + iν2)

τj∂z̄(Ψ− Φ̄)

+a(a+ b̂1/τj)e
2τjiψ

1

2

(ν1 − iν2)

τj∂z(Ψ− Φ)
+ ā(a+ b̂1/τj)

ν2

τj∂x2(Ψ− Φ̄)
)dσ =

∫
Γ+

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ + o(

1

τj
).

Using this equality and integrating by parts in (4.12) once more, we have

K̃ = −
∫

Γ+

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ(4.13)

− 1

τj

∫
Ω

(B1(x,D)∗(qχ̃τj(a(a+ b̂0/τj))e
−τj(Ψ−Φ) +B2(x,D)∗(qχ̃τj ā(a+ b̂0/τj))e

−τj(Ψ−Φ̄)

+B3(x,D)∗(qχ̃τja(a+ b̂1/τj))e
−τj(Ψ−Φ) +B4(x,D)∗(qχ̃τj ā(a+ b̂1/τj))e

−τj(Ψ−Φ̄))dx

= K̃1 + o(
1

τj
)−

∫
Γ+

q

(
aa

τj∂x2(Ψ̄− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

−
∫
∂Ω

(
B1(x,D)∗(qχ̃τja(a+ b0/τj))

ν2

τj2∂x2(Ψ− Φ)
+B2(x,D)∗(qχ̃τj ā(a+ b̂0/τj))e

−2τjiψ
1

2

(ν1 + iν2)

τj2∂z̄(Ψ− Φ)

+B3(x,D)∗(qχ̃τja(a+ b̂1/τj))e
2τjiψ

1

2

(ν1 − iν2)

τj2∂z(Ψ− Φ)
+B4(x,D)∗(qχ̃τj ā(a+ b̂1/τj))

ν2

τj2∂x2(Ψ− Φ̄)
dσ,
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where

K̃1 =
1

τj2

∫
supp χ̃τj∩G+

((B1(x,D)∗)2(qχ̃τja(a+ b̂0/τj))e
−τj(Ψ−Φ) + (B2(x,D)∗)2(qχ̃τj ā(a+ b̂0/τj))e

−τj(Ψ−Φ̄)

+(B3(x,D)∗)2(qχ̃τja(a+ b̂1/τj))e
−τj(Ψ−Φ) + (B4(x,D)∗)2(qχ̃τj ā(a+ b̂1/τj))e

−τj(Ψ−Φ̄))dx.

Observe that

(4.14) Re (Ψ− Φ) ≥ 0, ∀x ∈ G+.

By (4.14) and (3.16), we have

|K̃1| ≤
1

τj2

∫
supp χ̃τj∩G+

(|(B1(x,D)∗)2(qχ̃τja(a+ b̂0/τj))|+ |(B2(x,D)∗)2(qχ̃τj ā(a+ b̂0/τj))|

+|(B3(x,D)∗)2(qχ̃τja(a+ b̂1/τj))|+ |(B4(x,D)∗)2(qχ̃τj ā(a+ b̂1/τj))|)dx ≤

C

τj2

∫
supp χ̃τj∩G+

1

|˜̀1(x)|2
dx ≤ Cτj

12
80

τj2
= o(

1

τj
).(4.15)

Applying (4.15) and using the fact that the last boundary integral in (4.13) is o( 1
τj

) we obtain

the formula (4.8).

We calculate the two remaining terms in (4.3). By (3.38) and Proposition 2.5 we have:∫
Ω

qu11e
τjϕ(ae−τjΦ + ae−τjΦ)dx = o(

1

τj
)(4.16)

−
∫

Ω

(
eτjΦ

τj

(∂−1
z (aq1)−M1)

4∂zΦ
+
eτjΦ

τj

(∂−1
z (aq1)−M3)

4∂zΦ

)
q(ae−τjΦ + ae−τjΦ)dx =

−
∫

Ω

q

(
eτj(Φ−Φ)

τj

a(∂−1
z (aq1)−M1)

4∂zΦ
+
eτj(Φ−Φ)

τj

a(∂−1
z (aq1)−M3)

4∂zΦ

)
dx

−
∫

Ω

q

(
a

τj

(∂−1
z (aq1)−M1)

4∂zΦ
+
a

τj

(∂−1
z (aq1)−M3)

4∂zΦ

)
dx+ o(

1

τj
) =

−
∫

Ω

q

(
a

τj

(∂−1
z (aq1)−M1)

4∂zΦ
+
a

τj

(∂−1
z (aq1)−M3)

4∂zΦ

)
dx+ o(

1

τj
) as τj → +∞.

Similarly by (3.66) and Proposition 2.5∫
Ω
qv11e

−τjϕ(aeτjΦ + aeτjΦ)dx =(4.17)

+
∫

Ω
q
(
e−τjΦ

τj

(∂−1
z (aq2)−M2)

4∂zΦ
+ e−τjΦ

τj

(∂−1
z (aq2)−M4)

4∂zΦ

)
(aeτjΦ + aeτjΦ)dx+ o( 1

τj
) =∫

Ω
q
(
e−τj(Φ−Φ)

τj

a(∂−1
z (aq2)−M2)

4∂zΦ
+ eτj(Φ−Φ)

τj

a(∂−1
z (aq2)−M4)

4∂zΦ

)
dx

+
∫

Ω
q
(
a
τj

∂−1
z (aq2)−M2

4∂zΦ
+ a

τj

∂−1
z (aq2)−M4

4∂zΦ

)
dx+ o( 1

τj
) =∫

Ω
q
(
a
τj

∂−1
z (aq2)−M2

4∂zΦ
+ a

τj

∂−1
z (aq2)−M4

4∂zΦ

)
dx+ o( 1

τj
) as τj → +∞.
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Therefore, applying (4.4), (4.6), (4.7), (4.8), (4.17) and (4.16) in (4.3), we conclude that

2
π(q|a|2)(x̃)Re e2iτjImΦ(x̃)

|(det ImΦ′′)(x̃)| 12
+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx

+
1

4

∫
Ω

(
qa
∂−1
z (aq2)−M2

∂zΦ
+ qa

∂−1
z (q2a)−M4

∂zΦ

)
dx

−1

4

∫
Ω

(
qa
∂−1
z (q1a)−M1

∂zΦ
+ qa

∂−1
z (q1a)−M3

∂zΦ

)
dx

+

∫
Γ−

q

(
aa

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ

−
∫

Γ+

q

(
aā

τj∂x2(Ψ− Φ)
+

āa

τj∂x2(Ψ− Φ̄)

)
dσ = o(1)

as τj → +∞. The proof of the proposition is finished. �

Completion of the proof of Theorem 1.2. First we observe that any smooth holomorphic

function Φ = ϕ + iψ satisfying (2.3) can be approximated by the sequence of harmonic

functions constructed in Section 3. Moreover the function satisfying (2.3) has at most one

interior critical point. Therefore by Proposition 4.1 the function q is zero at this critical

point. Consider the set of harmonic functions ψ such that

ψ is equal to some constant on each connected component of the set Γ0;

∂ψ

∂~τ
|Γ+ < 0;

∂ψ

∂~τ
|Γ− > 0.

We show that the set of critical points of a harmonic function ψ with the above properties is

dense in Ω. In order to see that, it suffices to consider the following case. Let ∂Ω = ∪4
k=1Γk,

where Γk is an arc and Γj ∩ Γk = ∅ for any k 6= j and Ω is the unit ball centered at zero.

Consider the set of harmonic functions ψ with the boundary data ψ|Γk = Ck. We claim

that for a generic choice of Γk we can find constants Ck such that ∇ψ(0) = 0. Indeed since

ψ(x) = 1
2π

∫ 2π

0
ψ(eit) 1−|z|2

|eit−z|2dt, we have ∂zψ(0) = 1
2π

∫ 2π

0
ψ(eit)eitdt.

To see this, let C1 = 0, C4 = 1 and the endpoints of the arcs Γk on the complex plane are

given by e0, eiθ1 , eiθ2 , eiθ3 with 0 < θ1 < θ2 < θ3 < 2π. Then

i∂zψ(0) = C2(e−iθ1 − e−iθ2) + C3(e−iθ2 − e−iθ3) + (e−iθ3 − 1).

The equation ∂zψ(0) = 0 is equivalent to

C2 = −C3(e−iθ2 − e−iθ3)(eiθ1 − eiθ2) + (e−iθ3 − 1)(eiθ1 − eiθ2)

|e−iθ1 − e−iθ2|
.

The existence of real valued solutions C2, C3 to this equation is equivalent to

Im(ei(θ1−θ2) + ei(θ2−θ3) − ei(θ1−θ3)) 6= 0.

This clearly is valid for a generic position of θj.
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In the set Γ+ ∪ Γ− we make the choice of four points x̂1, . . . , x̂4 such that x̂1 ∈ Γ1,+, x̂2 ∈
Γ1,−, x̂3 ∈ Γ2,+, x̂2 ∈ Γ2,−. Denote by Γ̂1, . . . Γ̂4 the arcs connecting these points. Consider the

conformal mapping Π which transforms the domain Ω into the unit ball and the point x̃ into

the center of the coordinate system. Above we show that with a generic choice of the points

x̂j, there exists a harmonic function ψ0 which is equal to some constant on each arc Π(Γ̂k).

Consider the boundary data ψ0(Π). By ψ̂, we denote the corresponding harmonic function.

The function ψ̂ is equal to constant Cj on each arc Γ̂j and it has only one nondegenerate

critical point x̃. Without loss of generality, we may assume that C0 = 0 and C4 = −1 by

multiplying, if necessary, the function ψ0◦Π by a nonzero constant. Observe that C2 < 0 and

C3 > C2. (Otherwise if at least one of these inequalities fails, then the function ψ0 ◦ Π can

not have the internal critical point.) In a small neighborhood F ⊂ ∪2
j=1Γj,± of the points

of discontinuity of the function ψ0 ◦ Π we approximate it by a sequence {µk} of strictly

monotone decreasing or strictly monotone increasing functions. Outside of F the function

µk are equal to the corresponding constants.

Moreover

µk → ψ0 ◦ Π in L2(∂Ω).

We claim that for all sufficiently large k the harmonic functions ψk such that ψk|∂Ω = µk
have a unique interior critical point which we denote as x̃j. Moreover x̃j → x̃. Our proof

is by contradiction. Suppose that for large j, the functions ψj do not have interior critical

point or the sequence converges to some point y 6= x̃. Indeed for any Ω0 ⊂⊂ Ω

(4.18) ψk → ψ0 ◦ Π in C2(Ω0).

On the other hand, it is known that the number N of zeros of a holomorphic function f(z)

on a domain G is given by

(4.19) N =
1

2πi

∫
∂G

∂zf

f(z)
dz.

Solving the system of Cauchy-Riemann equations we construct a holomorphic function

Φj = ϕj + iψj. By (4.18) for all sufficiently small positive δ and all large k, we have
1

2πi

∫
S(x̃,δ)

∂2
z (ϕk+iψk)
∂z(ϕk+iψk)

dz = 1. This means that the function ϕk + iψk has a critical point in

the ball B(x̃, δ). However this function can not have more than one critical point. Therefore

y = x̃. The proof of the theorem is completed. �

5. Appendix.

Consider the Cauchy problem for the Cauchy-Riemann equations

L(φ, ψ) =

(
∂φ

∂x1

− ∂ψ

∂x2

,
∂φ

∂x2

+
∂ψ

∂x1

)
= 0 in Ω, (φ, ψ) |Γ0 = (b1(x), b2(x)),(5.1)

(φ+ iψ)(x̂j) = c0,j, j ∈ {1, . . . N}.

Here x̂1, . . . x̂N be arbitrary fixed points in Ω. We consider the pair b1, b2 and the complex

numbers ~C = (c0,1, ..., c0,N) as initial data for (5.1). The following proposition establishes

the solvability of (5.1) for a dense set of Cauchy data.
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Proposition 5.1. There exists a set O ⊂ C100(Γ0)2×CN such that for each (b1, b2, ~C) ∈ O,
(5.1) has at least one solution (φ, ψ) ∈ (C100(Ω))2 and O = C100(Γ0)2 × CN .

Consider the Cauchy problem for the Cauchy-Riemann equations

L(φ, ψ) =

(
∂φ

∂x1

− ∂ψ

∂x2

,
∂φ

∂x2

+
∂ψ

∂x1

)
= 0 in Ω, (φ, ψ) |Γ0 = (b(x), 0),(5.2)

∂l

∂zl
(φ+ iψ)(x̂j) = cl,j, ∀j ∈ {1, . . . N} and ∀l ∈ {0, . . . , 5}.

Here x̂1, . . . x̂N be arbitrary fixed points in Ω. We consider the function b and the complex

numbers ~C = (c0,1, c0,2, ..., c0,N , ..., c5,1, c5,2, ..., c5,N) as initial data for (5.2). The following

proposition establishes the solvability of (5.2) for a dense set of Cauchy data.

Corollary 5.1. There exists a set O ⊂ C6(Γ0) × C6N such that for each (b, ~C) ∈ O, the

problem (5.2) has at least one solution (φ, ψ) ∈ C6(Ω)× C6(Ω) and O = C6(Γ)× C6N .

Now we give the proof of Proposition 2.7.

Proof. Let us introduce the space

H =

{
v ∈ H1

0 (Ω); ∆v + q0v ∈ L2(Ω),
∂v

∂ν
|Γ+ = 0

}
with the scalar product

(v1, v2)H =

∫
Ω

e2τϕ(∆v1 + q0v1)(∆v2 + q0v2)dx.

By Proposition 2.1, H is a Hilbert space. Consider the linear functional on H : v →
∫

Ω
vfdx+∫

Γ−
g ∂v
∂ν
dσ. By (2.4) this is a continuous linear functional with the norm estimated by a

constant C12(‖feτϕ‖L2(Ω)/τ
1
2 + ‖geτϕ/

√
|∂νϕ|‖L2(Γ−)). Therefore by the Riesz representation

theorem there exists an element v̂ ∈ H so that∫
Ω

vfdx+

∫
Γ−

g
∂v

∂ν
dσ =

∫
Ω

e2τϕ(∆v̂ + q0v̂)(∆v + q0v)dx.

Then, as a solution to (2.8), we take the function u = e2τϕ(∆v̂ + q0v̂). �
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