INVERSE BOUNDARY VALUE PROBLEM BY MEASURING
DIRICHLET DATA AND NEUMANN DATA ON DISJOINT SETS

OLEG YU. IMANUVILOV, GUNTHER UHLMANN, AND MASAHIRO YAMAMOTO

ABSTRACT. We discuss the inverse boundary value problem of determining the conduc-
tivity in two dimensions from the pair of all input Dirichlet data supported on an open
subset I' . and all the corresponding Neumann data measured on an open subset I'_. We
prove the global uniqueness under some additional geometric condition, in the case where
T.NT_ =0, and we prove also the uniqueness for a similar inverse problem for the sta-
tionary Schrédinger equation.

The key of the proof is the construction of appropriate complex geometrical optics solu-
tions using Carleman estimates with a singular weight.

1. Introduction

In a bounded simply connected domain  C R? with smooth boundary 9, we consider
div(yVu) = 0in Q,

g = 1,
where a positive function v on Q models the electrical conductivity, u € H'(£2) is a potential,
and f € H 2 (092) is a given boundary voltage potential and is regarded as input. The inverse

problem of determining v by all Cauchy data is called also the Calderén problem ([4]). It is
well known ([9]) that v € C%(Q) is uniquely determined by the set of all Cauchy data f and
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% on the whole boundary:
The regularity condition C? on «y was relaxed in [2] and [1]. In particular in [1] the uniqueness

(1.1)

ov

was shown for arbitrary L°° conductivities. Since f is an input and g—;f is the corresponding
output, it is practically desirable that we take inputs and outputs on subboundaries, not on
the whole boundary 99Q. Let 9Q =T'_UTl', Uy where '_ NIy =Ty NIy = 0. Then it is
important to discuss the uniqueness by all pairs of Dirichlet data on subboundary I', and
the corresponding Neumann data on subboundary I'_:

du . .
(1.2) A, = {(u|r+,’7%‘r) ; div(yVu) = 0 in €, U‘FOUF_ =0, ulp, = f},

We consider that the input is located on I',, while the output is measured on I'_. In the
case where 'y = T'_ and is an arbitrary open subset of the boundary, the global uniqueness
was shown in [7] within v € C3T%(Q), with some a € (0,1).
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The result in [7] is the best possible within 'y = I'_, but it is still desirable to exploit
the case I'y NT'_ = (), because the input subboundary I'; and the output subboundary I'_
should be separated from the practical viewpoint and one needs the uniqueness supporting
such practical configurations for determining a conductivity. To the best knowledge of the
authors, there are no publications discussing disjoint subboundaries. The main purpose of
this article is to establish the global uniqueness by the Cauchy data defined by (1.2) with
r,.Nnr_=40.

For the statement of the main result, we need the following geometric assumption on the

position of the sets 'y, I'_, 'y on 0.
Assumption A. Let ', I'_, Iy C 0 be non-empty open subsets of the boundary such
that 02 = F+ url'_ UF(), F+ NI'. = F:t N FO = (Z), Fi = U?eriﬂ', F() = UileQk, where
I'yj;,7=12Tox k=1,2,3,4 are not empty open connected subsets of 02 and mutually
disjoint. Then OS2 is separated into

I_\0,17 Ff,ly F0,27 F+,17 F0,37 F*,27 F0,47 F+,2

with clockwise order.

We note that I', ,I"_ can be arbitrarily small provided that the above separation condition
is satisfied.

Ty

FIGURE 1

Now we are ready to state our main result:

Theorem 1.1. We suppose Assumption A. Let v; > 0 on Q and v; € C*(Q), j = 1,2 for
some a > 0. Assume A,, = A, and that v, = v2 on T UT_. Then v, =y on Q.

Next for the Schrodinger equation

Au+qu=0 1in ()

Y
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we discuss the problem of determining a complex-valued potential ¢ by the set of Cauchy
data:

(1.3) C, = {(u\p+7 %‘r ) ;s (A+q@u=0inQ, ulpyur. =0, u € HI(Q)} :
Here, when the voltage is applied on ', the current is measured on subboundary I'_.

In the case of full Cauchy data: I'y = I'_ = 0f), the uniqueness in determining the
potential ¢ in the two dimensional case was initially proved under some restrictions on the
potential ¢ in [9], [10], [11]. Recently [3] removed these restrictions for the case of full Cauchy
data.

In the case where I';y = I'_ and is an arbitrary open subset of the boundary, [7] showed
that the potential ¢ can be uniquely determined.

We state our second main result for the Schrodinger equation in a case where I'y NI = ():

Theorem 1.2. We suppose Assumption A. Let q; € C*(Q), j = 1,2 for some a > 0 and
let q; be complex-valued. Then if
Cqy = Cos
then we have
@ =q infd

In terms of 73 = v on I'y UT'_, the proof of Theorem 1.1 is reduced to Theorem 1.2
because the change of variables

AT
VT
reduces the conductivity equation in u to the Schrodinger equation in u. Therefore we mainly

prove Theorem 1.2. A brief outline of the paper is as follows. In section 2 we show some
preliminary results and estimates needed in the construction of the appropriate complex

u = u\/y

geometrical optics solutions. In section 3 we construct these solutions. In section 4 we prove
Theorem 2.

2. Preliminary results

Throughout the paper we use the following notations.

Notations. i = /=1, 21,29, &1,& € RY, 2 = oy + iy, ( = & + i€, Z denotes the complex
conjugate of z € C. We identify z = (1, z2) € R? with z = z1 + iz, € C. 0, = (05, —10s,),
Oz = +(0y, +10s,). The tangential derivative on the boundary is given by 0z = 1/26%1 - 1/16%2,
where v = (v1,13) is the unit outer normal to 992, B(7,d) = {x € R? |z — 2| < §}. For

f:R? — R, f”is the Hessian matrix with entries 01 L(X,Y) denotes the Banach space

Ox0x;’
of all bounded linear operators from a Banach space X to another Banach space Y. We set

[P, Q] = PQ — QP for operators P and Q.
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Let ®(2) = (1, 22) +it(z1, 15) € C?() be a holomorphic function in  with real-valued
w and -
(2.1) 0:0(2) =0 in
Denote by H the set of critical points of the function ®:
H={2€Q; 0.9(z) =0}

Assume that ® has no critical points on 'y UT_, and that all the critical points are nonde-
generate:

(2.2) HNON={0}, O*®(z)#0, VzeH.
Then we know that ® has only a finite number of critical points which
H=A{T1,...,T¢}.

Assume that ® satisfies
(2.3) Fo={z €0 (v,Vp)=0}, T_-={zecd; (v,Vy) <0}
Consider the boundary value problem
L(z,D)ju=Au+qu=f in £,
{ uloq = 0.
For this problem we have the following Carleman estimate with boundary terms.

Proposition 2.1. Suppose that ® satisfies (2.1) - (2.3) and u € H}(Q), ¢ € L>(Q). Then
there exist 1o = 1o(L, ®) and Cy; = C1(L, ®), independent of u and T, such that for all || > 79

T T au T ?
[T lue™ za@) + lue™ i@ + 15, €Il eour_y +7°

0z

ue™?

L2(Q)

2
e™do | .

™ Ja

=97 omi g (—=2 (—z

@
ov

(2:4) <G <|!(L(fcaD)U)€”Hi2(m + !TI/F

Let us introduce the operators:

Q —Z

2w Jg ¢ — 2 ?
Then we have (e.g., p.47 and p.56 in [12]):
Proposition 2.2. A) Let m > 0 be an integer number and o € (0,1). Then
oz, 071 € L(C™H(Q), Cret(Q).

z 7z

B)Let 1<p<2andl<~y< 22%’}7. Then 92,071 € L(LP(Q), L7(2)).
We define two other operators:
Ry ,q = 67@_@8;1(967(@_6)), §¢ g = 67(6_¢)8;1(geT(¢_6)).

In [8] we prove the following:
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Proposition 2.3. Let g € C*(Q2) for some positive a.. The function Re g is a solution to

(2.5) O-Rorg — T(3.9)Rog =g in Q.

The function }N%@Tg solves

(2.6) 0-Rorg+ 7(0:0)Rorg =g in Q.
Using the stationary phase argument we show

Proposition 2.4. Let g € L'(Q) and the function ® satisfy (2.1), (2.2). Then

iy o / ge@O-FE) gy — )
Q

Denote
O, = {z € Q; dist(x,00) < €}.
We have

Proposition 2.5. Let a > 0, g € C*t*(Q), g

0. =0 and gl =0. Then

~ 1
(2.7) ' Re -9+ J + |[Ra,r9 — g =0 (—) as || = +o0.
T@z(I) L2(Q) Tazq) L2(Q) T
Consider the following problem
(2.8) L(z,D)u = fe'™® in ), ulr,ur. = ge’.

We have the following Carleman estimate.

Proposition 2.6. (see [8]) Let ¢ € L>*(Q2). There exists 1o > 0 such that for all T > 7y there
exists a solution to the boundary value problem (2.8) such that

1

(2.9) \/HHVW’WHL?@ HV[Tll[ue™ | r20) < Calll Fllzz@) + 19l 37 1))

Let € be a sufficiently small positive number. If suppf C G, = {x € Q; dist(x,H) > €} and
g = 0 then there exists 19 > 0 such that for all T > 14 there exists a solution to the boundary
value problem (2.8) such that

(2.10) Ve gz + 7lllue™"* 2@y < Cole) 11120y
We have

Proposition 2.7. Let ¢ € L>™(Q), and let suppg C T_ and gA/|0,p| € L*(T'_). Then there
exists 1o > 0 such that for all T > 1y there exists a solution to (2.8) such that

VITlllue™™ |2 < Cullg A 10l o)

For completeness, we give the proof of Proposition 2.7 in Appendix.
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3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions for the Schrodinger
equation A + g; with ¢; satisfying the conditions of Theorem 1.2. Consider

(3.1) Li(z,D)u=Au+qu=0 in Q.
We will construct solutions to (3.1) of the form
(3.2) -
uy(z) = € (a(2)+ao(2)/7)+e D (a(2) + a1 (2) /7)™ Pu_+e P uy +e fure,  ur|pgur. = 0.

Thanks to Assumption A, the set I'y consists of four arcs : I'y = T'oqy UT'g2 UT'g3 U g4,
the set I'_ consists of two arcs I' = I'_; UT'_ 5 and the set I'} also consists of two arcs
I't =Ty 1 UI'y 5. Denote the endpoints of the arc I'y ; as ;1. Henceforth let a sufficiently
large m € N be fixed (e.g., m = 100).

Proposition 3.1. Let © € € be an arbitrary point. There exists a smooth holomorphic
function a in €2 such that

a(¥) #0, Realr, =0, V¥a(i;1)=0 Vke{l,...,m}, Vje€{0,...,4}.
Proof. Consider the following linear operator
R(v) = (w(Z), w(jz), .. 07 w(i;s)),
where
Osw=0 in{), Rew=wv ondd, suppv CT,.

Clearly the image of the operator R is closed. Let b(z) be a holomorphic function in € such
that b(Z) = 1 and Reb|r,ur. = 0. By Proposition 5.1 in Appendix, there exists a sequence

of holomorphic functions {wy}32, C C™**(Q) such that
w, = 0+ilmb in C"T*(ToUT_) and w(Z) — 0.

Using classical results on solvability of the Cauchy-Riemann equations, we construct a se-
quence of holomorphic functions wy such that

w,, — 0 in Cm—l—a(Q), Reuﬁk = Rewk on FO ul'_.

Consider the sequence vy = b+ (0 — wy). We have R(vg) — (1,0,...,0). The proof of the
proposition is completed. 0

3.1. Construction of the phase function
Without loss of generality, using some conformal mapping if necessary, we may assume that
I'_ and I'; are part of the line {xs = 0} and the domain (2 itself is located below the line
T = 0.

We construct a holomorphic function ® with domain Qg O € satisfying (2.1), (2.2) and

ORe @ ORe @
|F < 0,

(33) Imq)]po == 0, T _ Wh‘+

> 0.



INVERSE BOUNDARY VALUE PROBLEM BY PARTIAL BOUNDARY DATA 7

Here the domain g with sufficiently smooth boundary 0€2¢ can be chosen to satisfy:
(34) QC Qq;., I'y C aQ.:p, (F+ U F_) NoQe = 0.

Therefore, thanks to Assumption A, the set 0 \ 02 consists of four disconnected curves
which we denote as I'g 1, ' 2, ['s 3, ' 4. Counting clockwise, we assume that I's ; is located
between I'g ; and I'g 2, I'g 2 located between I'y » and I'g 3, ' 3 located between I'y 5 and TI'g 4,
I's 4 located between I'g4 and I'p;. Assume in addition that each component I's ) can be
parameterize by the function 5, € C*2[#y 4, &g y1,_ |, Where 2y, 1, 21,1, are the endpoints of
the arcs 'y, and Z5 - = 9 .

FIGURE 2

Let us start the construction of the function ®. Consider the functions v; with domain R!
such that ; is positive on (Z; 4, %41, ), otherwise ~; is zero. Moreover we require that

dkfy‘ . dkfy‘ . dll,)/, . dll’)/' .
W,j(%ﬁ) = Wkﬁ( jr1,-) =0 Vke{0,...,10}, Fnj(xjd-) # 0, Tnj(%ﬂ,—) # 0.

There exists some small positive ¢ such that
(3.5)
(@) = (@=a54)" Var € (T4, 354 4+€),  Y(@1) = (Tjp1,-—2)" Var € (Tj41,-—& Tjia,-)-

We introduce the domain €25 for any small positive § as follows. From below it is bounded
by the boundary of 92 and from above by segments I'y ;, and the graphs of ;.

By vs we denote the outward unit normal derivative to 025 and by 75 we denote the
clockwise unit tangential vector on 0§2s. We set

Dse = { (21, 0v(21)) |21 € [Th 4, Try1, -]}

Let Cq,Cs,C3,Cy4 be rational positive numbers:

(3.6) Co="" munneN, k=1,23,4,
ng
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where the greatest common divisor of my,n, € Z is 1 and ¥ be a harmonic function in
such that 1 is continuous on  and

p

$=C onToy, ¢=C; onTys
@E =—Cy on FO,Qa 1; =—C4 on Lo 4;
(3.7) ) <0 on (&, @9 ) U (34,44 );
0 >0 on (&4, 83 ) U (44,81 );
(¥ € C°(09), ¢ € C™(0U\ Ui Tox).

Moreover we assume that

Fog —21)0 <0 k=1,3,
JAfk7+ — [El)6 >0 k= 2,4,
£k7, — $1)6 <0 k=24,
(Gp_ —2)8 >0 k=13

hma:l—mck ++08

W(21,0)/

limg, 54, , 100, L/NJ($1,0)/
U(21,0)/

)/

N

hm:pl —2p,—+0 aa:
hmm—mk,— _oaxl’;/J(lj, 0

Let function s be the harmonic function in Qs such that for any j € {1,2,3,4}

(3.8) U5 =1 onUiy Tog,  ths(r1,87(21) = &(21,0) on[&)4, 8511 ].

For all sufficiently small 0, by (3.7), counting clockwise, the function )5 is monotone decreas-
ing on the arcs between I'y ; and I'g 2, and I'g 3 and Iy 4, and )5 is monotone increasing on the
arcs between I'g o and I'g 3, and between I'g 4 and I'y ;. Once the function ;5 is constructed,
using the Cauchy-Riemann equations, we construct the function (s such that the function
s + 115 is holomorphic. The following inequalities are true for all sufficiently small positive

J

Ops s
(3'9) Ovs ‘Fa 1Uls 3 <0, Ovs ’F62UF54 >0,
. 0 .
(3.10) llmxlﬁik#wa—iﬁ(xl,57k(x1))/(xk7+ —11)°>0k=1,3,
Dps

hmﬂ:l—WCk +—0 " 8V5 (xh 5’7k—1($1))/(fik,— - 5171)6 >0k= 274-

s

(3'11) hmxl%xk +1+0 5 81/5 (151, 67k+1(x1))/(*@k,+ - -Tl)G <0k= 27 47

lim N d
0~ 2
X Ik +— V5

(1,095 k(1)) /(Ep- —21)° <0k =1,3.

At the endpoints of I'g» and I'g 4, the function 15 reaches its minimum and at the endpoints
of I'g; and I'g 3, the function 15 reaches its maximum. By (3.8) we have

(3.12) (¢s,15) = (p,0) in C*(Q) as d — +0.

Here ¢ is a harmonic function in €2 such that 0;(@ + nﬁ) =0.
By (3.9)-(3.11) for all sufficiently small positive d, the holomorphic function ¢s + itbs
satisfies (2.3).
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Consider the domain

G ={(71,72); Toy <1 < B3, —07%(z1) <29 <0}
U{(ZL‘l,ZEQ) l’4+ < T < 1'1 —5’74(171) S T2 S 0}

We claim that there exists a positive constant Cy such that

s

(3.13) ws(x) — s(x1, —x9) > Csl(x) Vo eG_, 5
Z2

——(z) < =Cstly(z) Vreg_,

where ((x) = miNye(s, | 40, 252} |1 — Y| |22| and €1 (2) = minge(z, | 24, 3541} |21 —Y[°
Indeed, suppose that the second inequality in (3.13) fails for all small positive 4. By (3.9)
and (3.12), this is possible only for a sequence of the points x5 such that it converges to

the set D_ = {x; 4,29, x34,24_}. Taking a subsequence if necessary, we may assume
that zs converges to one point of the set D_. Let it be the point %2 . By the Cauchy-
Riemann equations, g—“,i‘: = 8% for any point of 0. Therefore by (3.10), there exist

positive constants C and e, mdependent of ¢, such that
20 < Cxy —i14)° on {z; & € sy, dist(@gy,2) < €},

Taking into account that by (3.5) 75 = (8(z1 — £2.4)7,1)/(1 4 64(x1 — #54)*)2, we obtain

) C A
ﬁ(l’) < —E(Qﬁ — .’13‘2’+)6 Vo € {($1,132> x| € [372 +,.§L’2+ + 6] Ty — 5’)/2(331)}

81’2

Using (3.5), (3.12) and the Taylor’s formula for any = € {(z1,22); &1 € [Ty, 824 +
€], —072(z1) < 29 < d7y2(1)} we have

s s 82%

B (71, 12) = By (w1, 072(71)) + a—xg(lEhC)(l'z — 072(71))
C
< _5(-T1 — Z94)" 4+ 2C572(21)
C R . C .
(3.14) = —Z(xl — G04)0 +2C (21 — Zo )M < —Iﬁ(:cl — d94)°.

Therefore we complete the proof of the second inequality in (3.13)
Let x € G_. Using (3.14) we have

ws(x ) — p5(71, —22) < @5(21,0) — p5(z) =
C@ 06

(315) / 85905 l’l,g)dg < —— (Il — 1‘2 +> dg = —7(1‘1 — IQ +)61)2.

The proof of (3.13) is completed.
Consider the domain
G = {(z1,22); To+ <1 < Ty, —072(21) < 20 <0}
U{(w1,m2); Zaq < 2y <@y, —0ya(21) < 20 <0}
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Similarly one can prove that for all sufficiently small positive d, there exists a positive
constant Cs such that for any z in G,

(3.16) ws(x) — ps(x1, —x2) < —Csl(x) and g—ij(az) > Csly(x),

where £(z) = milyefs, | o4y 41 as -} |21 — Y| 22| and 01 (@) = minge(z, , 40,51 a1 |01 —Y[°.
At this point we fix the parameter ¢ such that (3.13) and (3.16) are valid. The holomorphic
function s + i1)s satisfies (2.3) and all the interior critical points (if they exist) are nonde-
generate. This function may have some critical points in the set {Z;+; 7 = 1,2,3,4}. Let
the tangential derivative of ¥ be not equal to zero on some open set I'. By Corollary 5.1 in
Appendix, there exists a harmonic function ¢ + Z’lj) such that IAmz/A) = 0 on 025 and %| &4 18
not equal to zero for all j. Then the function @5+ €@ +i(¢s +1) does not have critical points
on the set {2, 1; j =1,2,3,4} for all small positive e. In fact this function can not have more
than one interior critical point. Indeed it is known (see e.g., [13]) that if # is the interior
critical point of the harmonic function ¢, then the set {x € 9Q; ¥(x) = ¥ (&)} consists of
at least four points. Moreover the set {x; ¥(x) = ¥ (&)} consists of two continuous curves
intersecting at #. These curves divide 2 into four domains: Q = U}_, Q. If there exists
another interior critical point z1, then it belongs to some domain €2;. However in this case
it is impossible that there exist four different points x; from 0, such that ¥(z;) = ¥(x;).
The construction of of the weight function ® is completed. If an interior critical point of ®
exists, then we denote it by .

3.2. Construction of the amplitude
The amplitude function a(z) is not identically zero on Q and has the following properties:

(3.17)  a€C®Qs), 08-a=0, Realr, =0, |a(z)| < Cqzlz — 2;4|™ Vj € {1,2,3,4},

where m € N is sufficiently large (e.g., m = 100). Such a function can be constructed in the
following way: Using a C* conformal mapping II we map the domain Qg into a bounded
domain O with 00 € C*. Applying Proposition 3.1 we construct a holomorphic function A
such that A is sufficiently smooth on O, Re Alrr,) = 0 and 9¥A(2;4) = 0 for k € {0, ..., m}.
Then we set a(x) = Aoll.

Let the polynomials M;(z) and Mj3(2) satisfy

(3.18) (0 (aq) — My)(z) =0, z€HU{Zp+,k=1,2,34}, 7=0,1,2,
(3.19) L7 (aq) — M3)(x) =0, w€HU{ipe, k=1,2,3,4}, j=0,1,2,
and

(3.20) OF M,y (24) = OFM3(3;4) =0 VEk€{3,...,m} and Vj € {1,2,3,4}.

By (3.18)-(3.20) and (3.17) we have
(3.21)
10z (aqr) — My (2)| < Cslz — &x <™, |07 (@q) — M3(2)| < Colr — & 2| Yk € {1,2,3,4}.
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Finally ag,a; € C%(Qg) are holomorphic functions such that
(0= (aqn) = My) (97 (@q,) — Ms)

(ao +a1)|r, = 10.D 10,0 ;
and there exists a positive constant C' such that
(3.22) lap(7)] < Colz — 74> Vj € {1,2,3,4}, Vk € {0,1}.
3.3. Construction of u_
We introduce the function u_(7,-) by
(3.23) eu_(1,1) = —x(e™a + eT‘i’d) + w,(z)e™,

where W(z) is the holomorphic function defined by
(3.24) U(z) = (21, —x9) —it(x1, —x9) zE€G_UG,.

In order to construct w,, we introduce the following functions

(3.25) a(ry,m9) = Rea(xy, —x9) —ilma(xy, —x9) € G UG,
and
(3.26) ar(r1, ) = Reag(xy, —x9) —ilmay(zy, —x2) € G UG, ke {0,1}.

The function x is constructed in the following way. Let u € C§°(—2,2) and pf_1,1) = 1. We
set

( (1 - N((xl — Ty +) SL) — [ (%1 — I3 ,)T%>>/ﬁ(1’27%)
for =z € Vl = {(iL‘l, 2)’.@2+ < T < .@3,, —(5’}/2(33'1) < ) < O},
327 xlw) = (1= (1 = Fa,)790) = (21 = 1) 7)) u(7 )
for =z € VQ = {(.Tl,xz)’l’4+ < T1 < Ty, —, —(5’}’4(%1) < T2 < 0},
L 0 for z¢ VUV,

For all sufficiently large 7
(3.28) suppx- N C G_.

Let w, be a solution to the boundary value problem:

A(w.e™) + ¢ (we™%) =1, = Xqu(eTG(d +a1/7) + 67\1’(& + ag/7))
(3.29) i Al (@ + a1 /1) + €™ (@ + do/7)) in Q,

(330) (wT€T¢)|FOUr7 =0.

Denote g, = [xr, Al(e™ (@ + a1 /7) + €" (@ + 4o /7)). We claim that
. 1

(3.31) lgre™ |2 = O(;) as T — +00.

Indeed the operator [y,,A] is a first order operator :[x,, A] = 2(Vx,, V) + Ay, where
(3:32) IVl zee(@) = O(T75), - 1AXc 1wy = O(7%) as [7] = +o0.
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By (3.27) there exists 7o such that for all 7 > 75 we have
supp Ax,, suppVyx, C Zy(7) U Zy(7),

where

Iy(1) = {(3?1,932), 0<xzy < %, 71 € [Ta4 + 11 s Lo + %] UlZs3- — —, 23 — %]
T7 T80 T80 T80 T80
Ultae + =+ —r] Ul — =1, 11]}
T80 T80 T80 T80
Observe that
(3.33) Ti(t)UZy(T) C G,
Applying (3.17), (3.12), (3.32) and (3.33), we have
(3.34) le I, Al(e™ (@ + @ /7) + €™ (@ + o/ 7))l p=(z1)
< e Axr (€ (@ + ar /1) + €™ (@ + ao/7)) |1 z,)
+2[le” (€™ (Vxr, V)(@ + @ /7) + €™ (Vxr, V)(@ + /7)) 0 z,)
2| re (e (Vxr, VO) (@ + a1 [7) + €™ (Vxr, V) (@ + do/7)) || e(zy)
< |T|3 sup 6—w+TRexp < |T|3 sup e—Tcée(x) < |T|3€—Tcérm77 _ O(%) as T — 400
€T (7) €T (T) T
Using (3.17), (3.22) and (3.32), we obtain
(3.35) le™™ e, Al (@ + @ /7) + €™ (@ + ao/7)| o z2)
< e e AN (@ + ar /7) + €™ (@ + /)|l z2)
+2]le” (€™ (Vxr, V)(@ + a1 /7) + €™ (Vxr, V)(@ + /7))l z2)
+2|jre (e (Vxr, V) (@ + a1 /7) + €Y (Vxr, V) (i + o/ )| Lo (25)
< JAX-((@+ a/7) + (@ + ao/7)) | L (z)
+2/[(Vxr, V(@ + a1/7) + (VX7, V) (@ + ao/7)| oo (z,)

1

20 7((VXr, V) (@ + a1 /7) + (VXr, V) (@ + d0/7)) || 2 (z0) = O(=) as7— +oo.

The inequalities (3.34) and (3.35) imply (3.31) immediately. By (3.13) and (3.24)
(3.36) e ™ xrq1(e™ (a+ a1 /7) + ¢ (@ + ao/7)) |2 = o(1) as T — +o0.

Using (3.31), (3.36) and supp x, NH = ), we can apply Proposition 2.6 to obtain a solution
to the boundary value problem (3.29), (3.30) such that

1
(3.37) |wr||z2() = o(;) as T — +oo.
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3.4. Completion of the construction of the complex geometrical optics solution
U
The function wuy; is given by

1 .~ 1 .
(338) Ui = —ZSZW/)R@J(@l(@E_l(Cqu) — Ml)) — ZB_ZT¢R@7_T(€1(8;1(EQ1) — Mg))

e (07 (aqn) — M) eV e8] (@qi) — M)
T 482(1) T 46Z(I) ’

where e, e5 € C°(Q) are constructed so that

(3.39) e1 +es =1 on Q, ey vanishes in some neighborhood of H

and e vanishes in a neighborhood of 9).

Let u15 be a solution to the inhomogeneous problem

(3-40) A(Umew) + qru2e”? = —quuie”™ + hie™  in Q,
(341) U192 = dlﬂ' + d2’7- + d377- on FO U F,,
where

—1 —1/—
_ rivp (€200 (aq) — M) —ripp (€200 (@) — M)
fu=e ( 170, e 170.0
(3.42) —apq €™ /T — @qe” Y,
and di , = (7% Re - (e1(0 (aqr) — My)) + o Roy . (e4(95 (agn) — Mg))),

_ 4 , i o
_ i _ eim¥ ea(0Z (aqi)—Mi) | e~ en(d7 (aq)—M3)  age”4ae T
dar = xr_(1—x7)Re{e™a}, d3, = T 10,9 + == 40,9 o T :

By (3.17) and (3.22), there exists a constant C, independent of 7, such that

dp Cho
3.43 ds A= < —.
( ) 3, / |61/| = ’7_‘

L2(T_)
Consequently applying Proposition 2.7, we obtain a solution for the initial value problem
Ly(xz, D)(€™u1a,1) = 0,u121|r, = 0, u127|r_ = ds, which satisfies the estimate
1

(344) ”u12’[||L2(Q) = 0(;) as T — +o0.
Since

||Q1U11 -+ h1||L2(Q) S CH((S)/|T|1_6 V(S - (0, 1)
and by the stationary phase argument ||d; ;|| r2rour_) = O(Z), there exists a solution to the
initial value problem L;(z, D)(e™u12,11) = 0, w12, 17|rour_ = di1,» which satisfies the estimate

1
(345) Hulg,[[HL2(Q) = 0(;) as T — +00.

Finally |di;||z2qour_) = O(5) by (3.17). Therefore applying Proposition 2.6, we obtain
a solution to the initial value problem L;(x,D)(e™Puia 1) = 0,2 111|rour. = da, which
satisfies the estimate

1
(346) ||u12,[1~1||L2(Q) = O(;) as T — +00.
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Setting uia = wia 171 + 12,77 + U127, We obtain a solution to (3.40), (3.41) satisfying

1
(3.47) w122 ) = 0(;) as T — +00.
Now consider a sequence of 7; such that
(3.48) Tj = 2T JN1NeN3Ny,

where ny,n9,n3,ny € N are defined in (3.6). For each 7; from this sequence, the solution
satisfies the zero Dirichlet boundary condition on I'g U T'_.

3.5. Construction of the complex geometrical optics solution v
Consider now the Schrodinger equation

(3.49) Ly(x,D)v =Av+qguv=0 in Q.
We will construct solutions to (3.49) of the form
(3.50) v(z) = e "®(a+bo/T) +e " (a+ b /T) + e vy + e oy + e o, vlp, = 0.

The construction of v repeats the corresponding steps of the construction of u;. The only
difference is that instead of ¢; and 7, we use g2 and —7 respectively. We provide details of
the construction of v for the sake of completeness. Let polynomials My(z), My(z) satisfy

(3.51) (0 (aq) — My)(z) =0, z€ HU{Z+,k=1,2,34}, 7=0,1,2,
(3.52) (07 Naq) — My)(z) =0, z€HU{ipe, k=1,2,34}, j=0,1,2,
and

(3.53) OFMy(74) = OFMy(7;4) =0 Vk€{3,...,m} and Vj € {1,2,3,4},

where m € N can be chosen for example as 100. Finally by, b; are holomorphic functions
such that
(0-'(ags) — Mz) (0 (ags) — My)

0.9 49.9

and there exists a positive constant C5 such that

(bO + 51)|F0 = -

(3.54) bp(z)| < Cralr — 254 V5 € {1,2,3,4}, Vk € {0,1}.

Let

(3.55) bi(z1,T5) = Rebj(xy, —x2) — ilmb; (21, —x5) Vo € Gy, j € {0,2}.
We set

(3.56) e v (T,x) = —Xa (e TV (a + bo/7) + eV (a + by /7)) + W (x)e T
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The function y, is constructed in the following way. We set
[ =l = d0)790) — (a0 — - )70)) (a7
for x€Vs={(z1,22); 214 <1 <Ty_,—07(r1) <
- . 1 . 1
(3.57) Xr(2) = (1= pl(z1 = &3,4)7%0) — pul(w1 — 24,2 )750) ) pa(
for =z € V4 = {(Z)’Jl,l’g); 1%37+ <z < 12‘47_, —(573(131) < x9 < 0},

0 for ZE¢V3UV4.

\

Let w, be a solution to the following boundary value problem:

A7) + ga(tire %) = Xrqa(e ™ (a+ bo/7) + € (a+ by /7))

(3.58) +[%r, Al(e ™ (a + bo/7) + e ¥ (a+ by /7)) in Q,
(W™ |pgur_ = —€ " (a+bo/T) + e (a+ by /7)
(3.59) (e (a+bo/T) + eV (a+ by /7).

Denote §, = [Xr, Al(e ™Y (a4 bo/7) + € ™ (a + by /7)). We claim that
o 1
(3.60) G-\ 2 = 0(;) as |7| — +o0.
Indeed the operator [x,,A] is the first order operator :[x,, A] = 2(Vx,, V) + Ax,
where

L

(3.61) IV llzei) = O(T10), 1A% ||z=(0) = O(7%) as |7] = +oc.

By (3.57) we have

supp VX, supp Ax, C fl(T) U Zy(7),

where
> 1 2 A 2 2 . 2 2
Il(T):{(xl’@);_lezg_“ o1 € [T+ = o — U [T + 1,x4_——1]},
T7 T7 T80 T80 T80 T80
~ 2 R . 2 . R 1
Ir(t) = (21,22); 0 <09 < —, @1 € [ 4+ —, 814 + —|U[To- — —, To- — —
T? T80 T 80 T80 T80
. . 2 . 2 1
U[l’3++ L,l’g_;_—f— L]U[ZL‘ZL_— T L4, — — L]
T80 T 80 T80 T80

Observe that

(3.62) Ti(r) UZy(r) C T_.
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Applying (3.17), (3.32) and (3.62), we have

(3.63) 1™ [%r, Al(e ™ (@ + bo/7) + 7Y

+2||7e™ (e Y (V Ry, VO) (@ + bo/7) + e 7Y (vXT,vm

J S

< |7]* sup ere-TREV < I7|* sup e —7Gil@) < |T3em T T — O(—Q) as |1| = +oo.
€y (1) ey (r) T

Using (3.17), (3.22) and (3.32), we have

(3.64) e 1%, Al (@ + bo/7) + €™ (@ + b1 /7) | o 2

<€A (e (@ + bo/T) + e (@ + by /7)) o 2,

+2]| €7 (e (Ve V) (@ + bo/7) + €7 (Ve V(@ 4 b1 /7)) | o)
+2||7e™ (e Y (VRr, V) (@ + bo/7) + €Y (VXr, V) (@ + by /7)

< |ARA((@+ bo/T) + ( )

+2/[(VXr, V) (@ + bo/7) + (VXr, V)

)

)

)

M oo (22
i+ b1 /7))l Loz,
(a+51/T)HLoo (Z2)
+2/7((VXr, VO) (@ + bo/7) + (VXr, V) (@ + by /7)) ooz = O(%) as |7| — +o0.

The inequalities (3.63) and (3.64) imply (3.60) immediately. Using (3.31), (3.36) and
supp X N H = (), we can apply Proposition 2.6 to obtain a solution to the boundary value
problem (3.58) and (3.59) such that

N 1
(3.65) |Wr| 22y = 0(;) as |1| = +o0.
The function vy is given by
1 1
(366) V11 = —4 _”wR@ 7—(61(8 (QQCL) MQ)) 4 T¢R¢T(61(8 (QQCL) M4))
+e‘”¢ ea (021 (aqy) — My) N e eq(07(age) — My)
T 40, T 40D '
Denote
hy = e—TiwA 62(82_1(a’q2) — Mg) + eTiljJA 62(82_1(5(]2) — M4)
470, 47’82_(13
b ) b,
__Oq26727'1/1 . _1q2€m-z/1
T T
The function vy is a solution to
(3.67) A(vige™ ™) + quuize” " = —qovpie” ¥ — hoe ¥ in Q,

(3.68) Vr2|rour, = CZLT + d~2,‘l‘ + Czs,n
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where dy ; = <7 Ra, - (e1(05 ' (aga) — Ma)) + < Ra - (e1(0 " (age) — M),

4
7 —Ti 7 et¥ e2(9Z ' (ag2)—M>) e iV e2(87 ! (@ge)—My) boe T 4bieTV
da- = xr, (1 —x-)Re{e wa}, d3r = < 0.9 + == - 16,® B T '

By (3.17) and (3.22), there exists a constant C3, independent of 7, such that

- /8gp
dS,T/ %

Applying Proposition 2.7, we obtain a solution to the boundary value problem
Ly(x, D)(e" ™ v12,1) = 0,v12,1]r, = 0, v127|r, = d3~ which satisfies the estimate

C
< L3

Gl

(3.69)

L2 (')

1
(370) HU12,I||L2(Q) = 0(;) as T — +00.

Since
lg2v11 + hal|L2(0) < Cra(8)/|7]'™° WS € (0,1)

and by the stationary phase argument HJLTHLz(pOUM) = O(%), there exists a solution to the
initial value problem Lo(z, D)(e”"Pvig,11) = 0,v12,11|ryur, = di» which satisfies the estimate

1
(3.71) lv12,11]| L2(02) = 0(;) as T — +00.

Finally ||d1 .|| z2mour,) = O(Z%) by (3.17). Therefore, applying Proposition 2.6, we obtain
a solution to the initial value problem La(x, D)(e™"viar17) = 0,v12,111|rgur, = da,» which
satisfies the estimate

1
(372) ||U127[[[||L2(Q) = 0(;) as T — +o00.

Setting v1a = V12,177 + V12,17 + V127 We obtain a solution to (3.40), (3.41) satisfying
1
(3.73) |v12]2() = 0(;) as 7 — +o00.

For each 7; defined by (4.19), the solution v satisfies the zero Dirichlet boundary condition
on FO ul'_.

4. Proof of Theorem 1.2

Proposition 4.1. Let the function V defined in (3.24) and the holomorphic function ®
constructed in Section 3 have an internal critical point x. Then for any potentials q1,qs €
CH(Q), a > 0 satisfying Cy, = C,, and for any holomorphic function a satisfying (3.17)
and M, (z), My(2), M3(Z), My(Z) as in Section 3, we have

27r(q\a|2)(§)Re e2irj]m<b(5)

4.1 1
(4. |(det Im®")(7)|

+ /qu(ao +bo) +a(@ + b)) dz
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1 _ 1=
i 1/ (qaaz (ag2) M2+qaaz (420) M4) I
Q

4 0. 0,
1 8;1(aq1) — M1 _8;1(6(]1) - M3
-1, (qa o0 T 00 ) dw

1 1
+ / anRe{_—}dU—/ anRe{_—}dazol as T; — +00
r_ a 0, (VU — @) Iy . On, (¥ — @) W ’

where ¢ = q1 — g2 and the sequence T; is given by (4.19).
Proof. Let uy be a solution to (3.1) and satisfy (3.2), and us be a solution to
Aus 4+ que =0 in Q,  uz|sn = uilsq.
Since C,, = Cy,, we have
Vus =Vu; onl_.

Denoting u = u; — ug, we obtain

ou
(4'2) Au+ gu = —qu; in €, U|aQ = $|r, = 0.

Let v satisfy (3.49) and (3.50). We multiply (4.2) by v, integrate over {2 and we use
vlr, = 0 and 2% = 0 on I to obtain [, quivdz = 0. By (3.2), (3.50) and (3.47), (3.73), we
have

0= / quivde = / q(a® + @ + |a?e7 P 4 |g|2e(®®)
Q Q

1 7 —

+T_(a<a0 + b()) + a(al —+ bl)) + uHeTjgp(ae_q—jq) n ae_qu))
J

e 58 e

—l—/ qe™%a + e Pa)u_e"¥da
0

3 1
(4.3) —|—/ q(e7®a + ) v e dx + o (—) , 1> 0.
Q

7j
The first and second terms in the asymptotic expansion of (4.3) are independent of 7;, so
that

(4.4) / q(a* +@*)dz = 0.
0
Let the functions ey, e be defined in (3.39). We have

[ atlaPer® 9 s e o — [ cigllaen® D 4 o)
& Q

+ /62(](]@\26”@’@) + |al?e™(®®))da.
0

By the Cauchy-Riemann equations, we see that sgn(Im ®”(z;)) = 0, where sgn A denotes
the signature of the invertible matrix A, that is, the number of positive eigenvalues of A
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minus the number of negative eigenvalues (e.g., [5], p.210). Moreover we note that
det Im @ (2) = —(0,, 05, 0)* — (05,9)* # 0.

To see this, suppose that det Im ®”(z) = 0. Then 9,,0,,¢(Re z,Im z) = 92 ¢p(Rez,Imz) = 0
and the Cauchy-Riemann equations imply that all the second order partial derivatives of
the functions ¢, 1) at the point z are zero. This contradicts the assumption that the critical
points of the function ¢ are nondegenerate.

Observe that if ® has a critical point on 2, then it can not have any critical points on I'.
Then by (2.2) 7 is the only critical point of this function on €. Using the stationary phase
(see p.215 in [5]), we obtain

_ _ 2(7)R 2r;ilm & (%) 1
(15) [ callaen @ 4 oper® oy — pTIDRER 2 (1)
Q 7;|(det Im &) (7)|2

Integrating by parts we have

/ 62Q(|a|2€Tj(¢_6) + |a|267j(5_¢))da:
Q

(Vip, VeTi(®=2)) (T, Ve (P=2))
= /egq]a|2 ) — : dx
0 27| V|2 2i7j| V|2

. [ eaqla’Vy (®-B) (@)
— _ d 2t T Tj _ o7 d
/Q v (%nlvw (€ v )

2 _ _
n / Lba_i/’@n(@f@) _ )4y
aq 2iT;|V|? Ov

2 _ _
- / div (M) (7 D) _ (n(@-0)) g,
supp ez 2ZTj | V@H

qlal* 9y, i) —27;it) 1
+ / ————— (" — ") do + o(—) as 1; = +00.
r_ury 2im;|Vp|* Ov Tj ’

In the last equality, we used that (=% — ¢7%(®=®) — () on Ty which follows by (2.3) and

Im® = 0 on Iy, and applied (3.17) in order to show that div (‘Zg'?g%f) and % are
J J

bounded functions. Applying Proposition 2.4 we obtain
- - 1
/ eaq(|al?e™ ) 4 |a)?e @) dr = o(—) as T; — +00.

Q Tj

Since the function v is strictly monotone on I'_ U T, we have
q|a’|2 81/) 2 w -2 w 1
— (7" —e7"")do = o(—) asT; = +o0.
/FUF+ 2i;| V|2 aV( ) <Tj) !

Therefore

- - 1
(4.6) / q(|a?e @) 4 || @) dr = o (—) :
Q

Tj
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Next we claim that

2
(4.7) /Qq(e_”q)a + e A u_e"Pdr = /_ dlal Re {m} do + o(l)

Tj T]
and
, T qla? 1 1
4.8 /q e+ e%a) v e T dr = / Re {_— do + o(—
(4.8) Q( Jv+ T 0.7 — @) (n)

as 7; — —+00.

Indeed, by (3.56) and (3.24)

K= / qle % + e @) u_edr = / q(e™%a + e_TjEE)XTj(eTjE(a + ao/ ;)
Q Q

bt i)z = [ g ala T a0 R)en T 4 ala e
Q

taa+ a1 /7;)e" Y a(a + ay/r;)e” VD) de =

7 Vo o orip L (11t i)
mlala+ag/7;)———=——-+ala+ay/T; )" = —=""T—
R o 1 (Vl — ng) _ “ 1%}
. 2ryip Z _\NTL "TA) N = Vdo —
+a(a+ a1 /T))e 270,00 — ) +a(a + al/Tj)Tjag32(\I/ — CI))) o

1 R — [ _

- (Bi(z, D)*(qx~,a(a + do/Tj))eTj(\Ilfq)) + By (2, D)*(qx,a(a + do/Tj))eTj(q’*é)
i JQ

+B3(I7 D)*(qXTja'(a + dl/Tj»eTj(\I’_q)) + B4(ZL’, D)*(qujd(a + dl/Tj))eTj(W_é)>dx7

where
&@Dp?—gl—ya@py: 32_,
By, (U — @) 0-(¥ — )
) 0
Bs(z,D) = ———=— By(z,D) = — 2 __
s(#.0) = g —qy P D) = g5 =9
Obviously
— Uy _ —~ 2riitp 1 (1/1 + iVQ)
+(a(a + » = +a(a + e -
/asz D (o) g gy e o W — @)
+a(a+a /7'~)e_2”“”1 (1 —ivs) +ala+ay/7;) Y2 Ydo =
1743 27,0.(¥ — D) Y 0, (U — )
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Using this equality and integrating one more time, we have

(4.9) K= / <T] 9 — 1) Tjam(a\;— <I>)) o

+Tl Q(Bl(w,D)*(QXT]( m)e 75 (U~ )_|_32<x D) (qXTJ m)erj@—@)

+Bs(x, D)*(qx-a(a + &1/7']-))6”(\1’_‘1)) + By(x, D)*(qx+,a(a + a1/75))e 7 (P —2) )d:z: =

1 aa aa
K — — — | d
1+0(Tj>+/12q<Tjaﬂc2(\If—¢)>+Tjaﬂﬂz<\I}_®)) ’

* VTR Vg — 27-»2‘1/11 (V1 + il/g)
B D Ts y - = B 7D 7— J e ——
[ B D) v o a0 i) e+ Bale DY (axala T o )8
1 —
© Bae, D) (gxnala+ anfry))e2v L =2 g Dy axeaa + ) —e e )dor,

27,20.(V — ®) 7570, (¥ — @)

where

K1
- _/ (B2, D)*)*(gxra(a + ao/75))e" ™™ + (Bsy(z, D)) (gxra(a + ao/7;))e =)
Supp x-; NG

+(Bs(x, D)) (qxrala+ a1/75))e™ "™ + (Bi(x, D)) (qxrala+ a1 /75))e™ ™) da.
Since
(4.10) Re(V—-®)<0 Vxreg_

by (3.13), we have

i< 2 | (1(B: (2 DY) (s ala + o] + | (Balir, D) (axsala + o] )
J upp x-,NG—
(B, D) Plaxsyala + s /)| + [(Bale, DY Vqxnala + a1/)))do
C 1 CT]ég = 0 i as T; o0
. : ?/supprjmg_ Gwp S T o) e

Again, by (3.17) the last boundary integral in (4.9) can be estimated by o(+ ) Then from
(4.9) and (4.11) we obtain (4.7).
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We prove (4.8) in the similar way.

(4.12) K= / q(e%a + " %a)v e T Pdr = / q(e®a 4 7 @)X~ (e” ¥ (a + bo/T;)
Q Q

e @t by /) = | ai (ala+bo/m)e ™ 4 afatBy/m)e 0
ta(a+ by m)e D 4 a(a+ by e D) e+ O(Tl )=
’
-AJ%ME%EEQ%T@+azwaﬁw;%ﬁ%%
+ala + by /7;)e "‘Tﬂﬂ’;ﬁ +a(a + Bl/rj)ﬁ)da —

1 _ B
+— /(31 (w, D)*(qXmala + bo/73))e "= + By(w, D)* (qXs,ala + by /7;))e ¥~
iJQ

+Bs(x, D) (qXrala+ bi/7))e 7Y% + By(w, D) (qXr,ala+ b /;))e "~ P)dx
1

+o(—) as 1; = +oo.
Tj
Obviously
I — vy T ol (it i)
/aQqu(a(a O/T])Tjﬁm(\lf—®) a(a+bo/7j)e 27.0.(7 — 3)
+ala+bi/7;)e AN GEION ta(a+ b /7)) do =
j 27,0.(U — ) V100, (W — @)

/ ( aa aa ) do + o( - 1 )
— o
Iy I 70, (¥ — @) %3@(‘1’ D) 7j

Using this equality and integrating by parts in (4.12) once more, we have

~ aa aa
4.13 K=— — + = d
( ) /1“+ 1 (Tjaﬂcz(\p - Q)) Tjaﬁm(qj - cb)) 7
1 L — = — s
- (Bi(x, D)*(qX~,(a(a + bo/73))e” ™"~ + By(x, D) (qX-,a(a + bo/7;))e 7~
i Ja

+Bs(x, D) (qX+,ala+ by /7;))e” 7" + By(z, D)* (q¥-,a(a + by /7;))e 7~ P)dx

s 1 aa aa
_ Ay - — ) d
R N Gt =R ) K

_ (a5 ala T o)) 2 b el (i)
[ (Bste. Dy (as ol o) g * Bl D) o
~ . ol (1 — i) Vo
* . 270 ~ P ——
+Bs(z, D)*(qx-,a(a + by /7;))e > 7 20.(¥ — ) + By(z, D)*(q¥r,a(a + b1 /7)) 720, (0 = )da
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where
K, =
1 N _ T T (T N T T W (T3
_2/ ((Bl(x’ D) )Q(QXT].CL((I + bO/Tj))e 5 (0=%) + (BQ(xv D) )Q(QXT].CL(CL + bO/Tj))e 5 (0=%)
75" Jsupp x-,nG+

+(Bs(z, D)*)*(qXrala+ by /7;))e” 7 + (By(z, D)*)*(q¥r,a(a + by /7;))e 7~ P)da.
Observe that
(4.14) Re(¥ —®) >0, Vzeg,.

By (4.14) and (3.16), we have
Ril< =5 [ (Bl DY Plaiselat in/m)| + (Bale, DY Flaisala + io/)
Upp x-; NG+

+|(Bs(x, D)*)*(qXx ala + b /7))| + [(Ba(z, D)*)*(qX- a(a + by /7)) )da <

1 C'r;% 1
4. — = dz I — ().
1) 75 /Suppﬁfjﬂ% |6 ()2 = <Tj)

Applying (4.15) and using the fact that the last boundary integral in (4.13) is o(+) we obtain
the formula (4.8).
We calculate the two remaining terms in (4.3). By (3.38) and Proposition 2.5 we have:

r 1
(4.16) / qui1€™¥(ae”® +ae?)dx = o(—)
Q 7j
e® (0 (agy) — My) | en® (9 (agi) — My) 3
. z -7;® T d =
/Q ( 7 40,9 s 100 q(ae™™® +ae ") dx
_ / en a0z (aqr) — My) | en PV a(07 (a@g) = M)\
Q 1 T; 40,9 T; 40,
a (ajl(CLCh) — Ml) a (8_1(6q1) — M3) ].
/Qq(’?'j 4(()2@ +Tj 48,2(1) x—’_O(Tj)
a (ail(aql) - Ml) a (8_1(6q1) - M3) 1
_ 2\ 2 T d il . .
/Qq<7_j 10.9 +Tj 0.0 x+0(7_j) as T; — 400
Similarly by (3.66) and Proposition 2.5
(4.17) Jo quiie™ % (ae™® + ae"®)ds =
s 1 (ags)— Mo % (97 (@gn)— My L _ 5
¥ g (£ O amotte) | 5% O (aer® 4 T ) 4 0( L) =

—1 (@) g(- (agy)— 71(@=F) 451 (gas)—
eI a(07 (ag2)—Mz) | €7 a(97 " (aga)—My)
Jo ( 5 10,9 + = 10.9 dx

aaila — M- a a
+fgq(;jz<4§jé o 20l ) o 4 o(L) =

Tj 40,

a M- a 0, (a
qu< 4;231, 2+T—j (452q> )dx—i—o( ) as 1, — +00.
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Therefore, applying (4.4), (4.6), (4.7), (4.8), (4.17) and (4.16) in (4.3), we conclude that

2)(7)R 2ir; I (7) 3
27T(q,a| )(1:) ee 1 + / q(a(ao + bo) —|—G(a1 + bl))d$
|(det Im®”)(Z)|2 Q
1 8;1(GQQ> — M2 _8;1(q26) — M4
1, <qa XX ) “
1 0z (qua) — My | _ 07 (qa) — M
T4 /Q (q@ oo T g dx
N / ( aa N aa ) is
e N\ 50, (T — @) " 70,00 — 3)
aa aaq
— q = + = ) do = o(1
[ o= =) =
as 7; — +00. The proof of the proposition is finished. O

Completion of the proof of Theorem 1.2. First we observe that any smooth holomorphic
function ® = ¢ + 1) satisfying (2.3) can be approximated by the sequence of harmonic
functions constructed in Section 3. Moreover the function satisfying (2.3) has at most one
interior critical point. Therefore by Proposition 4.1 the function ¢ is zero at this critical
point. Consider the set of harmonic functions 1 such that

1 18 equal to some constant on each connected component of the set I'y;

o
a7
oy
a7
We show that the set of critical points of a harmonic function ¢ with the above properties is
dense in Q. In order to see that, it suffices to consider the following case. Let Q2 = Uj_ T,
where I'y is an arc and I'; N T, = 0 for any k # j and € is the unit ball centered at zero.
Consider the set of harmonic functions ¢ with the boundary data i|r, = Ck. We claim
that for a generic choice of I'y we can find constants Cj, such that Vi(0) = 0. Indeed since
V() = & [T () S dt, we have 0.4(0) = & [ (e dt.
To see this, let C; = 0,C; = 1 and the endpoints of the arcs I';, on the complex plane are
given by €°, et €2 ¢ with 0 < 6, < 0, < 03 < 2m. Then

10,(0) = 02(€—z‘01 _ 6—1’02) + 03(€—i02 _ 6—i03> + (6—193 —1).
The equation 0,1 (0) = 0 is equivalent to

C3(e—i92 _ €—i93><ei61 _ ei92) + (e—i93 _ 1)(ei91 _ 6i92)

|67i01 _ 67i92|

|p+ < 0;

‘1“_ > 0.

Cy=—

The existence of real valued solutions Csy, C3 to this equation is equivalent to
Tm(e@102) 4 ¢il02—0s) _ ci01=03)y £

This clearly is valid for a generic position of ;.
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In the set I'y UT'_ we make the choice of four points Zi,...,24 such that 2; € I'; 4,29 €
I'y _, 23 € I'o 4,29 € I'y _. Denote by fl, ... T4 the arcs connecting these points. Consider the
conformal mapping II which transforms the domain €2 into the unit ball and the point Z into
the center of the coordinate system. Above we show that with a generic choice of the points
Z;, there exists a harmonic function vy which is equal to some constant on each arc H(fk)
Consider the boundary data v (II). By 1&, we denote the corresponding harmonic function.
The function ¢ is equal to constant C; on each arc f‘j and it has only one nondegenerate
critical point . Without loss of generality, we may assume that Cy = 0 and Cy = —1 by
multiplying, if necessary, the function 1yoll by a nonzero constant. Observe that Cy < 0 and
C3 > (5. (Otherwise if at least one of these inequalities fails, then the function g o II can
not have the internal critical point.) In a small neighborhood F C U?Zle,i of the points
of discontinuity of the function v o IT we approximate it by a sequence {u} of strictly
monotone decreasing or strictly monotone increasing functions. Outside of F the function
i are equal to the corresponding constants.

Moreover

e — o o I in L*(09).

We claim that for all sufficiently large & the harmonic functions ¢y such that ¥g|sq =
have a unique interior critical point which we denote as z;. Moreover z; — 2. Our proof
is by contradiction. Suppose that for large j, the functions ¢; do not have interior critical
point or the sequence converges to some point y # z. Indeed for any Qy CC €2

(4.18) Y — oo Il in C%(8).

On the other hand, it is known that the number N of zeros of a holomorphic function f(z)
on a domain G is given by

1 d.f
2 o F(5)

Solving the system of Cauchy-Riemann equations we construct a holomorphic function

(4.19)

P, = o, —|— ivj. By (4.18) for all sufficiently small positive § and all large k, we have

LJ‘ 2 (prtity)
2mi JS(Z,0) 82 (er+ik)

the ball B(Z, ). However this function can not have more than one critical point. Therefore

dz = 1. This means that the function ¢ + i), has a critical point in
y = 2. The proof of the theorem is completed. [J

5. Appendix.

Consider the Cauchy problem for the Cauchy-Riemann equations

_(0p O Do O\ . B
51) Lo = (52 - F 224 20) 20w (6.0 = (alo) alo))

(¢ + i) (%)) = coy, j €{1,... N}

Here Z1,... 25 be arbitrary fixed points in €2. We consider the pair by, by and the complex

numbers C' = (co1,..-,con) as initial data for (5.1). The following proposition establishes
the solvability of (5.1) for a dense set of Cauchy data.
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Proposition 5.1. There exists a set O C C'(T)2 x CN such that for each (by, by, C) € O,
(5.1) has at least one solution (¢,v) € (C1°(Q))? and O = C*(Ty)? x CV,

Consider the Cauchy problem for the Cauchy-Riemann equations

(06 0 99 90N _
52 Low) = (5o - g g+ 5o ) =0 O (00 = (He)0)

l

0 o :
@(qﬁ—i-mm(xj) =c¢ , Vje{l,...N} andVle€{0,...,5}.

Here z,,...2y be arbitrary fixed points in 2. We consider the function b and the complex
numbers C' = (¢ 1, €02 -, CoNs -, C515 C5,2, ---» C5, ) as initial data for (5.2). The following
proposition establishes the solvability of (5.2) for a dense set of Cauchy data.

Corollary 5.1. There exists a set O C C%(Tg) x CN such that for each (b,C) € O, the
problem (5.2) has at least one solution (¢,v) € C%(Q) x C%(Q) and O = C5(T) x CV.

Now we give the proof of Proposition 2.7.

Proof. Let us introduce the space
0
H = {v € Hy(Q); Av+ qov € L*(Q), 8—3]p+ = O}

with the scalar product
(’Ul, 'UQ)H = / €2T¢(AU1 + qul)(A'UQ =+ qO’Ug)d.f.
Q

By Proposition 2.1, H is a Hilbert space. Consider the linear functional on H : v — fQ v fdo+
fr, g%da. By (2.4) this is a continuous linear functional with the norm estimated by a

constant C’lg(erWHLz(Q)/T% + lge™ A/10v¢!||L2(r_)). Therefore by the Riesz representation
theorem there exists an element v € H so that

/U?dﬂ?—F/ g@daz/ezw(A@%— qoV)(Av + gov)dz.
Q p. 0 Q

v
Then, as a solution to (2.8), we take the function u = €*™?(AD + qo0). O
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