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Abstract. We prove for a two dimensional bounded domain that the Cauchy data for the
Schrödinger equation measured on an arbitrary open subset of the boundary determines
uniquely the potential. This implies, for the conductivity equation, that if we measure the
current fluxes at the boundary on an arbitrary open subset of the boundary produced by
voltage potentials supported in the same subset, we can determine uniquely the conductiv-
ity. We use Carleman estimates with degenerate weight functions to construct appropriate
complex geometrical optics solutions to prove the results.

1. Introduction

We consider the problem of determining a complex-valued potential q in a bounded two

dimensional domain from the Cauchy data measured on an arbitrary open subset of the

boundary for the associated Schrödinger equation ∆ + q. A motivation comes from the

classical inverse problem of electrical impedance tomography. In this inverse problem one

attempts to determine the electrical conductivity of a body by measurements of voltage and

current on the boundary of the body. This problem was proposed by Calderón [9] and is also

known as Calderón’s problem. In dimensions n ≥ 3, the first global uniqueness result for

C2-conductivities was proven in [28]. In [25], [5] the global uniqueness result was extended

to less regular conductivities. Also see [14] for the determination of more singular conormal

conductivities. In dimension n ≥ 3 global uniqueness was shown for the Schrödinger equation

with bounded potentials in [28]. The case of more singular conormal potentials was studied

in [14].

In two dimensions the first global uniqueness result for Calderón’s problem was obtained

in [24] for C2-conductivities. Later the regularity assumptions were relaxed in [6], and [2].

In particular, the paper [2] proves uniqueness for L∞- conductivities. In two dimensions a

recent breakthrough result of Bukhgeim [7] gives unique identifiability of the potential from

Cauchy data measured on the whole boundary for the associated Schrödinger equation. As

for the uniqueness in determining two coefficients, see [10], [18].

In all the above mentioned articles, the measurements are made on the whole boundary.

The purpose of this paper is to show global uniqueness in two dimensions, both for the

Schrödinger and conductivity equations, by measuring all the Neumann data on an arbitrary

open subset Γ̃ of the boundary produced by inputs of Dirichlet data supported on Γ̃. We

formulate this inverse problem more precisely below.
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Let Ω ⊂ R2 be a bounded domain with smooth boundary which consists of N smooth

closed curves γj, ∂Ω = ∪Nj=γj, and let ν be the unit outward normal vector to ∂Ω. We denote
∂u
∂ν

= ∇u · ν. A bounded and non-zero function γ(x) (possibly complex-valued) models the

electrical conductivity of Ω. Then a potential u ∈ H1(Ω) satisfies the Dirichlet problem

(1.1)
div(γ∇u) = 0 in Ω,

u
∣∣
∂Ω

= f,

where f ∈ H 1
2 (∂Ω) is a given boundary voltage potential. The Dirichlet-to-Neumann (DN)

map is defined by

(1.2) Λγ(f) = γ
∂u

∂ν

∣∣∣
∂Ω
.

The inverse problem is to recover γ from Λγ. This problem can be reduced to studying

the set of Cauchy data for the Schrödinger equation with the potential q given by:

(1.3) q = −
∆
√
γ

√
γ
.

More generally we define the set of Cauchy data for a bounded potential q by:

(1.4) Ĉq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (∆ + q)u = 0 on Ω, u ∈ H1(Ω)

}
.

We have Ĉq ⊂ H
1
2 (∂Ω)×H− 1

2 (∂Ω).

Let Γ̃ ⊂ ∂Ω be a non-empty open subset of the boundary. Denote Γ0 = ∂Ω \ Γ̃.

Our main result gives global uniqueness by measuring the Cauchy data on Γ̃. Let qj ∈
C2+α(Ω), j = 1, 2 for some α > 0 and let qj be complex-valued. Consider the following sets

of Cauchy data on Γ̃:

(1.5) Cqj =

{(
u|eΓ, ∂u∂ν

∣∣∣eΓ
)
| (∆ + qj)u = 0 in Ω, u|Γ0 = 0, u ∈ H1(Ω)

}
, j = 1, 2.

Theorem 1.1. Assume Cq1 = Cq2 . Then q1 ≡ q2.

Remark. As far as a regularity of the potentials qj is concerned we have to assume C2+α

regularity only in a neighborhood of the boundary ∂Ω.

Using Theorem 1.1 one concludes immediately as a corollary the following global identi-

fiability result for the conductivity equation (1.1). This result uses that knowledge of the

Dirichlet-to-Neumann map on an open subset of the boundary determines γ and its first

derivatives on Γ̃ (see [22], [29].)

Corollary 1.1. With some α > 0, let γj ∈ C4+α(Ω), j = 1, 2, be non-vanishing functions.

Assume that

Λγ1(f) = Λγ2(f) on Γ̃ for all f ∈ H
1
2 (Γ), supp f ⊂ Γ̃.

Then γ1 = γ2.

It is easy to see that Theorem 1.1 implies the analogous result to [19] in the two dimensional

case.
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Notice that Theorem 1.1 does not assume that Ω is simply connected. An interesting

inverse problem is whether one can determine the potential or conductivity in a region of

the plane with holes by measuring the Cauchy data only on the accessible boundary. This

is also called the obstacle problem.

Let Ω, D be domains in R2 with smooth boundaries such that D ⊂ Ω. Let V ⊂ ∂Ω be an

open set. Let qj ∈ C2+α(Ω \D), for some α > 0 and j = 1, 2. Let us consider the following

set of partial Cauchy data

C̃qj = {(u|V ,
∂u

∂ν
|V )|(∆ + qj)u = 0 in Ω \D, u|∂D∪∂Ω\V = 0, u ∈ H1(Ω \D)}.

Corollary 1.2. Assume C̃q1 = C̃q2. Then q1 = q2.

A similar result holds for the conductivity equation.

Corollary 1.3. Let γj ∈ C4+α(Ω \D) j = 1, 2 be non vanishing functions. Assume

Λγ1(f) = Λγ2(f) on V ∀f ∈ H
1
2 (∂(Ω \D)), supp f ⊂ V

Then γ1 = γ2.

Another application of Theorem 1.1 is to the anisotropic conductivity problem. In this case

the conductivity depends on direction and is represented by a positive definite symmetric

matrix

σ = {σij} in Ω.

The conductivity equation with voltage potential g on ∂Ω is given by

2∑
i,j=1

∂

∂xi
(σij

∂u

∂xj
) = 0 in Ω,

u|∂Ω = g.

The Dirichlet-to-Neumann map is defined by

Λσ(g) =
2∑

i,j=1

σijνi
∂u

∂xj
|∂Ω.

It has been known for a long time that Λσ does not determine σ uniquely in the anisotropic

case [23]. Let F : Ω → Ω be a diffeomorphism such that F (x) = x for x from ∂Ω. Then

ΛF∗σ = Λσ,

where

(1.6) F∗σ =

(
(DF ) ◦ σ ◦ (DF )T

|detDF |

)
◦ F−1.

Here DF denotes the differential of F, (DF )T its transpose and the composition inside

parenthesis (1.6) is matrix composition. The question of whether one can determine the

conductivity up to the obstruction (1.6) has been solved in two dimensions for C2 conduc-

tivities in [24], Lipschitz conductivities in [26] and merely L∞ conductivities in [3]. The



4 O. IMANUVILOV, G. UHLMANN, AND M. YAMAMOTO

method of proof in all these papers is the reduction to the isotropic case performed us-

ing isothermal coordinates [27]. Using the same method and Corollary 1.1, we obtain the

following result.

Theorem 1.2. Let σk = {σijk } ∈ C5+α(Ω) for k = 1, 2 and some positive α. Suppose that σk
are positive definite symmetric matrices on Ω. Let Γ̃ ⊂ ∂Ω be some open set. Assume

Λσ1(g)|Γ = Λσ2(g)|Γ ∀g ∈ H
1
2 (∂Ω), supp g ⊂ Γ̃.

Then there exists a diffeomorphism

F : Ω → Ω, F |∂Ω = Identity, F ∈ C4+α(Ω̄), α > 0

such that

F∗σ1 = σ2.

We mention that in [3] K. Astala, M. Lassas, and L. Päiväirinta have shown a partial data

result in the anisotropic problem in two dimensions for bounded measurable conductivities,

similar to Theorem 1.2, assuming that one knows both the Dirichlet to Neumann and Neu-

mann to Dirichlet map on Γ̃. On the other hand, to the authors’ knowledge, there are no

uniqueness results similar to Theorem 1.1 with Dirichlet data supported and Neumann data

measured on the same arbitrary open subset of the boundary, even for smooth potentials or

conductivities. In dimension n ≥ 3 Isakov [17] proved global uniqueness assuming that Γ0 is

a subset of a plane or a sphere. In dimensions n ≥ 3, [8] proves global uniqueness in deter-

mining a bounded potential for the Schrödinger equation with Dirichlet data supported on

the whole boundary and Neumann data measured in roughly half the boundary. The proof

relies on a Carleman estimate with a linear weight function. This implies a similar result for

the conductivity equation with C2 conductivities. In [20] the regularity assumption on the

conductivity was relaxed to C3/2+α with some α > 0. The corresponding stability estimates

are proved in [15]. In [19], the result in [8] was generalized to show that by measuring all

possible pairs of Dirichlet data on a possible very small subsets of the boundary Γ+ and

Neumann data on a slightly larger open domain than ∂Ω \ Γ+, one can uniquely determine

the potential. The method of the proof uses Carleman estimates with non-linear weights.

The case of the magnetic Schrödinger equation was considered in [11] and an improvement

on the regularity of the coefficients is done in [21]. Stability estimates for the magnetic

Schrödinger equation with partial data were proven in [30].

The two dimensional case has special features since one can construct a much larger set

of complex geometrical optics solutions than in higher dimensions. On the other hand, the

problem is formally determined in two dimensions and therefore more difficult. The proof

of our main result is based on the construction of appropriate complex geometrical optics

solutions by Carleman estimates with degenerate weight functions.

This paper is composed of four sections. In Section 2, we establish our key Carleman

estimates, and in Section 3, we construct complex geometrical optics solutions. In Section

4, we complete the proof of Theorem 1.1. In the Appendix we consider the solvability of

the Cauchy-Riemann equations with Cauchy data on a subset of the boundary. We also
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establish a Carleman estimate for Laplace’s equation with degenerate harmonic weights that

we use in the earlier sections.

We would like to thank the referee, Mikko Salo, and Leo Tzou for very helpful comments

on a previous version of the paper.

2. Carleman estimates with degenerate weights

Throughout the paper we use the following notations.

Notations.

i =
√
−1, x1, x2, ξ1, ξ2 ∈ R1, z = x1 + ix2, ζ = ξ1 + iξ2, z denotes the complex conjugate

of z ∈ C. We identify x = (x1, x2) ∈ R2 with z = x1 + ix2 ∈ C. ∂z = 1
2
(∂x1 − i∂x2),

∂z = 1
2
(∂x1 + i∂x2), D = (1

i
∂
∂x1
, 1
i
∂
∂x2

), β = (β1, β2), |β| = β1 +β2, D
β = ( 1

iβ1

∂β1

∂x
β1
1

, 1
iβ2

∂β2

∂x
β2
2

). The

tangential derivative on the boundary is given by ∂~τ = ν2
∂
∂x1

− ν1
∂
∂x2
, with ν = (ν1, ν2) the

unit outer normal to ∂Ω, B(x̂, δ) = {x ∈ R2||x − x̂| < δ}, f : R2 → R1, f ′′ is the Hessian

matrix with entries ∂2f
∂xi∂xj

. L(X, Y ) denotes the Banach space of all bounded linear operators

from a Banach space X to another Banach space Y .

Let Φ(z) = ϕ(x1, x2)+iψ(x1, x2) ∈ C2(Ω) be a holomorphic function in Ω with real-valued

ϕ and ψ:

(2.1) ∂zΦ(z) = 0 in Ω.

Denote by H the set of critical points of the function Φ

H = {z ∈ Ω|∂zΦ(z) = 0}.

Assume that Φ has no critical points on Γ̃, and that all the critical points are nondegenerate:

(2.2) H ∩ ∂Ω \ Γ0 = {∅}, ∂2
zΦ(z) 6= 0, ∀z ∈ H.

Then we know that Φ has only a finite number of critical points and we can set:

(2.3) H = {x̃1, ..., x̃`}.

Consider the following problem

(2.4) ∆u+ q0u = f in Ω, u|Γ0 = g,

where ν is the unit outward normal vector to ∂Ω.

Assume that Φ satisfies

(2.5) Γ0 ⊂ {x ∈ ∂Ω|(ν,∇ϕ) = 0}.

We have

Proposition 2.1. Let q0 ∈ L∞(Ω). Assume (2.1), (2.2), (2.5). There exists τ0 > 0 such

that for all |τ | > τ0 there exists a solution to problem (2.4) such that

(2.6) ‖ue−τϕ‖L2(Ω) ≤ C(‖fe−τϕ‖L2(Ω)/
√
|τ |+ ‖ge−τϕ‖L2(Γ0)).
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The proof of this proposition given in the appendix.

Let us introduce the operators:

∂−1
z g =

1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1,

∂−1
z g = − 1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1 = ∂−1

z g.

See e.g., pp.28-31 in [32] where ∂−1
z and ∂−1

z are denoted by T and T respectively. Then we

have (e.g., p.47 and p.56 in [32]):

Proposition 2.2. A) Let m ≥ 0 be an integer number and α ∈ (0, 1). Then ∂−1
z , ∂−1

z ∈
L(Cm+α(Ω), Cm+α+1(Ω)).

B) Let 1 ≤ p ≤ 2 and 1 < γ < 2p
2−p . Then ∂−1

z , ∂−1
z ∈ L(Lp(Ω), Lγ(Ω)).

We define two other operators:

(2.7) RΦ,τg = eτ(Φ(z)−Φ(z))∂−1
z (geτ(Φ(z)−Φ(z))), R̃Φ,τg = eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z))).

We have

Proposition 2.3. Let g ∈ Cα(Ω) for some positive α. The function RΦ,τg is a solution to

(2.8) ∂zRΦ,τg − τ(∂zΦ(z))RΦ,τg = g in Ω.

The function R̃Φ,τg solves

(2.9) ∂zR̃Φ,τg + τ(∂zΦ(z))R̃Φ,τg = g in Ω.

Proof. The proof is by direct computations:

∂zR̃Φ,τg + τ
∂Φ(z)

∂z
R̃Φ,τg = ∂z(e

τ(Φ(z)−Φ(z))∂−1
z (geτ(Φ(z)−Φ(z))))

+τ
∂Φ(z)

∂z
(eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z)))) =

−τ ∂Φ(z)

∂z
(eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z)))) + (eτ(Φ(z)−Φ(z))(geτ(Φ(z)−Φ(z))))

+τ
∂Φ(z)

∂z
(eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z)))) = g.

�

Using the stationary phase argument we show

Proposition 2.4. Let g ∈ L1(Ω) and function Φ satisfy (2.1),(2.2). Then

lim|τ |→+∞

∫
Ω

geτ(Φ(z)−Φ(z))dx = 0.
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Proof. Let {gk}∞k=1 ∈ C∞
0 (Ω) be a sequence of functions such that gk → g in L1(Ω). Let ε > 0

be an arbitrary number. Suppose that ĵ is large enough such that ‖g − gbj‖L1(Ω) ≤ ε
2
. Then

|
∫

Ω

geτ(Φ(z)−Φ(z))dx| ≤ |
∫

Ω

(g − gbj)eτ(Φ(z)−Φ(z))dx|+ |
∫

Ω

gbjeτ(Φ(z)−Φ(z))dx|.

The first term on the right hand side of this inequality is less then ε/2 and the second goes

to zero as |τ | approaches to infinity by the stationary phase argument. �

Denote

Oε = {x ∈ Ω|dist(x, ∂Ω) ≤ ε}.
We have

Proposition 2.5. Let α > 0, g ∈ C1+α(Ω) and g|Oε = 0. Then

(2.10) |RΦ,τg(x)|+ |R̃Φ,τg(x)| ≤ C‖g‖C1+α(Ω)/|τ | ∀x ∈ Oε/2.

If g ∈ C2+α(Ω), g|Oε = 0 and g|H = 0, then

(2.11) ‖RΦ,τg‖C0(O ε
2
) + ‖R̃Φ,τg‖C0(O ε

2
) = o(

1

τ
)

for all x ∈ Oε/2.

Proof. Denote g̃(x, ξ1, ξ2) = − 1
π
g(ξ1,ξ2)
ζ−z . Let x = (x1, x2) be an arbitrary point in O ε

2
. We set

z = x1 + ix2. We prove (2.10) and (2.11) for the function RΦ,τg. Proof of the estimates for

the function R̃Φ,τg is exactly the same. Let us prove (2.10) first. Let δ > 0 be sufficiently

small and ek ∈ C∞
0 (B(x̃k, δ)) such that ek|B(exk,δ/2) = 1. We decompose

(2.12)

I(τ) =

∫
Ω

g̃eτ(Φ−Φ)dξ1dξ2 =
∑̀
k=1

∫
B(exk,δ)

ekg̃e
τ(Φ−Φ)dξ1dξ2 +

∫
Ω

(1−
∑̀
k=1

ek)g̃e
τ(Φ−Φ)dξ1dξ2.

By the stationary phase argument we can estimate the second integral on the right hand

side of in (2.12) as

(2.13) ‖
∫

Ω

(1−
∑̀
k=1

ek)g̃e
τ(Φ−Φ)dξ1dξ2‖C0(O ε

2
) ≤

C‖g‖C1+α(Ω)

|τ |
.

In order to estimate the first term on the right hand side of (2.12) we use that∑̀
k=1

∫
B(exk,δ)

ekg̃e
τ(Φ−Φ)dξ1dξ2 =(2.14)

∑̀
k=1

{∫
B(exk,δ)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2 −

∫
B(exk,δ)

ek
1

π

g(x̃k)

ζ − z
eτ(Φ−Φ)dξ1dξ2

}
.

Applying the stationary phase argument to the second term in (2.14) again we get

(2.15) ‖
∫
B(exk,δ)

ek
1

π

g(x̃k)

ζ − z
eτ(Φ−Φ)dξ1dξ2‖C1(O ε

2
) ≤

C‖g‖C0(Ω)

|τ |
.



8 O. IMANUVILOV, G. UHLMANN, AND M. YAMAMOTO

In order to estimate the first term on the right hand side of (2.14) we observe∑̀
k=1

∫
B(x̃k,δ)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2 =

∑̀
k=1

lim
δ′→+0

∫
B(exk,δ)\B(exk,δ′)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2 =

∑̀
k=1

lim
δ′→+0

∫
B(exk,δ)\B(exk,δ′)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
1

τ∂zΦ
∂ze

τ(Φ−Φ)dξ1dξ2 =

−
∑̀
k=1

lim
δ′→+0

∫
B(exk,δ)\B(exk,δ′)

∂z

(
ek(g̃ +

1

π

g(x̃k)

ζ − z
)

1

τ∂zΦ

)
eτ(Φ−Φ)dξ1dξ2

−
∑̀
k=1

lim
δ′→+0

∫
S(exk,δ′)

1

2δ′
(ξ1 − iξ2)ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
1

τ∂zΦ
eτ(Φ−Φ)dξ1dξ2.(2.16)

Note that for each fixed x from O ε
2

function ek(ξ1, ξ2)(g̃ + 1
π
g(x̃k)
ζ−z ) ∈ C1+α(Ω) and (g̃ +

1
π
g(x̃k)
ζ−z )(x, x̃k) = 0. Thus

lim
δ′→+0

∫
S(exk,δ′)

1

2δ′
(ξ1 − iξ2)ek(g̃ +

1

π

g(x̃k)

ζ − z
)

1

∂zΦ
eτ(Φ−Φ)dξ1dξ2 = 0.

By (2.2) there exists a constant C such that

|∂z
(
ek
∂zΦ

(g̃ +
1

π

g(x̃k)

ζ − z
)

)
| ≤ C

∑̀
k=1

‖g‖C1+α(Ω)

|x− x̃k|2−α
.

Using these inequalities we pass to the limit in (2.16) and we obtain

∑̀
k=1

∫
Ω

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2 =

1

τ

∑̀
k=1

∫
B(exk,δ)

∂z

(
ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
1

∂zΦ

)
eτ(Φ−Φ)dξ1dξ2.

This inequality and (2.13),(2.15) imply (2.10).

Now we prove (2.11). Thanks to the improved regularity of the function g similarly to

(2.16) we have

(2.17) ‖
∫

Ω

(1−
∑̀
k=1

ek)g̃e
τ(Φ−Φ)dξ1dξ2‖C0(O ε

2
) ≤

C

|τ |2
.

By (2.17) and the assumption that g|H = 0 we get

(2.18) I(τ) =
∑̀
k=1

∫
B(exk,δ)

∂z(
ekg̃

τ∂zΦ
)eτ(Φ−Φ)dξ1dξ2 + o(

1

τ
).

Consider the radial cut off function χ ∈ C∞
0 (B(0, 1)) such that

χ ≥ 0, χ|B(0, 1
2
) = 1.
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Then by (2.18)

I(τ) =
∑̀
k=1

∫
B(exk,δ)

∂z(
ekg̃

τ∂zΦ
)χ(|x− x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2 +

∑̀
k=1

∫
B(exk,δ)

∂z(
ekg̃

τ∂zΦ
)(1− χ(|x− x̃k| ln |τ |))eτ(Φ−Φ)dξ1dξ2 + o(

1

τ
) =

−
∑̀
k=1

∫
B(exk,δ)

∂z

(
1

τ∂zΦ
∂z(

ekg̃

τ∂zΦ
)(1− χ(|x− x̃k| ln |τ |))

)
eτ(Φ−Φ)dξ1dξ2 +

∑̀
k=1

∫
B(exk,δ)

∂z(
ekg̃

τ∂zΦ
)χ(|x− x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2 + o(

1

τ
).(2.19)

Using the inequalities∑̀
k=1

|
∫
B(exk,δ)

∂z

(
1

τ∂zΦ
∂z(

ekg̃

τ∂zΦ
)(1− χ(|x− x̃k| ln |τ |))

)
eτ(Φ−Φ)dξ1dξ2| ≤

C

τ
3
2

and ∑̀
k=1

|
∫
B(exk,δ)

∂z(
ekg̃

τ∂zΦ
)χ(|x− x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2|

≤ C

τ

∑̀
k=1

|
∫
B(exk,δ)

1

|x− x̃|2−α
χ(|x− x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2| = o(

1

τ
)

we get (2.11).

�

Denote

r(z) = Π`
k=1(z − z̃k) where H = {x̃1, . . . , x̃`}, z̃k = x̃1,k + ix̃2,k.

We have

Proposition 2.6. Let α be some positive number g ∈ C1+α(Ω) and g|Oε = 0. Then for each

δ ∈ (0, 1), there exists a constant C(δ) > 0 such that

(2.20)

‖R̃Φ,τ (r(z)g)‖L2(Ω) ≤ C(δ)‖g‖C1+α(Ω)/|τ |1−δ, ‖RΦ,τ (r(z)g)‖L2(Ω) ≤ C(δ)‖g‖C1+α(Ω)/|τ |1−δ.

Proof. Denote v = R̃Φ,τ (r(z)g). By Proposition 2.5

(2.21) ‖v‖L2(Oε/2) ≤ C‖g‖C1+α(Ω)/|τ |.

Then by Proposition 2.3 we have

∂v

∂z
+ τ

∂Φ

∂z
v = r(z)g in Ω.

There exists a function p such that

−∂p
∂z

+ τ
∂Φ(z)

∂z
p = v in Ω
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and there exists a constant C > 0 independent of τ such that

(2.22) ‖p‖L2(Ω) ≤ C‖v‖L2(Ω).

Let χ be a nonnegative function such that χ ≡ 0 on O ε
16

and χ ≡ 1 on Ω \ O ε
8
. Setting

p̃ = χp and using g|Oε ≡ 0, we have that∫
Ω

r(z)gpdx =

∫
Ω\Oε

r(z)gpdx =

∫
Ω

r(z)gp̃dx

and

(2.23) −∂p̃
∂z

+ τ
∂Φ(z)

∂z
p̃ = χv − p

∂χ

∂z
in Ω.

Then

(2.24) ‖χ
1
2v‖2

L2(Ω) =

∫
Ω

r(z)gpdx+

∫
Ω

p
∂χ

∂z
vdx.

Applying to equation (2.23) the operator ∂
∂z

we have

− ∂

∂z

∂p̃

∂z
=

∂

∂z
(−τ ∂Φ(z)

∂z
p̃+ χv − p

∂χ

∂z
) in Ω p̃|∂Ω = 0.

The classical a-priori estimate for the Laplace operator yields

‖p̃‖H1(Ω) ≤ C‖τ ∂Φ(z)

∂z
p̃− χv + p

∂χ

∂z
‖L2(Ω).

Then by (2.22)

(2.25) ‖p̃‖H1(Ω) ≤ C(|τ |‖p‖L2(Ω) + ‖v‖L2(Ω)) ≤ C|τ |‖v‖L2(Ω).

Taking the scalar product of (2.23) and r(z)

∂zΦ(z)
g we get∫

Ω

r(z)

∂zΦ(z)
g

(
−∂p̃
∂z

+ τ
∂Φ(z)

∂z
p̃

)
dx =

∫
Ω

r(z)

∂zΦ(z)
g

(
χv − p

∂χ

∂z

)
dx.

Then

τ

∫
Ω

gr(z)p̃dx =

∫
Ω

r(z)

∂zΦ(z)
g

(
χv − p

∂χ

∂z

)
dx−

∫
Ω

∂

∂z̄

(
r(z)

∂zΦ(z)
g

)
p̃dx.

By (2.25) and the Sobolev embedding theorem, for each ε̃ ∈ (0, 1
2
), we have∣∣∣∣∣

∫
Ω

∂

∂z̄

(
r(z)

∂zΦ(z)
ḡ

)
p̃dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Ω

r(z)∂2
zΦ(z)

(∂zΦ(z))2
gp̃dx

∣∣∣∣∣+
∣∣∣∣∣
∫

Ω

r(z)

∂zΦ(z)

∂g

∂z̄
p̃dx

∣∣∣∣∣(2.26)

≤ C‖g‖C1+α(Ω)

∥∥∥∥ 1

∂zΦ(z)

∥∥∥∥
L2−ε̃(Ω)

‖p̃‖
L

2−ε̃
1−ε̃ (Ω)

≤ C‖g‖C1+α(Ω)‖p̃‖Hδ3(ε̃)(Ω) ≤ C‖g‖C1+α(Ω)|τ |δ3(ε̃)‖v‖L2(Ω).

Here we choose δ3(ε̃) > 0 such that δ3(ε̃) → +0 as ε̃ → +0 and Hδ3(ε̃)(Ω) ⊂ L
2−ε̃
1−ε̃ (Ω).

Therefore

(2.27)

∣∣∣∣∫
Ω

gr(z)p̃dx

∣∣∣∣ ≤ C‖g‖C1+α(Ω)|τ |−1+δ3(ε̃)‖v‖L2(Ω) as δ3(ε̃) → +0.
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By (2.21)

(2.28)

∣∣∣∣∫
Ω

p
∂χ

∂z
vdx

∣∣∣∣ ≤ C‖p‖L2(Ω)‖v‖L2(O ε
8
) ≤ C‖g‖C1+α(Ω)‖p‖L2(Ω)/|τ |.

By (2.22), (2.27) and (2.28) we obtain from (2.24)

‖v‖2
L2(Ω) ≤ C‖g‖C1+α(Ω)(|τ |−1+δ3(ε̃)‖v‖L2(Ω) + ‖p‖L2(Ω)/|τ |) ≤ C|τ |−1+δ3(ε̃)‖g‖C1+α(Ω)‖v‖L2(Ω).

The proof of the proposition is complete. �

We have

Proposition 2.7. Let α > 0, g ∈ C2+α(Ω), g|Oε = 0 and g|H = 0. Then

(2.29)

∥∥∥∥RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥R̃Φ,τg −
g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞.

Proof. By (2.2) and Proposition 2.5

(2.30) ‖R̃Φ,τg‖C0(O ε
2
) + ‖RΦ,τg‖C0(O ε

2
) = o

(
1

τ

)
.

Therefore instead of (2.29) it suffices to prove

(2.31)

∥∥∥∥χ1RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥χ1R̃Φ,τg −
g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞,

where χ1 ∈ C∞
0 (Ω) and χ1|Ω\Oε/2

= 1. Denote w = χ1R̃Φ,τg − g
τ∂zΦ

. Here we note that
g
∂zΦ

∈ L∞(Ω). This follows from (2.2), g ∈ C1+α(Ω) and g|H = 0. Then (2.9) and g|Oε = 0

yield

(2.32) ∂zw + τ(∂zΦ)w = −∂z
(

g

τ∂zΦ

)
+ (∂zχ1)R̃Φ,τg in Ω, w|∂Ω = 0.

Note that by (2.2) and the fact that g|H = 0, we obtain

(2.33)

∣∣∣∣∂z ( g

∂zΦ

)∣∣∣∣ =

∣∣∣∣ ∂zg∂zΦ
− g

∂zΦ

∂2
zΦ

∂zΦ

∣∣∣∣ ≤ C

Π`
k=1|x− x̃k|

.

Consider the radial cut off function χ ∈ C∞
0 (B(0, 1)) such that

χ ≥ 0, χ|B(0, 1
2
) = 1.

By (2.33) and Proposition 2.2 B),

(2.34) R̃Φ,τ

(∑̀
k=1

χ(|x− x̃k| ln |τ |)∂z
(

g

∂zΦ

))
→ 0 in L2(Ω) as |τ | → +∞.
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In fact, fixing large |τ |, small δ > 0 and p > 1 such that p− 1 is sufficiently small, we apply

Proposition 2.2 B) and (2.33) to conclude∥∥∥∥∥R̃Φ,τ

(∑̀
k=1

χ(|x− x̃k| ln |τ |)∂z
(

g

∂zΦ

))∥∥∥∥∥
L2(Ω)

≤ C
∑̀
k=1

(∫
B(exk,δ)

|χ(|x− x̃k| ln |τ |)|p
∣∣∣∣∂z ( g

∂zΦ

)∣∣∣∣p dx) 1
p

≤ C ′‖g‖C1+α(Ω)

∑̀
k=1

(∫
B(exk,δ)

|χ(|x− x̃k| ln |τ |)|p
1

|x− x̃k|p
dx

) 1
p

≤ C ′′‖g‖C1+α(Ω)(

∫ δ

0

|χ(ρ ln |τ |)|pρ1−pdρ)
1
p .

Thus we obtain (2.34) by the Riemann-Lebesgue’s lemma.

By Proposition 2.6, we obtain

(2.35) R̃Φ,τ

((
1−

∑̀
k=1

χ(|x− x̃k| ln |τ |)

)
∂z

(
g

∂zΦ

))
→ 0 in L2(Ω) as |τ | → +∞.

In fact the function
((

1−
∑`

k=1 χ(|x− x̃k| ln |τ |)
)
∂z

(
g
∂zΦ

))
1
r(z)

∈ C1+α(Ω̄) for any nonzero

τ. Short calculations give the estimate

‖

((
1−

∑̀
k=1

χ(|x− x̃k| ln |τ |)

)
∂z

(
g

∂zΦ

))
1

r(z)
‖C1+α(Ω) ≤ C|τ |

1
2 .

So by Proposition 2.6

‖R̃Φ,τ

(
(

(
1−

∑̀
k=1

χ(|x− x̃k| ln |τ |)

)
∂z

(
g

∂zΦ

)∥∥∥∥∥
L2(Ω)

≤ C

|τ | 32
.

Therefore (2.34) and (2.35) yield

(2.36)

∥∥∥∥R̃Φ,τ

(
∂z

(
g

∂zΦ

))∥∥∥∥
L2(Ω)

= o(1) as |τ | → +∞.

Denote w̃ = w + 1
τ
χ1R̃Φ,τ (∂z(

g
∂zΦ

)).

By (2.36), it suffices to prove

(2.37) ‖w̃‖L2(Ω) = o

(
1

τ

)
as |τ | → +∞.

In terms of (2.32) and (2.9), observe that

(2.38) ∂zw̃ + τ(∂zΦ)w̃ = f in Ω, w̃|∂Ω = 0,

where f = 1
τ
(∂zχ1)R̃Φ,τ (∂z(

g
∂zΦ

)) + (∂zχ1)R̃Φ,τg. By (2.36) and (2.30) we have

(2.39) ‖f‖L2(Ω) = o

(
1

τ

)
as |τ | → +∞.
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Applying Proposition 5.2 to equation (2.38) we get

‖∂x1(e
iτψw̃)‖2

L2(Ω) + τ

∫
∂Ω

(∇ϕ, ν)|w̃|2dσ

+Re

∫
∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
w̃

)
w̃dσ + ‖∂x2(e

iτψw̃)‖2
L2(Ω) = ‖f‖2

L2(Ω).

Thanks to the zero Dirichlet boundary conditions for the function w̃ we obtain

‖∂x1(e
iτψw̃)‖2

L2(Ω) + ‖∂x2(e
iτψw̃)‖2

L2(Ω) = ‖f‖2
L2(Ω).

Poincaré’s inequality implies

‖w̃‖H1(Ω) ≤ C‖f‖L2(Ω).

From this and using (2.39), we obtain (2.37). As for the first term in (2.29), we can argue

similarly. The proof of the proposition is completed. �

3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions for the Schrödinger

equation ∆ + q1 with q1 satisfying the conditions of Theorem 1.1. Consider

(3.1) L1u = ∆u+ q1u = 0 in Ω.

We will construct solutions to (3.1) of the form

(3.2) u1(x) = eτΦ(z)(a(z) + a0(z)/τ) + eτΦ(z)(a(z) + a1(z)/τ) + eτϕu11 + eτϕu12, u1|Γ0 = 0.

The function Φ satisfies (2.1), (2.2) and

(3.3) Im Φ|Γ0 = 0.

The amplitude function a(z) is not identically zero on Ω and has the following properties:

(3.4) a ∈ C2(Ω), ∂za ≡ 0, Re a|Γ0 = 0, a(z)|H∩∂Ω = ∂za(z)|H∩∂Ω = 0.

The function u11 is given by

(3.5) u11 = −1

4
eiτψR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))−

1

4
e−iτψRΦ,−τ (e1(∂

−1
z (a(z)q1)−M3(z)))

−e
iτψ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
− e−iτψ

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

= w1e
−τϕ + w2e

−τϕ,

where the polynomials M1(z) and M3(z̄) satisfy

(3.6) ∂jz(∂
−1
z (aq1)−M1(z)) = 0, x ∈ H, j = 0, 1, 2,

(3.7) ∂jz(∂
−1
z (aq1)(z)−M3(z)) = 0, x ∈ H, j = 0, 1, 2.

Note that by (3.4)

(3.8) ∂kz∂
j
z(∂

−1
z (aq1)−M1(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, and j + k ≤ 2,
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(3.9) ∂jz∂
k
z (∂

−1
z (aq1)(z)−M3(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, and j + k ≤ 2.

The functions e1, e2 ∈ C∞(Ω) are constructed so that

e1 + e2 ≡ 1 on Ω, e2 vanishes in some neighborhood of H \ ∂Ω(3.10)

and e1 vanishes in a neighborhood of ∂Ω

and we set

w1 = −1

4
eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))−

1

4
eτΦRΦ,−τ (e1(∂

−1
z (a(z)q1)−M3(z)))

and

w2 = −e
τΦ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
− eτΦ

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ
.

Finally a0, a1 are holomorphic functions such that

(a0(z) + a1(z))|Γ0 =
(∂−1
z (aq1)−M1(z))

4∂zΦ
+

(∂−1
z (a(z)q1)−M3(z))

4∂zΦ
.

Then, noting that ∂zΦ = ∂zΦ, (2.8) and (2.9), we have

∆w1 = 4∂z∂zw1

= −∂z(eτΦ∂zR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z))) + (τ∂zΦ)eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))

− ∂z(e
τΦ∂zRΦ,−τ (e1(∂

−1
z (aq1)−M3(z))) + (τ∂zΦ)eτΦRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))

= −∂z(eτΦe1(∂−1
z (aq1)−M1(z)))− ∂z(e

τΦe1(∂
−1
z (aq1)−M3(z))).

Moreover

∆w2 = 4∂z∂zw2

= −∂z(eτΦ(e2(∂
−1
z (aq1)−M1(z)))− ∂z(e

τΦe2(∂
−1
z (aq1)−M3(z)))

− eτΦ∆

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
− eτΦ∆

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

Therefore

∆(u11e
τϕ) = ∆(w1 + w2) = −aq1eτΦ − aq1e

τΦ(3.11)

−eτΦ∆

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
− eτΦ∆

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

By (3.4) and (3.3) observe that

(3.12) (eτΦ(z)a(z) + eτΦ(z)a(z))|Γ0 = 0.

Let u12 be solution to the inhomogeneous problem

(3.13) ∆(u12e
τϕ) + q1u12e

τϕ = −q1u11e
τϕ + h1e

τϕ in Ω,

(3.14) u12 =
1

4
RΦ,τ (e1(∂

−1
z (aq1)−M1(z))) +

1

4
RΦ,−τ (e1(∂

−1
z (a(z)q1)−M3(z))) on Γ0,
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has a solution where

h1 = eτiψ∆

(
e2(∂

−1
z (a(z)q1)−M1(z))

4τ∂zΦ

)
+ e−τiψ∆

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
−a0q1e

iτψ/τ − a1q1e
−iτψ/τ.(3.15)

By (3.4) and (3.11) - (3.15), we conclude that (3.1) is satisfied.

By Proposition 2.1 there exists a positive τ0 such that for all |τ | > τ0 there exists a solution

to (3.13), (3.14) satisfying

(3.16) ‖u12‖L2(Ω) = o(
1

τ
) as τ → +∞.

This can be done because

‖q1u11 + h1‖L2(Ω) ≤ C(δ)/|τ |1−δ ∀δ ∈ (0, 1); ‖u11‖L2(∂Ω) = o(
1

τ
)

and (∇ϕ, ν) = 0 on Γ0. The latter fact can be seen as follows: On ∂Ω, the Cauchy-Riemann

equations imply

(∇ϕ, ν) = ν1∂x1ϕ+ ν2∂x2ϕ = ν1∂x2ψ − ν2∂x1ψ = −∂ψ
∂~τ

,

which is the tangential derivative of ψ = Im Φ on ∂Ω. By (3.3) the tangential derivative of

ψ vanishes on Γ0.

Consider now the Schrödinger equation

(3.17) L2v = ∆v + q2v = 0 in Ω.

We will construct solutions to (3.17) of the form

(3.18)

v(x) = e−τΦ(z)(a(z) + b0(z)/τ) + e−τΦ(z)(a(z) + b1(z)/τ) + e−τϕv11 + e−τϕv12, v|Γ0 = 0.

The construction of v repeats the corresponding steps of the construction of u1. The only

difference is that instead of q1 and τ , we use q2 and −τ respectively. We provide the details

for the sake of completeness. The function v11 is given by

(3.19) v11 = −1

4
e−iτψR̃Φ,−τ (e1(∂

−1
z (q2a(z))−M2(z)))−

1

4
eiτψRΦ,τ (e1(∂

−1
z (q2a(z))−M4(z)))

+
e−iτψ

τ

e2(∂
−1
z (aq2)−M2(z))

4∂zΦ
+
eiτψ

τ

e2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ
,

where

(3.20) ∂jz(∂
−1
z (aq2)−M2(z)) = 0, x ∈ H, j = 0, 1, 2,

(3.21) ∂jz∂
k
z (∂

−1
z (aq2)−M2(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, k + j ≤ 2,

(3.22) ∂jz(∂
−1
z (aq2)(z)−M4(z)) = 0, x ∈ H, j = 0, 1, 2,

(3.23) ∂jz∂
k
z (∂

−1
z (aq2)(z)−M4(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, k + j ≤ 2.
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Finally b0, b1 are holomorphic functions such that

(b0 + b1)|Γ0 = −(∂−1
z (aq2)−M2(z))

4∂zΦ
− (∂−1

z (a(z)q2)−M4(z))

4∂zΦ
.

Denote

h2 = e−τiψ∆

(
e2(∂

−1
z (a(z)q2)−M2(z))

4τ∂zΦ

)
+ eτiψ∆

(
e2(∂

−1
z (a(z)q2)−M4(z))

4τ∂zΦ

)

−b0(z)
τ

q2e
−iτψ(z) − b1(z)

τ
q2e

iτψ(z).

The function v12 is a solution to the problem:

(3.24) ∆(v12e
−τϕ) + q2v12e

−τϕ = −q2v11e
−τϕ − h2e

−τϕ in Ω,

(3.25) v12|Γ0 =
1

4
R̃Φ,−τ (e1(∂

−1
z (q2a(z))−M2(z))) +

1

4
RΦ,τ (e1(∂

−1
z (q2a(z))−M4(z)))

such that

(3.26) ‖v12‖L2(Ω) = o(
1

τ
) as τ → +∞.

4. Proof of the theorem.

We first apply stationary phase with a general phase function Φ and then we construct an

appropriate weight function.

Proposition 4.1. Suppose that Φ satisfies (2.1),(2.2) and (3.3). Let {x̃1, . . . , x̃`} be the set

of critical points of the function ImΦ. Then for any potentials q1, q2 ∈ C2+α(Ω), α > 0

with the same Cauchy data on Γ̃. For any holomorphic function a satisfying (3.4) and

M1(z),M2(z),M3(z),M4(z) as in Section 3, we have

(4.1) 2
∑̀
k=1

π(q|a|2)(x̃k)Re e2iτImΦ(fxk)

|(det ImΦ′′)(x̃k)|
1
2

+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx

+
1

4

∫
Ω

(
qa
∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (q2a)−M4(z)

∂zΦ

)
dx

− 1

4

∫
Ω

(
qa

(∂−1
z (aq1)−M1(z))

∂zΦ
+ qa

(∂−1
z (aq1)−M3(z))

∂zΦ

)
dx = 0, τ > 0,

where

q = q1 − q2.

Proof. Let u1 be a solution to (3.1) and satisfy (3.2), and u2 be a solution to the following

equation

∆u2 + q2u2 = 0 in Ω, u2|∂Ω = u1|∂Ω.

Since the Dirichlet-to-Neumann maps are equal, we have

∇u2 = ∇u1 on Γ̃.
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Denoting u = u1 − u2, we obtain

(4.2) ∆u+ q2u = −qu1 in Ω, u|∂Ω =
∂u

∂ν
|eΓ = 0.

Let v satisfy (3.17) and (3.18). We multiply (4.2) by v, integrate over Ω and we use

v|Γ0 = 0 and ∂u
∂ν

= 0 on Γ̃ to obtain
∫

Ω
qu1vdx = 0. By (3.2), (3.16), (3.18) and (3.26), we

have

0 =

∫
Ω

qu1vdx =

∫
Ω

q(a2 + a2 + |a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ)

+
1

τ
(a(a0 + b0) + a(a1 + b1)) + u11e

τϕ(ae−τΦ + ae−τΦ)

+(aeτΦ + aeτΦ)v11e
−τϕ)dx+ o

(
1

τ

)
, τ > 0.(4.3)

The first and second terms in the asymptotic expansion of (4.3) are independent of τ , so

that

(4.4)

∫
Ω

q(a2 + a2)dx = 0.

Using stationary phase argument (see p.215 in [13]. cf. [16]) and functions e1, e2 defined

in (3.10) we obtain∫
Ω

q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx =

∫
Ω

e1q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx

+

∫
Ω

e2q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx.

By the Cauchy-Riemann equations, we see that sgn(Im Φ′′(x̃k)) = 0, where sgn A denotes

the signature of the matrix A, that is, the number of positive eigenvalues of A minus the

number of negative eigenvalues (e.g., [13], p.210). Moreover we note that

det Im Φ′′(z) = −(∂x1∂x2ϕ)2 − (∂2
x1
ϕ)2 6= 0.

To see this, suppose that det Im Φ′′(z) = 0. Then ∂x1∂x2ϕ(Re z, Im z) = ∂2
x1
ϕ(Re z, Im z) =

0 and the Cauchy-Riemann equations imply that all second order partial derivatives of

functions ϕ, ψ at the point z are zero. This fact contradicts the assumption that critical

points of the function Φ are nondegenerate.

Using stationary phase (see p.215 in [13]. cf. [16]), we obtain

∫
Ω

e1q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = 2
∑̀
k=1

πq|a|2(x̃k)Re e2τiImΦ(exk)

τ |(det Im Φ′′)(x̃k)|
1
2

+ o

(
1

τ

)
.(4.5)
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Let x̃1, . . . x̃k′ be the set of critical points of the function Φ on Γ0. Integrating by parts we

have

∫
Ω

e2q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx

=

∫
Ω

e2q|a|2
(

(∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2
− (∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2

)
dx

= lim
δ→+0

∫
Ω\∪k′

k=1B(x̃k,δ)

e2q|a|2
(

(∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2
− (∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2

)
dx

= lim
δ→+0

{
−
∫

Ω\∪k′
k=1B(x̃k,δ)

div

(
e2q|a|2∇ψ
2iτ |∇ψ|2

)
(eτ(Φ−Φ) − eτ(Φ−Φ))dx

+

∫
Ω∩∪k′

k=1S(x̃k,δ)

e2q|a|2
(

(∇ψ, ν)
2iτ |∇ψ|2

− (∇ψ, ν)
2iτ |∇ψ|2

)
eτ(Φ−Φ)

}

= −
∫

Ω

div

(
e2q|a|2∇ψ
2iτ |∇ψ|2

)
(eτ(Φ−Φ) − eτ(Φ−Φ))dx

+

∫
∂Ω

q|a|2

2iτ |∇ψ|2
∂ψ

∂ν
(eτ(Φ−Φ) − eτ(Φ−Φ))dσ

= −
∫

supp e2

div

(
e2q|a|2∇ψ
2iτ |∇ψ|2

)
(eτ(Φ−Φ) − eτ(Φ−Φ))dx.

In the last equality, we used that eτ(Φ−Φ)−eτ(Φ−Φ) = 0 on Γ0 which follows since Im Φ = 0 on

Γ0, and q = 0 on Γ̃ and (3.4) in order to show that div
(
e2q|a|2∇ψ
2iτ |∇ψ|2

)
and q|a|2

2iτ |∇ψ|2 are bounded

functions. The latter fact follows from the unique boundary determination of potentials from

the Dirichlet-to- Neumann map (see for instance [12], [29]). Applying Proposition 2.4 we

obtain

∫
Ω

e2q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = o(
1

τ
) as |τ | → +∞.

Therefore

∫
Ω

q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = o

(
1

τ

)
.(4.6)
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We calculate the two remaining terms in (4.3). We have:

∫
Ω

qu11e
τϕ(ae−τΦ + ae−τΦ)dx(4.7)

= −1

4

∫
Ω

q
{
eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))

+ eτΦRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))

}
(ae−τΦ + ae−τΦ)dx

−
∫

Ω

(
eτΦ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+
eτΦ

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

)
q(ae−τΦ + ae−τΦ)dx

= −1

4

∫
Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z))) + qaRΦ,−τ (e1(∂

−1
z (aq1)−M3(z))))dx

− 1

4

∫
Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))e

τ(Φ−Φ) + qaRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))e

−τ(Φ−Φ))dx

−
∫

Ω

q

(
eτ(Φ−Φ)

τ

ae2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+
eτ(Φ−Φ)

τ

ae2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

)
dx

−
∫

Ω

q

(
a

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+
a

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

)
dx

≡ I1 + I2 + I3 + I4.

We estimate I1 and I2 separately. Using Proposition 2.7, (3.6) and Proposition 2.4 we get

I2 = −1

4

∫
Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))e

τ(Φ−Φ)(4.8)

+ qaRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))e

−τ(Φ−Φ))dx

= −1

4

∫
Ω

(
e1qa

τ∂zΦ
(∂−1
z (aq1)−M1(z))e

2iτImΦ +
e1qa

τ∂zΦ
(∂−1
z (aq1)−M3(z))e

−2iτImΦ

)
dx

+ o

(
1

τ

)
= o

(
1

τ

)
as |τ | → +∞.

By Proposition 2.7, we obtain

(4.9)

I1 = − 1

4τ

∫
Ω

e1

(
qa

(∂−1
z (aq1)−M1(z))

∂zΦ
+ qa

(∂−1
z (aq1)−M3(z))

∂zΦ

)
dx+o

(
1

τ

)
as |τ | → +∞.

By Proposition 2.4 (4.6), we conclude that

(4.10) I3 = o

(
1

τ

)
as |τ | → +∞.
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Similarly∫
Ω
qv11e

−τϕ(aeτΦ + aeτΦ)dx = −1
4

∫
Ω
q
{
e−τΦR̃Φ,−τ (e1(∂

−1
z (aq2)−M2(z)))

+ e−τΦRΦ,τ (e1(∂
−1
z (aq2)−M4(z)))

}
(aeτΦ + aeτΦ)dx

+
∫

Ω
q
(
e−τΦ

τ

e2(∂−1
z (aq2)−M2(z)))

4∂zΦ
+ e−τΦ

τ
e2(∂−1

z (a(z)q2)−M4(z))

4∂zΦ

)
(aeτΦ + aeτΦ)dx

= −1
4

∫
Ω
(qaR̃Φ,−τ (e1(∂

−1
z (aq2)−M2(z))) + qaRΦ,τ (e1(∂

−1
z (aq2)−M4(z))))dx

−1
4

∫
Ω
[qaeτ(Φ−Φ)(R̃Φ,−τ (e1(∂

−1
z (aq2)−M2(z))) + qaeτ(Φ−Φ)RΦ,τ (e1(∂

−1
z (aq2)−M4(z)))]dx

+
∫

Ω
q
(
e−τ(Φ−Φ)

τ

ae2(∂−1
z (aq2)−M2(z)))

4∂zΦ
+ eτ(Φ−Φ)

τ
ae2(∂−1

z (a(z)q2)−M4(z))

4∂zΦ

)
dx

+
∫

Ω
q
(
a
τ

e2(∂−1
z (aq2)−M2(z)))

4∂zΦ
+ a

τ
e2(∂−1

z (a(z)q2)−M4(z))

4∂zΦ

)
dx

= J1 + J2 + J3 + J4.

By (3.20) and Proposition 2.7, we have

(4.11)

J1 =
1

4τ

∫
Ω

e1

(
qa
∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (aq2)−M4(z)

∂zΦ

)
dx+ o

(
1

τ

)
as |τ | → +∞.

Proposition 2.4 , (3.20), and Proposition 2.7 yield

(4.12)

J2 = −1

4

∫
Ω

[qaeτ(Φ−Φ)R̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z)))+qae

τ(Φ−Φ)RΦ,τ (e1(∂
−1
z (aq2)−M4(z)))]dx = o

(
1

τ

)
.

By Proposition 2.4 we see that

(4.13) J3 = o

(
1

τ

)
as |τ | → +∞.

Therefore, applying (4.6), (4.8), (4.11), (4.12), (4.10) and (4.13) in (4.3), we conclude that

2
∑̀
k=1

π(q|a|2)(x̃k)Re e2iτImΦ(exk)

|(det ImΦ′′)(x̃k)|
1
2

+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx

+
1

4

∫
Ω

(
qa
∂−1
z (a(z)q2)−M2(z)

∂zΦ
+ qa

∂−1
z (q2a(z))−M4(z)

∂zΦ

)
dx

−1

4

∫
Ω

(
qa
∂−1
z (q1a)−M1(z)

∂zΦ
+ qa

∂−1
z (q1a)−M3(z)

∂zΦ

)
dx = o(1)(4.14)

as τ → +∞. Passing to the limit in this equality and applying Bohr’s theorem (e.g., [4],

p.393), we finish the proof of the proposition. �

We need the following proposition in the construction of the phase function Φ.

Let ỹ0, ỹ1, . . . , ỹm ∈ Ω and ỹm+1, . . . , ỹm+m̂ ∈ Γ0.

Denote by R = (R(ỹ1), . . . ,R(ỹm),R1(ỹm+1), . . . ,R1(ỹm+m̂)) the following operator:

R(ỹk)g = (u(ỹk), ∂zu(ỹk), ∂
2
zu(ỹk)), R1(ŷk)g = (Reu(ŷk), ∂zu(ŷk)/(ν2 + iν1)),
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where

(4.15) ∂z̄u = 0 in Ω, Reu(ỹ0) = 0, Imu|Γ0 = 0, Imu|eΓ = g.

For any g ∈ C∞
0 (Γ̃) problem (4.15) has at most one solution. We have

Proposition 4.2. The operator R : D(R) ⊂ C∞
0 (Γ̃) → C3m × R2m̂ satisfies ImR = C3m ×

R2m̂.

Proof. We note that ImR = C3m×R2m̂ if and only if the closure of ImR is equal to C3m×R2m̂.

This follows immediately from Corollary 5.1. Let ~H be an arbitrary element of the space

C3m × R2m̂. Consider the problem (5.17) where

x̂1 = ỹj j ∈ {1, . . . ,m}, x̂m+1 = ỹ0,

c0,1 = h1, c1,1 = h2, c2,1 = h3, . . . c0,m = h3m−2, c1,m = h3m−1, c2,m = h3m, c0,m+1 = 0.

Taking into account that ∂zu|Γ0 = (ν2 + iν1)∂~τReu, we take a function b such that

b(ỹm+1) = hm+1, ∂~τb(ỹm+1) = hm+2, . . . , b(ỹm+m̂) = hm+2m̂−1, ∂~τb(ỹm+m̂) = hm+2m̂.

According to Proposition 5.1 (5.17) with such initial data can be solved approximately. If

necessary we can add to these solutions a real constants such that uε(ỹ0) = 0. The proof of

the proposition is complete.

�

End of proof of Theorem 1.1

Proof. We will construct a complex geometrical optics solution of the form (3.2) where Φ

and a satisfy (2.1), (2.2), (3.3) and (3.4).

Let Ω̃ be a bounded domain in R2 such that Ω ⊂ Ω̃, Γ0 ⊂ ∂Ω̃, ∂Ω̃ ∩ Γ̃ = ∅. Let x̂ be

an arbitrary point in Ω. By Proposition 4.2 and Proposition 5.1 there exists a holomorphic

function u ∈ C2(Ω) such that

(4.16) Imu|Γ0 = 0, Imu(x̂) 6= 0, ∂zu(x̂) = 0, and ∂2
zu(x̂) 6= 0.

(4.17)
∂Imu

∂ν
|Γ0∩γj

< α′ < 0, if Int((∂Ω \ Γ0) ∩ γj) 6= ∅.

In the case Int ((∂Ω \ Γ0) ∩ γj) = ∅ then {x ∈ γj|∂~τReu = 0} = {y1,j, y2,j},
and ∂2

~τReu(y1,j) 6= 0, ∂2
~τReu(y2,j) 6= 0.(4.18)

Here y1,j, y2,j are of maximum and minimum points of the function Reu on the boundary

contour γj. In fact, the existence of such u is proved as follows. By Proposition 5.1 and the

Cauchy-Riemann equations, there exists a sequence of holomorphic functions uε in Ω such

that

uε ∈ C2(Ω), Imuε|Γ0 = 0,

∂Imuε
∂ν

|Γ0∩γj
< α′ < 0, if Int ((∂Ω \ Γ0) ∩ γj) 6= ∅.

(4.19) In the case Int ((∂Ω \ Γ0) ∩ γj) = ∅ then Reuε → b̃j in C2(γj),
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where b̃j ∈ C2(γj) is a function such that

{x ∈ γj|∂~τ b̃j = 0} = {y1,j, y2,j}, and ∂2
~τ b̃j(y1,j) 6= 0, ∂2

~τ b̃j(y2,j) 6= 0.

Imuε(x̂) → 1, ∂zuε(x̂) := cε → 0, ∂2
zuε(x̂) → 1 as ε→ 0.

Let R be the operator similar to one introduced in Proposition 4.2:

Rg = (u(x̂), ∂zu(x̂), ∂
2
zu(x̂)),

where

∂z̄u = 0 in Ω̃, Reu(x0) = 0, Imu|Γ0 = 0, Imu|∂Ω̃\Γ0
= g

and x0 ∈ Ω, x0 6= x̂. Obviously we can consider it as operator from the space D(R) ⊂
C3

0(Γ̃) → C3
0. We have (e.g., p.79 in [1]) that there exists a mapping M : C3 → C3

0(Γ̃) such

that RM = I and

‖My‖C3
0 (eΓ) ≤ C|y|, y ∈ C3

with some constant C > 0. We consider the sequence yε = (0,−cε, 0) ∈ C3. Let gε =

M(yε) → 0 in C3
0(Γ̃). Denote by wε the function which satisfies

∂z̄wε = 0 in Ω̃, Rewε(x0) = 0, Imwε|Γ0 = 0, Imwε|∂Ω̃\Γ0
= gε,

wε(x̂) = 0, ∂zwε(x̂) = −cε, ∂2
zwε(x̂) = 0.

Hence Im (uε + wε)(x̂) → 1, ∂z(uε + wε)(x̂) = 0 and ∂2
z (uε + wε)(x̂) → 1 and

wε → 0 in C2(Ω).

Hence uε + wε is the function which we are looking for provided that ε is sufficiently small.

In general, the function u may have critical points on the part of the boundary ∂Ω \ Γ0.

Next we construct a holomorphic function p ∈ C2(Ω) such that u + εp does not have

critical points on ∂Ω \ Γ0 for all sufficiently small positive ε and Im p|Γ0 = 0.

If u does not have critical points on ∂Ω\Γ0 we set p ≡ 0. Otherwise, since u is holomorphic

in Ω̃ the number of such critical points on ∂Ω \ Γ0 is finite and the function |∇u|2 has zero

of finite order at these points. By using a conformal transformation, if necessary, we may

assume that ∂Ω \ Γ0 is a segment on the line {x2 = 0}. Let {(yk, 0)}Ñk=1 be the set of critical

points of the function u on the boundary ∂Ω \ Γ0.

We divide the set {yk}Ñk=1 into two sets O1 and O2 in the following way: Let us fix

some point yk. By Taylor’s formula ∂Reu
∂x1

(x1, 0) = c1(x1 − yk)
κ1+1 + o((x1 − yk)

κ1+1) and
∂Imu
∂x1

(x1, 0) = c2(x1−yk)κ2+1 +o((x1−yk)κ2+1) with some (c1, c2) 6= 0. If c2 6= 0 and κ2 ≤ κ1,

then we say that yk ∈ O1. If c1 6= 0 and κ2 > κ1, then we say that yk ∈ O2.

Now we construct a set of S open in C2(Γ0) × C2(Γ0) such that if (b1, b2) ∈ S and the

holomorphic function p which satisfies Im p|Γ0 = b1, Im p = b2 (if such function p exists) then

the function u+ εp does not have critical points on Γ̃ for all small positive ε.

Let us consider the two cases. Assume yk ∈ O1. If κ2 is odd, then we take Cauchy data

such that the holomorphic function p satisfies the following: b1 is small and ∂b2
∂~τ

is positive

near yk if c2 is positive, ∂b2
∂~τ

is negative near yk if c2 is negative and small on ∂Ω \ Γ0. If κ2

is even and κ1 6= κ2, then we take Cauchy data such that ∂b2
∂~τ

(yk)− 1, ∂b1
∂~τ

(yk)− 1 are small

and otherwise 1
c2

∂b2
∂~τ

(yk) 6= 1
c1

∂b1
∂~τ

(yk).
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Assume yk ∈ O2. If κ1 is odd, then we take the Cauchy data for the holomorphic function

p such that ∂b1
∂~τ

is positive near yk if c1 is positive, ∂b1
∂~τ

is negative near yk if c1 is negative.

If κ1 is even, then we take ∂b1
∂~τ

(yk) − 1, ∂b2
∂~τ

(yk) − 1 to be small. Now we have finished the

construction of Cauchy data on Γ0 and in a neighborhood U of the set {(yk, 0)}Ñk=1. On the

part of the boundary ∂Ω \ (Γ0 ∪ U) we continue functions b1, b2 as smooth functions. By

Proposition 5.1 and general results on solvability of the boundary value problem for ∂z̄ (see

e.g. [32]) there exists a holomorphic function p which satisfies the above choice of the Cauchy

data. For all small positive ε the function u+ εp does not have critical points on ∂Ω \ Γ0.

Denote by Hε the set of critical points of the function u+εp in Ω. By the implicit function

theorem, there exists a neighborhood of x̂ such that for all small ε in this neighborhood the

function u+ εp has only one critical point x̂(ε), this critical point is nondegenerate and

(4.20) x̂(ε) → x̂ as ε→ 0.

Let us fix a sufficiently small ε. Let Hε = {xk,ε}1≤k≤N(ε). By Proposition 4.2, there exists

a function w holomorphic in Ω, such that

(4.21) Imw|Γ0 = 0, w|Hε = ∂zw|Hε = 0, ∂2
zw|Hε 6= 0.

Denote Φδ = u+ εp+ δw. For all sufficiently small positive constants δ, we have

Hε ⊂ Gδ ≡ {x ∈ Ω|∂zΦδ(x) = 0}.

We show now that for all small positive δ, the critical points of the function Φδ are

nondegenerate. Let x̃ be a critical point of the function u + εp. If x̃ is a nondegenerate

critical point, by the implicit function theorem, there exists a ball B(x̃, δ1) such that the

function Φδ in this ball has only one nondegenerate critical point for all sufficiently small

δ. Let x̃ be a degenerate critical point of u + εp. Without loss of generality we may assume

that x̃ = 0. In some neighborhood of 0, we have ∂zΦδ =
∑∞

k=1 ckz
k+k̂ − δ

∑∞
k=1 bkz

k for

some natural positive number k̂ and some c1 6= 0. Moreover (4.21) implies b1 6= 0. Let

(x1,δ, x2,δ) ∈ Gδ and zδ = x1,δ + ix2,δ → 0. Then either

(4.22) zδ = 0 or zk̂δ = δb1/c1 + o(δ).

Therefore ∂2
zΦ(zδ) 6= 0 for all sufficiently small δ.

Observe that by (4.16) Im Φδ(x̂(ε)) 6= 0. Moreover, without loss of generality we may

assume that

(4.23) Im Φδ(x̂(ε)) 6= Im Φδ(x) ∀x ∈ Gδ such that x̂(ε) 6= x.

To see this we argue as follows. If (4.23) is not valid, then we add to the function Φδ a

function δ1w̃ such that δ1 is a small parameter and w̃ holomorphic in Ω, such that

Im w̃|Γ0 = 0, Imw(x̂(ε)) = 1, w|Gδ\{bx(ε)} = ∂zw̃|Gδ
= 0, ∂2

z w̃|Gδ
6= 0.

Since the function Φδ was constructed as the approximation of the function u, by (4.17),

(4.18) we have

(4.24)
∂Im Φδ

∂ν
|Γ0∩γj

< α′′ < 0, if Int((∂Ω \ Γ0) ∩ γj) 6= ∅.
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In the case Int ((∂Ω \ Γ0) ∩ γj) = ∅ then {x ∈ γj|∂~τRe Φδ = 0} = {y1,j(δ), y2,j(δ)},
and ∂2

~τRe Φδ(y1,j(δ)) 6= 0, ∂2
~τRe Φδ(y2,j(δ)) 6= 0.(4.25)

Thanks to (4.25) we can claim that all critical points of Φδ are nondegenerate.

By (4.24), (4.25) we can apply Proposition 4.2. Hence there exists a function aδ ∈ C2(Ω)

such that

∂z̄aδ = 0 in Ω, Re aδ|Γ0 = 0,

and

aδ(x)|Gδ∩∂Ω = ∂zaδ(x)|Gδ∩∂Ω = 0, aδ(x̂ε) 6= 0.

Hence we can apply Proposition 4.1 to conclude∑
x∈Gδ

q(x)c(x)e2iτImΦδ(x) = C(q).

By (4.1) c(x̂(ε)) is not equal to zero.

Since the exponents are linearly independent functions of τ , thanks to (4.23), we have

q(x̂(ε)) = 0. Thus (4.20) implies q(x̂) = 0. Thus the proof is completed. �

5. Appendix.

Consider the Cauchy problem for the Cauchy-Riemann equations

L(φ, ψ) = (
∂φ

∂x1

− ∂ψ

∂x2

,
∂φ

∂x2

+
∂ψ

∂x1

) = 0 in Ω, (φ, ψ) |Γ0 = (b1(x), b2(x)),(5.1)

(φ+ iψ)(x̂j) = c0,j, ∂z(φ+ iψ)(x̂j) = c1,j, ∂2
z (φ+ iψ)(x̂j) = c2,j ∀j ∈ {1, . . . N}.

Here x̂1, . . . x̂N be an arbitrary fixed points in Ω. We consider the pair b1, b2 and complex

numbers ~C = (c0,1, c1,1, c2,1, . . . c0,N , c1,N , c2,N) as initial data for (5.1). The following propo-

sition establishes the solvability of (5.1) for a dense set of Cauchy data.

Proposition 5.1. There exists a set O ⊂ C2(Γ0)
2 ×C3N such that for each (b1, b2, ~C) ∈ O,

(5.1) has at least one solution (φ, ψ) ∈ (C2(Ω))2 and O = C2(Γ)2 × C3N .

Proof. Denote B = (b1, b2) an arbitrary element of the space C3(Γ0)×C3(Γ0). Consider the

following extremal problem

Jε(φ, ψ) = ‖(φ, ψ)−B‖4

B
11
4

4 (Γ0)
+ ε‖(φ, ψ)‖4

B
11
4

4 (∂Ω)
+

1

ε
‖∆L(φ, ψ)‖4

L4(Ω)(5.2)

+
N∑
j=1

2∑
k=0

|∂kz (φ+ iψ)(x̂j)− ck,j|2 → inf,

(5.3) (φ, ψ) ∈ X .

Here X =
{
δ̃ = (δ̃1, δ̃2)|δ̃ ∈ W 3

4 (Ω),∆Lδ̃ ∈ L4(Ω), Lδ̃|∂Ω = 0, δ̃|∂Ω ∈ B
11
4

4 (∂Ω)
}

, and Bl
k de-

notes the Besov space of corresponding order.



PARTIAL DIRICHLET-TO-NEUMANN MAP 25

For each ε > 0 there exists a unique solution to (5.2), (5.3) which we denote as (φ̂ε, ψ̂ε).

This fact can be proved using standard arguments. We fix ε > 0. Denote by Uad the set of

admissible elements of the problem (5.2), (5.3), namely

Uad = {(φ, ψ) ∈ X |Jε(φ, ψ) <∞}.

Denote Ĵε = inf(φ,ψ)∈X Jε(φ, ψ). Clearly the pair (0, 0) ∈ Uad. Therefore there exists a mini-

mizing sequence {(φk, ψk)}Nk=1 ⊂ X such that

Ĵε = lim
k→+∞

Jε(φk, ψk).

Observe that the minimizing sequence is bounded in W 3
4 (Ω). Indeed, since L(φk, ψk) is

bounded in L4(Ω) and thanks to the zero Dirichlet boundary conditions for the function

L(φk, ψk), the standard elliptic estimate implies that the sequence {L(φk, ψk)} is bounded in

the space W 2
4 (Ω). Taking into account that the the sequence traces of the functions (φk, ψk)

is bounded in the Besov space B
11
4

4 (∂Ω) and applying the estimates for elliptic operators one

more time we obtain that {(φk, ψk)} bounded in W 3
4 (Ω). By the Sobolev imbedding theorem

the sequence {(φk, ψk)} is bounded in C1(Ω). Then taking if necessary a subsequence, (which

we denote again as {(φk, ψk)} ) we obtain

(φk, ψk) → (φ̂ε, ψ̂ε)weakly inW 3
4 (Ω), (φk, ψk) → (φ̂ε, ψ̂ε) weakly in B

11
4

4 (∂Ω),

∂kz (φ+ iψ)(x̂j)− ck,j → Ck,j,ε,

∆L(φk, ψk) → rε weakly inL4(Ω), L(φk, ψk) → r̃ε weakly inW 2
4 (Ω).

Obviously, rε = ∆L(φ̂ε, ψ̂ε), r̃ε = L(φ̂ε, ψ̂ε). Then, since the norms in the spaces L4(Ω) and

B
11
4

4 (∂Ω), B
11
4

4 (Γ0) are lower semicontinuous with respect to weak convergence we obtain that

Jε(φ̂ε, ψ̂ε) ≤ lim
k→+∞

Jε(φk, ψk) = Ĵε.

Thus the pair (φ̂ε, ψ̂ε) is solution the extremal problem (5.2), (5.3). Since the set of an

admissible elements is convex and the functional Jε is strictly convex this solution is unique.

By Fermat’s theorem (see e.g. [1] p. 155) we have

J ′ε(φ̂ε, ψ̂ε)[δ̃] = 0, ∀δ̃ ∈ X .

This equality can be written in the form

I ′Γ0
((φ̂ε, ψ̂ε)−B)[δ̃] + εI ′∂Ω((φ̂ε, ψ̂ε))[δ̃] + (pε,∆Lδ̃)L2(Ω)(5.4)

+
1

2

N∑
j=1

2∑
k=0

(∂kz (φ̂ε + iψ̂ε)(x̂j)− ck,j)∂kz (δ̃1 + iδ̃2)(x̂j) + (∂kz (φ̂ε + iψ̂ε)(x̂j)− ck,j)∂
k
z (δ̃1 + iδ̃2)(x̂j) = 0,

where pε = 2
ε
((∆(∂φ̂ε

∂x1
− ∂ψ̂ε

∂x2
))3, (∆(∂φ̂ε

∂x2
+ ∂ψ̂ε

∂x1
))3). I ′Γ∗(ŵ) denotes the derivative of the functional

w → ‖w‖4

B
11
4

4 (Γ∗)
at space element ŵ.
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Observe that the pair Jε(φ̂ε, ψ̂ε) ≤ Jε(0, 0) = ‖B‖2

B
11
4

4 (Γ0)
+
∑N

j=1

∑2
k=0 |ck,j|2. This implies

that the sequence {(φ̂ε, ψ̂ε)} is bounded in B
11
4

4 (Γ0), the sequences {∂kz (φ̂ε + iψ̂ε)(x̂j)− ck,j}
are bounded in C, the sequence {ε(φ̂ε, ψ̂ε)} converges to zero in B

11
4

4 (∂Ω). Then (5.4) implies

that the sequence {pε} is bounded in L
4
3 (Ω).

Therefore, there exist B ∈ B
11
4

4 (Γ0), C0,j, C1,j, C2,j ∈ C and p = (p1, p2) ∈ L
4
3 (Ω) such that

(5.5) (φ̂ε, ψ̂ε)−B ⇀ B weakly in B
11
4

4 (Γ0), pε ⇀ p weakly in L
4
3 (Ω),

(5.6) ∂kz (φ̂ε + iψ̂ε)(x̂j)− ck,j ⇀ Ck,j k ∈ {0, 1, 2}, j ∈ {1, . . . , N}.

Passing to the limit in (5.4) we get

(5.7) I ′Γ0
(B)[δ̃] + (p,∆Lδ̃)L2(Ω) + Re

N∑
j=1

2∑
k=0

Ck,j∂kz (δ̃1 + iδ̃2)(x̂j) = 0 ∀δ̃ ∈ X .

Next we claim that

(5.8) ∆p = 0 in Ω \ ∪Nj=1{x̂j}

in the sense of distributions. Suppose that (5.8) is already proved. This implies

(p,∆Lδ̃)L2(Ω) + Re
N∑
j=1

2∑
k=0

Ck,j∂kz (δ̃1 + iδ̃2)(x̂j) = 0 ∀δ̃1, δ̃2 ∈ C∞
0 (Ω).

If p = (p1, p2), denoting P = p1 − ip2, we have

2Re (∆P, ∂z̄(δ̃1 + iδ̃2))L2(Ω) + Re
N∑
j=1

2∑
k=0

Ck,j∂
k
z (δ̃1 + iδ̃2)(x̂j) = 0 ∀δ̃1, δ̃2 ∈ C∞

0 (Ω).

Since by (5.8) supp ∆P ⊂ ∪Nj=1{x̂j} there exist some constants mβ,j and ˆ̀
j such that ∆P =∑N

j=1

∑ˆ̀

|β|=1mβ,jD
βδ(x− x̂j). The above equality can be written in the form

−2

ˆ̀
j∑

|β|=1

mβ,j∂z̄D
βδ(x− x̂j) =

2∑
k=0

(−1)kCk,j∂
k
z δ(x− x̂j).

From this we obtain

(5.9) C0,j = C1,j = C2,j = 0 j ∈ {1, . . . , N}.

Therefore

(5.10) ∆p = 0 in Ω.

This implies

(p,∆Lδ̃)L2(Ω) = 0 ∀δ̃ ∈ W 3
4 (Ω), Lδ̃|∂Ω =

∂Lδ̃

∂ν
|∂Ω = 0.

This equality and (5.7) yield

(5.11) I ′Γ0
(B)[δ̃] = 0 ∀δ̃ ∈ W 3

4 (Ω), Lδ̃|∂Ω =
∂Lδ̃

∂ν
|∂Ω = 0.
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Then using the trace theorem we conclude that B = 0. Using this and (5.5) we obtain

(5.12) (φ̂εk , ψ̂εk)−B ⇀ 0 weakly in B
11
4

4 (Γ0).

From (5.6), (5.9) we get

∂kz (φ̂ε + iψ̂ε)(x̂) ⇀ ck,j k ∈ {0, 1, 2}, j ∈ {1, . . . , N}.

By the Sobolev embedding theorem B
11
4

4 (Γ0) ⊂⊂ C2(Γ0). Therefore (5.12) implies

(5.13) (φ̂εk , ψ̂εk)−B → 0 in C2(Γ0).

Let the pair (φ̃εk , ψ̃εk) be a solution to the boundary value problem

(5.14) L(φ̃εk , ψ̃εk) = L(φ̂εk , ψ̂εk) in Ω, ψ̃εk |∂Ω = ψ∗εk .

Here ψ∗εk is a smooth function such that ψ∗εk |Γ0 = 0 and the pair (L(φ̂εk , ψ̂εk), ψ
∗
εk

) is orthogonal

to all solutions of the adjoint problem (see [32]). Moreover since L(φ̃εk , ψ̃εk) → 0 in W 2
4 (Ω)

we may assume ψ∗εk → 0 in C4(∂Ω). Among all possible solutions to problem (5.14) (clearly

there is no unique solution to this problem) we choose one such that
∫

Ω
φ̃εkdx = 0. Thus we

obtain

(5.15) (φ̃εk , ψ̃εk) → 0 in W 3
4 (Ω).

Therefore the sequence {(φ̂εk − φ̃εk , ψ̂εk − ψ̃εk)} represents the desired approximation for the

solution of the Cauchy problem (5.1).

Now we prove (5.8). Let x̃ be an arbitrary point in Ω \ ∪Nj=1{x̂j} and let χ̃ be a smooth

function such that it is zero in some neighborhood of Γ0 ∪ ∪Nj=1{x̂j} and the set A = {x ∈
Ω|χ̃(x) = 1} contains an open connected subset F such that x̃ ∈ F and Γ̃ ∩ F is an open

set in ∂Ω. By (5.7) we have

0 = (p,∆L(χ̃δ̃))L2(Ω) = (χ̃p,∆Lδ̃)L2(Ω) + (p, [∆L, χ̃]δ̃)L2(Ω).

That is,

(5.16) (χ̃p,∆Lδ̃)L2(Ω) + ([∆L, χ̃]∗p, δ̃)L2(Ω) = 0 ∀δ̃ ∈ X .

from this we conclude that χ̃p ∈ W 1
4
3

(Ω).

Next we take another smooth cut off function χ̃1 such that supp χ̃1 ⊂ A. A neighborhood

of x̃ belongs to A1 = {x|χ̃1 = 1}, the interior of A1 is connected, and Int A1 ∩ Γ̃ contains

an open subset O in ∂Ω. Similarly to (5.16) we have

(χ̃1p,∆Lδ̃)L2(Ω) + ([∆L, χ̃1]
∗p, δ̃)L2(Ω) = 0.

This equality implies that χ̃1p ∈ W 2
4
3

(Ω). Let ω be a domain such that ω ∩ Ω = ∅,
∂ω ∩ ∂Ω ⊂ O contains an open set in ∂Ω.

We extend p on ω by zero. Then

(∆(χ̃1p), Lδ̃)L2(Ω∪ω) + ([∆L, χ̃1]
∗p, δ̃)L2(Ω∪ω) = 0.

Hence

L∗∆(χ̃1p) = 0 in Int A1 ∪ ω, p|ω = 0.
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By Holmgren’s theorem ∆(χ̃1p)|Int A1
= 0, that is, (∆p)(x̃) = 0. �

Consider now the Cauchy problem for the Cauchy-Riemann equations

L(φ, ψ) = (
∂φ

∂x1

− ∂ψ

∂x2

,
∂φ

∂x2

+
∂ψ

∂x1

) = 0 in Ω, (φ, ψ) |Γ0 = (b(x), 0),(5.17)

(φ+ iψ)(x̂j) = c0,j, ∂z(φ+ iψ)(x̂j) = c1,j, ∂2
z (φ+ iψ)(x̂j) = c2,j ∀j ∈ {1, . . . N}.

Here x̂1, . . . x̂N are arbitrary fixed points in Ω. We consider the function b and complex

numbers ~C = (c0,1, c1,1, c2,1, . . . c0,N , c1,N , c2,N) as an initial data for (5.17). We get as a

corollary of Proposition 5.1 the solvability of (5.17) for a dense set of Cauchy data.

Corollary 5.1. There exists a set O0 ⊂ C2(Γ0)×C3N such that for each (b, ~C) ∈ O0, (5.17)

has at least one solution (φ, ψ) ∈ (C2(Ω))2 and O0 = C2(Γ0)× C3N .

We have

Proposition 5.2. Let Φ satisfy (2.1) and (2.2). Let f̃ ∈ L2(Ω) and ṽ be a solution to

(5.18) 2∂zṽ − τ(∂zΦ)ṽ = f̃ in Ω

or ṽ be a solution to

(5.19) 2∂zv − τ(∂zΦ)ṽ = f̃ in Ω.

In the case that ṽ solves (5.18) we have

‖∂x1(e
−iτψṽ)‖2

L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|ṽ|2dσ

+Re

∫
∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
ṽ

)
ṽdσ + ‖∂x2(e

−iτψṽ)‖2
L2(Ω) = ‖f̃‖2

L2(Ω).(5.20)

In the case that ṽ solves (5.19) we have

‖∂x1(e
iτψṽ)‖L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|ṽ|2dσ + Re

∫
∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
ṽ

)
ṽdσ

+‖∂x2(e
iτψṽ)‖2

L2(Ω) = ‖f̃‖2
L2(Ω).(5.21)

Proof. We prove the statement of the proposition first for the equation 2∂ev
∂z
− τ ∂Φ

∂z
ṽ = f̃ .

Since 2 ∂
∂z
− τ ∂Φ

∂z
= ( ∂

∂x1
− i ∂ψ

∂x1
τ) + ( ∂

i∂x2
− ∂ψ

∂x2
τ), taking the L2− norms of the right and the

left hand sides of (5.18) we get

∥∥∥∥( ∂

∂x1

− i
∂ψ

∂x1

τ

)
ṽ

∥∥∥∥2

L2(Ω)

+ 2Re

((
∂

∂x1

− i
∂ψ

∂x1

τ

)
ṽ,

(
−i ∂
∂x2

− ∂ψ

∂x2

τ

)
ṽ

)
L2(Ω)

+

∥∥∥∥(−i ∂∂x2

− ∂ψ

∂x2

τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2
L2(Ω).
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Since the commutator vanishes[( ∂
∂x1

− i ∂ψ
∂x1
τ), ( ∂

i∂x2
− ∂ψ

∂x2
τ)] ≡ 0, we obtain∥∥∥∥( ∂

∂x1

− i
∂ψ

∂x1

τ

)
ṽ

∥∥∥∥2

L2(Ω)

+

((
∂

∂x1

− i
∂ψ

∂x1

τ

)
ṽ, (−iν2ṽ)

)
L2(∂Ω)

+

(
ν1ṽ,

(
−i ∂
∂x2

− ∂ψ

∂x2

τ

)
ṽ

)
L2(∂Ω)

+

∥∥∥∥(i ∂∂x2

+
∂ψ

∂x2

τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2
L2(Ω).

This equality implies∥∥∥∥( ∂

∂x1

− i
∂ψ

∂x1

τ

)
ṽ

∥∥∥∥2

L2(Ω)

− τ

∫
∂Ω

(
∂ψ

∂x2

ν1 −
∂ψ

∂x1

ν2)|ṽ|2dσ +

∫
∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
ṽ

)
ṽdσ

+

∥∥∥∥(i ∂∂x2

+
∂ψ

∂x2

τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Finally by (2.1) we observe that

(5.22)
∂ψ

∂x2

=
∂ϕ

∂x1

and
∂ψ

∂x1

= − ∂ϕ

∂x2

.

Thus (5.20) follows immediately.

Now we prove the statement of the proposition for (5.19). Since 2 ∂
∂z
− τ ∂Φ

∂z
= ( ∂

∂x1
+

i ∂ψ
∂x1
τ) + (− ∂

i∂x2
− ∂ψ

∂x2
τ), taking the L2− norms of the right and left hand sides of (5.19) we

get

∥∥∥∥( ∂

∂x1

+ i
∂ψ

∂x1

τ

)
ṽ

∥∥∥∥2

L2(Ω)

+ 2Re

((
∂

∂x1

+ i
∂ψ

∂x1

τ

)
ṽ,

(
i
∂

∂x2

− ∂ψ

∂x2

τ

)
ṽ

)
L2(Ω)

+

∥∥∥∥(i ∂∂x2

− ∂ψ

∂x2

τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Since [( ∂
∂x1

+ i ∂ψ
∂x1
τ), ( ∂

i∂x2
+ ∂ψ

∂x2
τ)] ≡ 0, we obtain∥∥∥∥( ∂

∂x1

+ i
∂ψ

∂x1

τ

)
ṽ

∥∥∥∥2

L2(Ω)

+

((
∂

∂x1

+ i
∂ψ

∂x1

τ

)
ṽ, (iν2ṽ)

)
L2(∂Ω)

+

(
ν1ṽ,

(
i
∂

∂x2

− ∂ψ

∂x2

τ

)
ṽ

)
L2(∂Ω)

+

∥∥∥∥(i ∂∂x2

− ∂ψ

∂x2

τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2
L2(Ω).

This equality implies∥∥∥∥( ∂

∂x1

+ i
∂ψ

∂x1

τ

)
ṽ

∥∥∥∥2

L2(Ω)

− τ

∫
∂Ω

(
∂ψ

∂x2

ν1 −
∂ψ

∂x1

ν2)|ṽ|2dσ +

∫
∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
ṽ

)
ṽdσ

+

∥∥∥∥(i ∂∂x2

− ∂ψ

∂x2

τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2
L2(Ω).

Thus estimate (5.21) follows immediately from the above equality and (5.22), finishing the

proof of the proposition. �

Now we prove a Carleman estimate for the Laplace operator.
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Proposition 5.3. Suppose that Φ satisfies (2.1), (2.2), (2.5). Let u ∈ H1
0 (Ω) ∩H2(Ω) be a

real valued function. Then there exists τ0 such that for all |τ | ≥ τ0 we have:

|τ |‖ueτϕ‖2
L2(Ω) + ‖ueτϕ‖2

H1(Ω) + ‖∂u
∂ν
eτϕ‖2

L2(Γ0) + τ 2‖|∂Φ

∂z
|ueτϕ‖2

L2(Ω)

≤ C(‖(∆u)eτϕ‖2
L2(Ω) + |τ |

∫
Γ̃

|∂u
∂ν
|2e2τϕdσ).(5.23)

Proof. Without loss of generality, we may assume that τ > 0. Denote ṽ = ueτϕ,∆u = f.

Observe that ∆ = 4 ∂
∂z

∂
∂z̄

and ϕ(x1, x2) = 1
2
(Φ(z) + Φ(z)). Therefore

eτϕ∆e−τϕṽ = (2
∂

∂z
− τ

∂Φ

∂z
)(2

∂

∂z̄
− τ

∂Φ̄

∂z̄
)ṽ = (2

∂

∂z̄
− τ

∂Φ̄

∂z̄
)(2

∂

∂z
− τ

∂Φ

∂z
)ṽ = feτϕ.

Denote w̃1 = Q(z)(2 ∂
∂z̄
− τ ∂Φ̄

∂z̄
)ṽ, w̃2 = Q(z)(2 ∂

∂z
− τ ∂Φ

∂z
)ṽ, where Q(z) ∈ C2(Ω) is an

holomorphic function in Ω. Thanks to the zero Dirichlet boundary condition for u we have

w̃1|∂Ω = 2Q(z)∂z̄ṽ|∂Ω = (ν1 + iν2)Q(z)
∂ṽ

∂ν
|∂Ω, w̃2|∂Ω = 2Q(z)∂zṽ|∂Ω = (ν1 − iν2)Q(z)

∂ṽ

∂ν
|∂Ω.

By Proposition 5.2 we obtain

‖( ∂

∂x1

− iτ
∂ψ

∂x1

)w̃1‖2
L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|Q|2|∂ṽ
∂ν
|2dσ + Re

∫
∂Ω

i((ν2
∂

∂x1

− ν1
∂

∂x2

)w̃1)w̃1dσ +

+‖( ∂

∂x2

− iτ
∂ψ

∂x2

)w̃1‖2
L2(Ω) = ‖Qfeτϕ‖2

L2(Ω)

and

‖( ∂

∂x1

+ i
∂ψ

∂x1

τ)w̃2‖2
L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|Q|2|∂ṽ
∂ν
|2dσ + Re

∫
∂Ω

i((−ν2
∂

∂x1

+ ν1
∂

∂x2

)w̃2)w̃2dσ +

+‖( ∂

∂x2

+ iτ
∂ψ

∂x2

)w̃2‖2
L2(Ω) = ‖Qfeτϕ‖2

L2(Ω).

We simplify the integral Rei
∫
∂Ω

((ν2
∂
∂x1

− ν1
∂
∂x2

)w̃1)w̃1dσ. We recall that ṽ = ueτϕ and

w̃1|∂Ω = Q(z)(ν1 + iν2)
∂ṽ
∂ν

= Q(z)(ν1 + iν2)
∂u
∂ν
eτϕ. Denote A+ iB = Q(z)(ν1 + iν2). We get

Re

∫
∂Ω

i((ν2
∂

∂x1

− ν1
∂

∂x2

)w̃1)w̃1dσ =

Re

∫
∂Ω

i(ν2
∂

∂x1

− ν1
∂

∂x2

)[(A+ iB)
∂u

∂ν
eτϕ](A− iB)

∂u

∂ν
eτϕdσ =

Re

∫
∂Ω

i[(ν2
∂

∂x1

− ν1
∂

∂x2

)(A+ iB)]|∂ṽ
∂ν
|2(A− iB)dσ +

Re

∫
∂Ω

i

2
(A2 +B2)((ν2

∂

∂x1

− ν1
∂

∂x2

)|∂ṽ
∂ν
|2dσ =∫

∂Ω

(∂~τAB − ∂~τBA)|∂ṽ
∂ν
|2dσ.
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Now we simplify the integral Re
∫
∂Ω
i((−ν2

∂
∂x1

+ ν1
∂
∂x2

)w̃2)w̃2dσ. We recall that ṽ = ueτϕ

and w̃2|∂Ω = (ν1 − iν2)Q(z)∂ṽ
∂ν

= (ν1 − iν2)Q(z)∂u
∂ν
eτϕ. A straightforward computation gives

Re

∫
∂Ω

i((−ν2
∂

∂x1

+ ν1
∂

∂x2

)w̃2)w̃2dσ =

Re

∫
∂Ω

i(−ν2
∂

∂x1

+ ν1
∂

∂x2

)[(A− iB)
∂u

∂ν
eτϕ](A+ iB)

∂u

∂ν
eτϕdσ =(5.24)

Re

∫
∂Ω

i[(−ν2
∂

∂x1

+ ν1
∂

∂x2

)(A− iB)]|∂ṽ
∂ν
|2(A+ iB)dσ −

Re

∫
∂Ω

i

2
(A2 +B2)((ν2

∂

∂x1

− ν1
∂

∂x2

)|∂ṽ
∂ν
|2dσ =∫

∂Ω

(∂~τAB − ∂~τBA)|∂ṽ
∂ν
|2dσ.

Using the above formula we obtain

‖( ∂

∂x1

+ i
∂ψ

∂x1

τ)w̃2‖2
L2(Ω) + ‖(i ∂

∂x2

+
∂ψ

∂x2

τ)w̃2‖2
L2(Ω) − 2τ

∫
∂Ω

(ν,∇ϕ)|Q|2|∂ṽ
∂ν
|2dσ

+‖( ∂

∂x1

− i
∂ψ

∂x1

τ)w̃1‖2
L2(Ω) + ‖( ∂

∂x2

− ∂ψ

∂x2

τ)w̃1‖2
L2(Ω)

+2

∫
∂Ω

(∂~τAB − ∂~τBA)|∂ṽ
∂ν
|2dσ = 2‖Qfeτϕ‖2

L2(Ω).(5.25)

We can rewrite (5.25) in the form

‖ ∂

∂x1

(e−iψτ w̃2)‖2
L2(Ω) + ‖ ∂

∂x2

(e−iψτ w̃2)‖2
L2(Ω) − 2τ

∫
∂Ω

(ν,∇ϕ)|Q|2|∂ṽ
∂ν
|2dσ

+‖ ∂

∂x1

(eiψτ w̃1)‖2
L2(Ω) + ‖ ∂

∂x2

(eiψτ w̃1)‖2
L2(Ω)

+2

∫
∂Ω

(∂~τAB − ∂~τBA)|∂ṽ
∂ν
|2dσ = 2‖Qfeτϕ‖2

L2(Ω).(5.26)

At this point, in order to estimate the integral
∫
∂Ω

(∂~τAB − ∂~τBA)|∂ṽ
∂ν
|2dσ, we have to make

a choice of the holomorphic function Q. If Ω is simply connected, after an appropriate

conformal transformation to the ball, we can take Q ≡ 1. Then the function (∂~τAB−∂~τBA)

will be positive.

In the general situation, using Proposition 5.1 we choose the holomorphic function Q(z)

such that (∂~τAB − ∂~τBA) is positive on Γ̄0. Such a function can be constructed in the

following way. Let γj be a contour from ∂Ω. We parameterize it by the smooth curve

x(s) : [0, `j] → γj, satisfying |x′(s)| = 1 and ∂~τA = d
ds
A ◦ x(s). We take now A ◦ x(s) =

`jsin(s/`j), B ◦ x(s) = `jcos(s/`j). Then

(∂~τAB − ∂~τBA) = `j on γj.

Taking into account that A+ iB = Q(z)(ν1 + iν2) we set

(5.27) b1 = Re

{
`jsin(s/`j)− i`jcos(s/`j)

(ν1 − iν2) ◦ x(s)

}
, b2 = Im

{
`jsin(s/`j)− i`jcos(s/`j)

(ν1 − iν2) ◦ x(s)

}
.
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We take Q as a solution to problem (5.1) with the initial data close to one given by (5.27).

Then we have the estimate

(5.28)

∫
∂Ω

|∂ṽ
∂ν
|2dσ ≤ (‖Qfeτϕ‖2

L2(Ω) + |τ |
∫

Γ̃

|∂ṽ
∂ν
|2dσ).

The function Q(z) which allowed us to establish the estimate (5.28) might be equal to zero

at some points of Ω. Thus, from now on , we take Q(z) ≡ 1. Of course (5.26) is valid.

Since ϕ is a harmonic function we have
∫
∂Ω

∂ϕ
∂ν
dσ = 0. By (2.1), (2.2) the function ϕ is

not constant, so the set ∂Ω− = {x ∈ ∂Ω|(ν,∇ϕ) > 0} is not empty.

We now establish a Poincaré type inequality with boundary terms. Let Γ∗ be some open

subset of ∂Ω. Observe that the functional ‖∇W‖L2(Ω)+‖W‖L2(Γ∗) is the norm on the Sobolev

space H1(Ω). In order to prove this it suffices to establish the existence of constant C such

that

(5.29) ‖W‖L2(Ω) ≤ C(‖∇W‖L2(Ω) + ‖W‖L2(Γ∗)) ∀W ∈ H1(Ω).

Suppose that (5.29) is false. Then there exists a sequence {Wk} ⊂ H1(Ω) such that

‖Wk‖L2(Ω) = 1 and

(5.30) ‖∇Wk‖L2(Ω) + ‖Wk‖L2(Γ∗) → 0.

On the other hand the sequence Wk is clearly bounded in H1(Ω). So taking a subsequence

and using the compactness of the embedding of H1(Ω) into L2(Ω) we see that there exists

W̃ ∈ H1(Ω) such that

(5.31) Wk → W̃ in L2(Ω).

By (5.30) W̃ ≡ const. On the other hand, by (5.30) W̃ |Γ∗ = 0. Therefore W̃ ≡ 0 and we

have the contradiction with (5.31) and the fact that ‖Wk‖L2(Ω) = 1.

Thus, by (5.29) there exists a positive constant C, independent of τ , such that

1

C
(‖w̃1‖2

L2(Ω) + ‖w̃2‖2
L2(Ω)) ≤

1

2
‖ ∂

∂x1

(e−iψτ w̃2)‖2
L2(Ω) +

1

2
‖ ∂

∂x2

(e−iψτ w̃2)‖2
L2(Ω)

−τ
∫
∂Ω−

(ν,∇ϕ)|∂ṽ
∂ν
|2dσ

+
1

2
‖ ∂

∂x1

(eiψτ w̃1)‖2
L2(Ω) +

1

2
‖ ∂

∂x2

(eiψτ w̃1)‖2
L2(Ω).(5.32)

Since ṽ is a real-valued function we have

‖2 ∂ṽ
∂x1

+ τ
∂ψ

∂x2

ṽ‖2
L2(Ω) + ‖2 ∂ṽ

∂x2

− τ
∂ψ

∂x1

ṽ‖2
L2(Ω) ≤ C0(‖w̃1‖2

L2(Ω) + ‖w̃2‖2
L2(Ω)).

Therefore

4‖ ∂ṽ
∂x1

‖2
L2(Ω) − 2τ

∫
Ω

(
∂

∂x1

∂ψ

∂x2

− ∂

∂x2

∂ψ

∂x1

)ṽ2dx+ ‖τ ∂ψ
∂x2

ṽ‖2
L2(Ω)

+4‖ ∂ṽ
∂x2

‖2
L2(Ω) + ‖τ ∂ψ

∂x1

ṽ‖2
L2(Ω) ≤ C1(‖w̃1‖2

L2(Ω) + ‖w̃2‖2
L2(Ω)).(5.33)
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Now we claim that there exists a constant C2 independent of τ such that

(5.34) |τ |‖ṽ‖2
L2(Ω) ≤ C2(‖ṽ‖2

H1(Ω) + τ 2‖|∂Φ

∂z
|ṽ‖2

L2(Ω)).

It suffices to prove inequality (5.34) locally assuming that supp v ∈ B(y, δ) where y ∈ H
and the radius δ can be taken sufficiently small. If y ∈ H ∩ ∂Ω by (2.2) one can take δ

such that v|∂Ω∩B(y,δ) = 0. Moreover, if y ∈ H is an arbitrary point we may assume, without

loss of generality, that y = 0. Since all critical points of the function Φ are assumed to

be nondegenerate there exists a holomorphic function Ψ(z) such that ∂zΦ(z) = zΨ(z) and

Ψ(0) 6= 0. Thus for some positive δ there exists a positive constant C3 such that

|∂zΦ| ≤ C3|z| ∀(Re z, Im z) ∈ B(0, δ).

Then there exists a positive constant C4 such that∫
Ω

|v|2dx =

∫
Ω

(∂zz)|v|2dx = −
∫

Ω

z(v∂zv̄ + v̄∂zv)dx ≤ C4

∫
Ω

(|∇v|2 + |z|2|v|2)dx.

By (5.33), (5.34) there exists a positive constant C5 such that

(5.35) |τ |‖ṽ‖2
L2(Ω) + ‖ṽ‖2

H1(Ω) + τ 2‖|∂Φ

∂z
|ṽ‖2

L2(Ω) ≤ C5(‖w̃1‖2
L2(Ω) + ‖w̃2‖2

L2(Ω)).

By (5.35) we obtain from (5.26), (5.32) that there exists a positive constant C6 such that

1

C6

(|τ |‖ṽ‖2
L2(Ω) + ‖ṽ‖2

H1(Ω) + τ 2‖|∂Φ

∂z
|ṽ‖2

L2(Ω))− τ

∫
∂Ω

(ν,∇ϕ)|∂ṽ
∂ν
|2dσ

+

∫
∂Ω

2(∂~τAB − ∂~τBA)|∂ṽ
∂ν
|2dσ ≤ ‖feτϕ‖2

L2(Ω) + |τ |
∫

Γ̃

|(ν,∇ϕ)||∂ṽ
∂ν
|2dσ.

This estimate and (5.28) concludes the proof of the proposition. �

Now we give the proof of Proposition 2.1.

Proof. Let us introduce the space

H =

{
v ∈ H1

0 (Ω)|∆v + q0v ∈ L2(Ω),
∂v

∂ν
|Γ̃ = 0

}
with the scalar product

(v1, v2)H =

∫
Ω

e2τϕ(∆v1 + q0v1)(∆v2 + q0v2)dx.

By Proposition 5.3 H is a Hilbert space. Consider the linear functional on H : v →
∫

Ω
vfdx+∫

Γ0
g ∂v
∂ν
dσ. By (5.23) this is the continuous linear functional with the norm estimated by a

constant C(‖feτϕ‖L2(Ω)/τ
1
2 + ‖geτϕ‖L2(Γ0)). Therefore by the Riesz representation theorem

there exists an element v̂ ∈ H so that∫
Ω

vfdx+

∫
Γ̃

g
∂v

∂ν
dσ =

∫
Ω

e2τϕ(∆v̂ + q0v̂)(∆v + q0v)dx.

Then, as a solution to (2.4), we take the function u = e2τϕ(∆v̂ + q0v̂). �
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