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Abstract

We prove a quantitative form of the strong unique continuation
property for the Lamé system when the Lamé coefficients µ is Lipschitz
and λ is essentially bounded in dimension n ≥ 2. This result is an
improvement of the earlier result [5] in which both µ and λ were
assumed to be Lipschitz.

1 Introduction

Assume that Ω is a connected open set containing 0 in R
n for n ≥ 2. Let

µ(x) ∈ C0,1(Ω) and λ(x), ρ(x) ∈ L∞(Ω) satisfy
{

µ(x) ≥ δ0, λ(x) + 2µ(x) ≥ δ0 ∀ x ∈ Ω,

‖µ‖C0,1(Ω) + ‖λ‖L∞(Ω) ≤ M0, ‖ρ‖L∞(Ω) ≤ M0

(1.1)

with positive constants δ0,M0, where we define

‖f‖C0,1(Ω) = ‖f‖L∞(Ω) + ‖∇f‖L∞(Ω).
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The isotropic elasticity system, which represents the displacement equation
of equilibrium, is given by

div(µ(∇u+ (∇u)t)) + ∇(λdivu) + ρu = 0 in Ω, (1.2)

where u = (u1, u2, · · · , un)t is the displacement vector and (∇u)jk = ∂kuj for
j, k = 1, 2, · · · , n.

We are interested in the strong unique continuation property (SUCP) of
(1.2). More precisely, we would like to show that any nontrivial solution
of (1.2) can only vanish of finite order at any point of Ω. We also give an
estimate of the vanishing order for u, which can be seen as a quantitative
description of the SUCP for (1.2). Here we list some of the known results on
the SUCP for (1.2):

• λ, µ ∈ C1,1, n ≥ 2 (quantitative): Alessandrini and Morassi [1].

• λ, µ ∈ C0,1, n = 2 (qualitative): Lin and Wang [4].

• λ ∈ L∞, µ ∈ C0,1, n = 2 (qualitative): Escauriaza [2].

• λ, µ ∈ C0,1, n ≥ 2 (quantitative): Lin, Nakamura, and Wang [5].

In this paper, we relax the regularity assumption on λ in [5] to λ ∈ L∞(Ω).
In view of counterexamples by Plis [7] or Miller [3], this regularity assumption
seems to be optimal. This improvement was inspired by our recent work on
the Stokes system [6]. We now state the main results of the paper. Assume
that there exists 0 < R0 ≤ 1 such that BR0

⊂ Ω. Hereafter Br denotes an
open ball of radius r > 0 centered at the origin.

Theorem 1.1 (Optimal three-ball inequalities) There exists a positive num-
ber R̃ < 1, depending only on n,M0, δ0, such that if 0 < R1 < R2 < R3 ≤ R0

and R1/R3 < R2/R3 < R̃, then

∫

|x|<R2

|u|2dx ≤ C

(
∫

|x|<R1

|u|2dx

)τ (
∫

|x|<R3

|u|2dx

)1−τ

(1.3)

for u ∈ H1
loc(BR0

) satisfying (1.2) in BR0
, where the constant C depends

on R2/R3, n, M0, δ0, and 0 < τ < 1 depends on R1/R3, R2/R3, n,M0, δ0.
Moreover, for fixed R2 and R3, the exponent τ behaves like 1/(− logR1)
when R1 is sufficiently small.
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Theorem 1.2 Let u ∈ H1
loc(Ω) be a nontrivial solution of (1.2), then there

exist positive constants K and m, depending on n,M0, δ0 and u, such that

∫

|x|<R

|u|2dx ≥ KRm (1.4)

for all R sufficiently small.

Remark 1.3 Based on Theorem 1.1, the constants K and m in (2.2) are

explicitly given by

K =

∫

|x|<R3

|u|2dx

and

m = C̃ + log
(

∫

|x|<R3

|u|2dx
∫

|x|<R2

|u|2dx

)

,

where C̃ is a positive constant depending on n,M0, δ0 and R2/R3.

2 Reduced system and estimates

Here we want to find a reduced system from (1.2). This is a crucial step in
our approach. Let us write (1.2) into a non-divergence form:

µ∆u+ ∇((λ+ µ) divu) + (∇u+ (∇u)t)∇µ− divu∇µ+ ρu = 0. (2.1)

Dividing (2.1) by µ yields

∆u+
1

µ
∇((λ+ µ) divu) + (∇u+ (∇u)t)

∇µ

µ
− divu

∇µ

µ
+
ρ

µ
u

= ∆u+ ∇(
λ+ µ

µ
divu) + (∇u+ (∇u)t)

∇µ

µ
− divu(

∇µ

µ
+ (λ+ µ)∇(

1

µ
))

+
ρ

µ
u

= ∆u+ ∇(a(x)v) +G

= 0, (2.2)

where

a(x) =
λ+ µ

λ+ 2µ
∈ L∞(Ω), v =

λ+ 2µ

µ
divu
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and

G = (∇u+ (∇u)t)
∇µ

µ
− divu(

∇µ

µ
+ (λ+ µ)∇(

1

µ
)) +

ρ

µ
u.

Taking the divergence on (2.2) gives

∆v + divG = 0. (2.3)

Our reduced system now consists of (2.2) and (2.3). It follows easily from
(2.3) that if u ∈ H1

loc(Ω), then v ∈ H1
loc(Ω).

To prove the main results, we rely on suitable Carleman estimates. De-
note ϕβ = ϕβ(x) = exp(−βψ̃(x)), where β > 0 and ψ̃(x) = log |x| +
log((log |x|)2). Note that ϕβ is less singular than |x|−β. We use the no-
tation X . Y or X & Y to mean that X ≤ CY or X ≥ CY with some
constant C depending only on n.

Lemma 2.1 [5, Lemma 2.4] There exist a sufficiently small number r1 > 0
depending on n and a sufficiently large number β1 > 3 depending on n such

that for all w ∈ Ur1
and f = (f1, · · · , fn) ∈ (Ur1

)n, β ≥ β1, we have that

∫

ϕ2
β(log |x|)2(β|x|4−n|∇w|2 + β3|x|2−n|w|2)dx

.

∫

ϕ2
β(log |x|)4|x|2−n[(|x|2∆w + |x|divf)2 + β2‖f‖2]dx, (2.4)

where Ur1
= {w ∈ C∞

0 (Rn \ {0}) : supp(w) ⊂ Br0
}.

Next, replacing β by β + 1 in (2.4), we get another Carleman estimate.

Lemma 2.2 There exist a sufficiently small number r1 > 0 depending on

n and a sufficiently large number β1 > 2 depending on n such that for all

w ∈ Ur1
and f = (f1, · · · , fn) ∈ (Ur1

)n, β ≥ β1, we have that

∫

ϕ2
β(log |x|)−2(β|x|2−n|∇w|2 + β3|x|−n|w|2)dx

.

∫

ϕ2
β|x|

−n[(|x|2∆w + |x|divf)2 + β2‖f‖2]dx. (2.5)

In addition to Carleman estimates, we also need the following Cacciop-
poli’s type inequality.
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Lemma 2.3 Let u ∈ (H1
loc(Ω))n be a solution of (1.1). Then for any 0 <

a3 < a1 < a2 < a4 such that Ba4r ⊂ Ω and |a4r| < 1, we have

∫

a1r<|x|<a2r

|x|4|∇v|2 + |x|2|v|2 + |x|2|∇u|2dx ≤ C0

∫

a3r<|x|<a4r

|u|2dx (2.6)

where the constant C0 is independent of r and u. Here v is defined in (2.2).

The proof of Lemma 2.3 will be given in the next section. Here we would
like to outline how to proceed the proofs of main theorems. The detailed
arguments can be found in [5] or [6]. Firstly, applying (2.5) to w = u,
f = |x|a(x)v and using (2.2), we have that

∫

ϕ2
β(log |x|)−2(β|x|2−n|∇u|2 + β3|x|−n|u|2)dx

.

∫

ϕ2
β|x|

−n[
(

|x|2∆u+ |x|div(|x|a(x)v)
)2

+ β2‖|x|a(x)v‖2]dx. (2.7)

Next, applying (2.4) to w = v, f = |x|G and using (2.3), we get that

∫

ϕ2
β(log |x|)2(β|x|4−n|∇v|2 + β3|x|2−n|v|2)dx

.

∫

ϕ2
β(log |x|)4|x|2−n[

(

|x|2∆v + |x|div(|x|G)
)2

+ β2‖|x|G‖2]dx.

(2.8)

Finally, adding β×(2.7) and (2.8) together and using (2.6), we can prove
Theorem 1.1 and 1.2 as in [5] and [6].

3 Proof of Lemma 2.3

Define b1 = (a1 + a3)/2 and b2 = (a2 + a4)/2. Let X = Ba4r\B̄a3r, Y =
Bb2r\B̄b1r and Z = Ba2r\B̄a1r. Let ξ(x) ∈ C∞

0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =











0, |x| ≤ a3r,

1, b1r < |x| < b2r,

0, |x| ≥ a4r.

(3.1)
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From (1.2), we have that

0 = −

∫

[div(µ(∇u+ (∇u)t)) + ∇(λdivu) + ρu] · (ξ2ū)dx

=

∫ n
∑

ijkl=1

[λδijδkl + µ(δilδjk + δikδjl)]∂xl
uk∂xj

(ξ2ūi)dx−

∫

ρξ2|u|2dx

=

∫

ξ2
n

∑

ijkl=1

[λδijδkl + µ(δilδjk + δikδjl)]∂xl
uk∂xj

ūidx

+

∫ n
∑

ijkl=1

∂xj
(ξ2)[λδijδkl + µ(δilδjk + δikδjl)]∂xl

ukūidx−

∫

ρξ2|u|2dx

= I1 + I2, (3.2)

where

I1 =

∫

ξ2[
n

∑

ij=1

λ∂xj
uj∂xi

ūi +
n

∑

ij=1

µ(∂xi
uj∂xj

ūi + ∂xj
ui∂xj

ūi)]dx

and

I2 =

∫ n
∑

ijkl=1

∂xj
(ξ2)[λδijδkl + µ(δilδjk + δikδjl)]∂xl

ukūidx−

∫

ρξ2|u|2dx.

Observe that
∫

ξ2(2µ−
δ0
2

)∂xi
uj∂xj

ūidx

= −

∫

∂xj
[ξ2(2µ−

δ0
2

)]∂xi
ujūidx−

∫

ξ2(2µ−
δ0
2

)∂2
xixj

ujūidx

= −

∫

∂xj
[ξ2(2µ−

δ0
2

)]∂xi
ujūidx+

∫

∂xi
[ξ2(2µ−

δ0
2

)]∂xj
ujūidx

+

∫

ξ2(2µ−
δ0
2

)∂xj
uj∂xi

ūidx. (3.3)
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It follows from (3.3) that

I1 =

∫

ξ2[
n

∑

ij=1

λ∂xj
uj∂xi

ūi +
n

∑

ij=1

(2µ−
δ0
2

)(∂xi
uj∂xj

ūi)]dx

+

∫ n
∑

ij=1

ξ2(µ−
δ0
2

)(∂xj
ui∂xj

ūi − ∂xi
uj∂xj

ūi)dx

+
δ0
2

∫ n
∑

ij=1

ξ2∂xj
ui∂xj

ūidx

=

∫

(2µ+ λ−
δ0
2

)ξ2

n
∑

ij=1

(∂xj
uj∂xi

ūi)dx

+

∫ n
∑

ij=1

ξ2(µ−
δ0
2

)(∂xj
ui∂xj

ūi − ∂xi
uj∂xj

ūi)dx

+
δ0
2

∫ n
∑

ij=1

ξ2∂xj
ui∂xj

ūidx+ I3, (3.4)

where

I3 =
n

∑

ij=1

∫

∂xi
[ξ2(2µ−

δ0
2

)]∂xj
ujūi − ∂xj

[ξ2(2µ−
δ0
2

)]∂xi
ujūidx.

Since
∫ n

∑

ij=1

ξ2(µ−
δ0
2

)(∂xj
ui∂xj

ūi − ∂xi
uj∂xj

ūi)dx

=
1

2

∫ n
∑

ij=1

ξ2(µ−
δ0
2

)|∂xj
ui − ∂xi

uj|
2dx,

we obtain that

I1 ≥
δ0
2

∫

|ξ∇u|2dx+ I3. (3.5)

Combining (3.2) and (3.5), we have that
∫

Y

|∇u|2dx ≤

∫

X

|ξ∇u|2dx ≤ C1

∫

X

|x|−2|u|2dx,
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which implies
∫

Y

|x|2|∇u|2dx ≤ C2

∫

X

|u|2dx. (3.6)

Here and below all constants C1, C2, · · · depend on δ0, M0.
To estimate ∇v, we define χ(x) ∈ C∞

0 (Rn) satisfy 0 ≤ χ(x) ≤ 1 and

χ(x) =











0, |x| ≤ b1r,

1, a1r < |x| < a2r,

0, |x| ≥ b2r.

By (2.3), we derive that
∫

|χ(x)∇v|2dx

=

∫

∇v · ∇(χ2v̄)dx− 2

∫

χ∇v · v̄∇χdx

≤ |

∫

(divG)χ2v̄dx| + 2

∫

|χ∇v · v̄∇χ|dx

≤ |

∫

(divG)χ2v̄dx| +
1

4

∫

|χ∇v|2dx+ C3

∫

Y

|x|−2|v|2dx

≤ C4

∫

Y

|∇u|2dx+ C4

∫

Y

|u|2dx+
1

2

∫

|χ∇v|2dx+ C4

∫

Y

|x|−2|v|2dx

≤ C5

∫

Y

|x|−2|∇u|2dx+ C4

∫

Y

|u|2dx+
1

2

∫

|χ∇v|2dx. (3.7)

Therefore, we get from (3.7) that
∫

Z

|∇v|2dx ≤ 2C5

∫

Y

|x|−2|∇u|2dx+ 2C4

∫

Y

|u|2dx

and hence
∫

Z

|x|4|∇v|2dx ≤ C6

∫

Y

|x|2|∇u|2dx+ C6

∫

Y

|x|4|u|2dx. (3.8)

Putting together K×(3.6) and (3.8), we have that

K

∫

Y

|x|2|∇u|2dx+

∫

Z

|x|4|∇v|2dx

≤ KC2

∫

X

|u|2dx+ C6

∫

Y

|x|2|∇u|2dx+ C6

∫

Y

|x|4|u|2dx. (3.9)
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Choosing K = 2C6 in (3.9) yields
∫

Z

|x|2|v|2dx+

∫

Z

|x|2|∇u|2dx+

∫

Z

|x|4|∇v|2dx

≤ C7

∫

Y

|x|2|∇u|2dx+ C7

∫

Z

|x|4|∇v|2dx

≤ C8

∫

X

|u|2dx,

The proof is now complete. 2
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