Quantitative strong unique continuation for
the Lamé system with less regular coefficients
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Abstract

We prove a quantitative form of the strong unique continuation
property for the Lamé system when the Lamé coefficients p is Lipschitz
and X is essentially bounded in dimension n > 2. This result is an
improvement of the earlier result [5] in which both p and A were
assumed to be Lipschitz.

1 Introduction

Assume that  is a connected open set containing 0 in R"™ for n > 2. Let
w(z) € C1(Q) and (), p(x) € L>(Q) satisfy

{M:c) 20, @)+ 2u(z) 20 Vae (1.1)

1llcore) + ML) < Mo, |lplle@) < Mo
with positive constants &y, My, where we define

| fllcor@y = | fllzee@) + IV fllLe .-
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The isotropic elasticity system, which represents the displacement equation
of equilibrium, is given by

div(p(Vu + (Vu)')) + V(Adivu) + pu =0 in Q, (1.2)

where u = (uy, ug, - -+ ,uy,)" is the displacement vector and (Vu);, = Jyu; for
jk=1,2,--- n.

We are interested in the strong unique continuation property (SUCP) of
(1.2). More precisely, we would like to show that any nontrivial solution
of (1.2) can only vanish of finite order at any point of 2. We also give an
estimate of the vanishing order for u, which can be seen as a quantitative
description of the SUCP for (1.2). Here we list some of the known results on
the SUCP for (1.2):

e )\, ue CH n>2 (quantitative): Alessandrini and Morassi [1].
e \,ue C% n =2 (qualitative): Lin and Wang [4].

e A€ L>® pue C% n=2 (qualitative): Escauriaza [2].

A\ € C% n > 2 (quantitative): Lin, Nakamura, and Wang [5].

In this paper, we relax the regularity assumption on A in [5] to A € L>®().
In view of counterexamples by Plis [7] or Miller [3], this regularity assumption
seems to be optimal. This improvement was inspired by our recent work on
the Stokes system [6]. We now state the main results of the paper. Assume
that there exists 0 < Ry < 1 such that Br, C (2. Hereafter B, denotes an
open ball of radius r > 0 centered at the origin.

Theorem 1.1 (Optimal three-ball inequalities) There exists a positive num-
ber R < 1, depending only on n, My, dp, such that if 0 < By < Ry < R3 < Ry
and Rl/Rg < Rg/Rg < R, then

T 1-7
/ lu|?dx < C (/ |u|2dz) (/ |u|2dz) (1.3)
‘x‘<R2 |IE|<R1 \x\<R3

for u € H} (Bpg,) satisfying (1.2) in Bpg,, where the constant C' depends
on Ry/Rs3, n, My, dy, and 0 < 7 < 1 depends on Ry/R3, Ry/Rs3, n, My, .
Moreover, for fixed R, and Rj3, the exponent 7 behaves like 1/(—log R;)
when R; is sufficiently small.



Theorem 1.2 Let u € H..(Q) be a nontrivial solution of (1.2), then there

exist positive constants K and m, depending on n, My, dg and u, such that

/ lu|?dz > KR™ (1.4)
|z|<R

for all R sufficiently small.

Remark 1.3 Based on Theorem 1.1, the constants K and m in (2.2) are
explicitly given by

K= lu|?dx
|z|<Rs3
" oy Juld
. ul*dx
m:C+log( |z|<Rs g )7
f\x\<R2 |u|2dx

where C'is a positive constant depending on n, My, dg and Rs/Rs.

2 Reduced system and estimates

Here we want to find a reduced system from (1.2). This is a crucial step in
our approach. Let us write (1.2) into a non-divergence form:

pAu+ V(A + p) dive) + (Vu + (Vu) ) Vi — divuVp + pu = 0. (2.1)

Dividing (2.1) by u yields

1
Au+ 19(00 4 ) dive) + (Va + (Vo)) 2 — diva VP 1 Ly
u 7 pwoop
A 1
= Au+ VA dive) + (Vu+ (V) Y~ diva( X 4 0+ v (L))
7 u 7 u
—I-Bu
1
= Au+V(a(z)v)+G
0, (2.2)
where \ N9
a(z) = AL’L € L2(Q), v— Z ! diva



and

Vi . Vi 1 p
G = (Vu+ (Vu)")— — divu(— + (A + p)V(=)) + —u.
( (Vu)) . ( . (A+n) (u)) .
Taking the divergence on (2.2) gives
Av + divG = 0. (2.3)

Our reduced system now consists of (2.2) and (2.3). It follows easily from
(2.3) that if u € H..(Q), then v € H. (Q).
To prove the main results, we rely on suitable Carleman estimates. De-

note w5 = @s(z) = exp(—FY(z)), where 3 > 0 and (z) = log|z| +
log((log ||)?). Note that ¢g is less singular than |z|™. We use the no-
tation X <Y or X 2 Y to mean that X < CY or X > CY with some
constant C' depending only on n.

Lemma 2.1 [5, Lemma 2.4] There exist a sufficiently small number r; > 0

depending on n and a sufficiently large number 3y > 3 depending on n such
that for allw € U, and f = (f1,---, fa) € (U:)", B > B1, we have that

/ 3 (log [2])* (B2 [Vl + 3" wl?)da
< / 3 (log [2) 22 (|2 P A + a|div ) + B\ f|P)dr,  (24)
where U,, = {w € C§°(R" \ {0}) : supp(w) C By, }.

Next, replacing § by f+ 1 in (2.4), we get another Carleman estimate.

Lemma 2.2 There exist a sufficiently small number r1 > 0 depending on
n and a sufficiently large number 31 > 2 depending on n such that for all
weU., and f=(f1,---, fn) € (U)", B> P1, we have that

/ 2 (log |z)) 2Bl [Vl + B ]?)da
< / el (22w + 2|divf)? + B | de. (2.5)

In addition to Carleman estimates, we also need the following Cacciop-
poli’s type inequality.



Lemma 2.3 Let u € (H._(Q))" be a solution of (1.1). Then for any 0 <

az < ay < ag < ayq such that By, C Q and |agr| < 1, we have

/ V02 + |20 + |22 Vul2de < 00/ uffdz (2.6)
ar1r<|z|<asr

azr<|z|<asr
where the constant Cy is independent of r and u. Here v is defined in (2.2).

The proof of Lemma 2.3 will be given in the next section. Here we would
like to outline how to proceed the proofs of main theorems. The detailed
arguments can be found in [5] or [6]. Firstly, applying (2.5) to w = u,
f = |z]a(x)v and using (2.2), we have that

[ ttog al) (Bl TuP + 5| "ul?)da
n . 2
N /80%|$| [(J2*Au + [|div(|zla(z)v))” + || |za(z)v]*]de. (2.7)
Next, applying (2.4) to w = v, f = |z|G and using (2.3), we get that

/ 2 (log ]2 (Bl Vol + B> "o ]?)de
< / S (oglal) o2 (12 Av + [2ldiv(12|G))? + B2)|2] G2 dx.
(2.8)

Finally, adding #x(2.7) and (2.8) together and using (2.6), we can prove
Theorem 1.1 and 1.2 as in [5] and [6].

3 Proof of Lemma 2.3

Define by = (a1 + a3)/2 and by = (az + a4)/2. Let X = Byp\Bay, ¥ =
By, \Bp,r and Z = By, \ By, . Let {(x) € C§°(R™) satisfy 0 < ¢(z) < 1 and

07 ‘IZ}'| S asr,
E(x) =19 1, bir < |x| < byr, (3.1)
0, |z|> ayr



From (1.2), we have that
0 = — /[div(,u(Vu + (Vu)h)) + V(Mdivu) + pu] - (€*a)dx

= / Z [)\5”5]@[ + M(ézléjk + 5ik5j1)]8xluk8xj (€2ﬂl)dl' - /p§2|U|2dZIT

ijkl=1

_ / €23 NGy + 1(0ud s + 0ux00)] 0y 1k, Tl

ijki=1
+/ Z Do, (E2)[N0i30m + (8050 + 03k0 1) O upUsd — /p§2|u|2d:v
ijki=1

= L+ 1, (3.2)

where

ij=1 ij=1

and

I = / Z Do, (E3)[N0ij 0k + (8855 + 0i60)] O upida — /p§2|u|2dat.

igkl=1

Observe that
_ 2 50 _ 2 50 ) _
= — [ 0.,[6(2p — 5)]8miujuidx — [ &2u— 5)8miwjujuidx
= — [l Plonumdr+ [ 0,162 D))on,uuids



It follows from (3.3) that

I, = /52 ZA@ w0, + Z 2#— 20 (D10, 1)) e

ij=1 ij=1
/ Zg (DB Ty — Dy, i) d
ij=1
/ 25 O ;O Uidx
ij=1
50 2 & _
_ / (2t A= D) ;(@;juj@xiui)dx
/Zfz u— — 8xju,8xju, O, U0, U;)dw
ij=1

/Zg 8%?%8 uzd'r + 137 (34)

ij=1

where

L=y [ onléeu— D0, usm 0, €20~ Doy,

ij=1

Since

/Zg M__ (Or i, Ui — O, 10y, ;) dx

ij=1
/Zg \8%112 8xiuj|2dx,
ij=1
we obtain that
I, > —/|§Vu| dx + Is. (3.5)

Combining (3.2) and (3.5), we have that
/ |Vul?dz < / |EVu|*dr < C'l/ |z| 2 |u|?d,
Y be b

7



which implies

/\x|2|Vu\2dx§CQ/ luf2dz. (3.6)
Y X

Here and below all constants C, Cs, - - - depend on dy, M.
To estimate Vv, we define x(z) € C§°(R™) satisfy 0 < x(z) <1 and

0,
x(r) =< 1,
0,

By (2.3), we derive that

/|X (z)Vv|*dx

|I| S bl'f’,
arr < |z| < agr,
|z| > bor.

= /Vv -V (x*0)dz — Q/va -9Vyxdx

VAN

IN

|/(divG)X2vd:)3| + 2/|XVU -0V x|dx

|/(divG)X21}d:)3|+i/|va|2dx+Cg/ |z| 2 |v|2dz
Y

1
< C'4/ |Vu\2dx+04/ |u|2d:c+—/|xvv\2d:c+04/ |z 2 |v|*dz
Y Y 2 Y

VAN

05/ |x|_2|Vu|2d:)3+C'4/ |u|2dx—|—%/|xvv|2dz. (3.7)
Y Y

Therefore, we get from (3.7) that

/|Vv|2dx§205/ |z|_2|Vu|2d:E+204/ lu|*dx
z Y Y

and hence

/|x\4|w|2dxgcﬁ/ |x\2|Vu\2dx+CG/ i ultde. (3.8)
7 Y Y

Putting together K'x(3.6) and (3.8), we have that

K/ |x\2|vu\2dx+/ 2| Vol2de
Y Z

< KOQ/ |u|2d:)3—|—06/|x|2|Vu|2d:L"—l—Cﬁ/|x|4|u|2d93. (3.9)
X Y Y

8



Choosing K = 2Cj in (3.9) yields

/|x| |v| d:)H—/ || |Vu|2d:)3+/ |z|*| V|2 dx

C’7/ |z|? |Vu\2dx+07/ 2| | Vu|*dx
Y z

S CS/ |U|2dl’,
X

IA

The proof is now complete. g
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