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Abstract. We show that fixed energy scattering measurements for the
magnetic Schrödinger operator uniquely determine the magnetic field
and electric potential in dimensions n ≥ 3. The magnetic potential, its
first derivatives, and the electric potential are assumed to be exponen-
tially decaying. This improves an earlier result of Eskin and Ralston [4]
which considered potentials with many derivatives. The proof is close to
arguments in inverse boundary problems, and is based on constructing
complex geometrical optics solutions to the Schrödinger equation via a
pseudodifferential conjugation argument.

1. Introduction

This paper concerns inverse scattering problems at a fixed energy for the
magnetic Schrödinger operator, defined by

H =
n∑
j=1

(Dj +Aj)2 + V

where A : Rn → Rn and V : Rn → R are the magnetic and electric
potentials, respectively. We will assume that n ≥ 3 and that the potentials
are exponentially decaying. The precise condition will be

(1.1) A ∈ e−γ0〈x〉W 1,∞(Rn;Rn), V ∈ e−γ0〈x〉L∞(Rn;R).

Here γ0 > 0, 〈x〉 = (1 + |x|2)1/2, Dj = −i∂/∂xj , and we use the notation
aX = {af ; f ∈ X} for a positive function a and a function space X.

The main result states that if the scattering matrices for two sets of expo-
nentially decaying coefficients coincide at a fixed energy, then the magnetic
fields and electric potentials have to be the same. The magnetic field that
corresponds to a potential A is given by the 2-form dA, defined by

dA =
n∑

j,k=1

(
∂Ak
∂xj

− ∂Aj
∂xk

)
dxj ∧ dxk.

See Section 2 for the precise definition of the scattering matrix.

Theorem 1.1. Suppose A, V and A′, V ′ satisfy (1.1), and let Σλ and Σ′
λ

be the corresponding scattering matrices. If Σλ = Σ′
λ for some fixed λ > 0,

then dA ≡ dA′ and V ≡ V ′.
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We now describe earlier results on the problem. In dimension n ≥ 3 and in
the case of no magnetic potential and a compactly supported electric poten-
tial (that is, A ≡ 0 and V ∈ L∞c ), uniqueness for the fixed energy scattering
problem was proven in [12], [15], [18]. In the earlier paper [17] this was
done for small potentials. For compactly supported potentials, knowledge
of the scattering amplitude at fixed energy is equivalent to knowing the
Dirichlet-to-Neumann map for the Schrödinger equation measured on the
boundary of a large ball containing the support of the potential (see [26] for
an account). Then the uniqueness result of Sylvester-Uhlmann [24] for the
Dirichlet-to-Neumann map, based on complex geometrical optics solutions,
implies uniqueness at a fixed energy for compactly supported potentials.
Melrose [11] suggested a related proof that uses the density of products
of scattering solutions. The fixed energy result was extended by Novikov
to the case of exponentially decaying potentials [16]. Another proof using
arguments similar to the ones used for studying the Dirichlet-to-Neumann
map was given in [27]. We note that exponential decay is a natural assump-
tion given the counterexamples to uniqueness for inverse scattering at fixed
energy for Schwartz potentials due to Grinevich and Novikov [6].

The fixed energy result for compactly supported potentials in the two
dimensional case follows from the corresponding uniqueness result for the
Dirichlet-to-Neumann map of Bukhgeim [2].

For the magnetic Schrödinger equation with smooth magnetic and electric
potentials with n ≥ 3, it was shown in [13] that the Dirichlet-to-Neumann
map measured on the boundary of any domain determines uniquely the mag-
netic field and electric potential. The smoothness assumptions were relaxed
in [25], [20], [21]. These results imply the corresponding uniqueness theorem
for the fixed energy scattering problem for compactly supported potentials,
see [5] for this reduction in the magnetic case. Uniqueness for exponentially
decaying potentials with A ∈ Cn+5 and V ∈ Cn+4 was proved in [4] based
on a method involving integral equations. A connection between the inte-
gral equations method and complex geometrical optics solutions is given in
[23]. We also mention the work [9] which studies inverse scattering for Dirac
operators, and [28], [29] which consider fixed energy inverse scattering for
short range potentials having regular behavior at infinity.

In this paper, the general outline for proving the uniqueness result is the
same as in [11] and [27] and consists of the following steps:

1. The scattering matrices coincide at a fixed energy. Thus one obtains,
by using a version of Green’s theorem at infinity, an integral iden-
tity relating the difference of potentials with products of scattering
solutions of the Schrödinger equation.

2. The scattering solutions are dense in the space of all solutions with
sufficiently small exponential growth, allowing to use such solutions
in the integral identity.

3. Finally, one employs an analytic Fredholm argument to pass from
solutions with small exponential growth to the complex geometrical
optics solutions which may grow very rapidly. These solutions can
be used to show that the coefficients are uniquely determined.
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The arguments for achieving Steps 1 and 2 above are very close to [27],
except that we have used the Agmon-Hörmander spaces B and B∗ to obtain
more precise statements. However, the construction of suitable complex ge-
ometrical optics solutions is considerably more difficult in the magnetic case.
This part involves the global version, established in [21] for compactly sup-
ported coefficients, of the pseudodifferential conjugation argument in [14].
We note that a similar pseudodifferential conjugation also appears in [4]. It
is shown in Section 3 that the method in [21] can be extended to coefficients
satisfying short range conditions, and we give a rather precise construction
of complex geometrical optics solutions in this case.

The structure of the paper is as follows. Section 1 is the introduction,
and Section 2 contains well-known results for the direct scattering problem.
However, since we could not find precise references for all results in the
present setting, we give a rather careful account based on the exposition in
[7]. In Section 3 we present the semiclassical pseudodifferential conjugation
approach and analogs of the Sylvester-Uhlmann estimates [24] which allow
to construct complex geometrical optics solutions for short range coefficients.
The analytic Fredholm argument required to go from solutions with small
exponential growth to complex geometrical optics solutions is presented in
Section 4, and the uniqueness result, Theorem 1.1, is proved in Section 5.

Acknowledgements. L.P. and M.S. are partly supported by the Academy
of Finland, and G.U. is supported in part by NSF and a Walker Family
Endowed Professorship.

2. Preliminaries

In this section we recall some basic results in scattering theory related
to the resolvent and scattering matrix for H. To obtain precise statements,
the results will be formulated in terms of the Agmon-Hörmander spaces B
and B∗. We refer to [7, Chapter XIV] for more details on this approach.

2.1. Function spaces. The space B (see [7, Section 14.1]) is the set of
those u ∈ L2(Rn) for which the norm

‖u‖B =
∞∑
j=1

(2j−1

∫
Xj

|u|2 dx)1/2

is finite. Here X1 = {|x| < 1} and Xj = {2j−2 < |x| < 2j−1} for j ≥ 2. This
is a Banach space whose dual B∗ consists of all u ∈ L2

loc(R
n) such that

‖u‖B∗ = sup
R>1

1
R

∫
|x|<R

|u|2 dx <∞.

The set C∞
c (Rn) is dense in B but not in B∗. The closure in B∗ is denoted

by B̊∗, and u ∈ B∗ belongs to B̊∗ iff

lim
R→∞

1
R

∫
|x|<R

|u|2 dx = 0.



INVERSE SCATTERING FOR THE MAGNETIC SCHRÖDINGER OPERATOR 4

We will also need the Sobolev space variant B∗
2 of B∗, defined via the norm

‖u‖B∗2 =
∑
|α|≤2

‖Dαu‖B∗ .

Let L2
δ and Hs

δ be the weighted L2 and Sobolev spaces in Rn with norms

‖u‖L2
δ

= ‖〈x〉δu‖L2 , ‖u‖Hs
δ

= ‖〈x〉δu‖Hs .

Then one has L2
δ ⊆ B ⊆ L2

1/2 and L2
−1/2 ⊆ B∗ ⊆ L2

−δ for any δ > 1/2.
IfX is a function space and a is a smooth positive function, we write aX =

{af ; f ∈ X} and ‖u‖aX = ‖a−1u‖X . Note that eγ〈x〉Hk has equivalent
norm u 7→

∑
|α|≤k‖e−γ〈x〉∂αu‖L2 . For u, v ∈ L2(Rn) we use the sesquilinear

pairing

(u|v) =
∫
Rn

uv̄ dx,

and we continue to use this notation if u is in some function space and v is
in its dual.

If λ > 0 we will consider the sphere Mλ = {|ξ| =
√
λ} with Euclidean

surface measure dSλ. The corresponding L2 space is L2(Mλ) = L2(Mλ, dSλ),
and of course L2(Sn−1) = L2(M1).

The Fourier transform on functions in Rn is defined by

f̂(ξ) = Ff(ξ) =
∫
Rn

e−ix·ξf(x) dx,

and the inverse Fourier transform is

f(x) = F−1f̂(x) = (2π)−n
∫
Rn

eix·ξ f̂(ξ) dξ.

2.2. Resolvents. Let H0 = −∆ be the free Schrödinger operator in Rn,
and write R0(λ) = (H0 − λ)−1 for the free resolvent if λ ∈ C r [0,∞). The
limits R0(λ± i0) as λ approaches the positive real axis are well defined and
have the following properties.

Definition. We write
u ∼ u0

if u has the same asymptotics as u0 at infinity, meaning that u = ψ(r)u0+u1

for some u1 ∈ B̊∗. Here ψ ∈ C∞(R) is a fixed function with ψ(t) = 0 for
|t| ≤ 1 and ψ(t) = 1 for |t| ≥ 2, and we write x = rθ with r ≥ 0 and
θ ∈ Sn−1.

Proposition 2.1. If λ > 0, then R0(λ± i0) is bounded B → B∗
2 and

(2.1) R0(λ± i0)f ∼ cλ(±1)
n+1

2 r−
n−1

2 e±i
√
λrf̂(±

√
λθ)

where cλ = (
√
λ/2πi)

n−3
2 /4π and (−1)

n+1
2 = in+1. If u ∈ B∗ is such that

(H0 − λ)u = f ∈ B, then

u = u± +R0(λ∓ i0)f

where u± = F−1{v± dSλ} for some v± ∈ L2(Mλ).
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Proof. The boundedness follows from [7, Section 14.3]. If f ∈ B choose
fj ∈ C∞

c (Rn) with fj → f in B. Then by [11, Section 1.7]

R0(λ± i0)fj = cλ(±1)
n+1

2 ψ(r)r−
n−1

2 e±i
√
λrf̂j(±

√
λθ) + vj

where vj is smooth and |vj(rθ)| ≤ Cr−
n−3

2 , so that vj ∈ B̊∗. Since R0(λ±i0)
is bounded B → B∗, and since the map

f 7→ f̂ |Mλ

is bounded B → L2(Mλ) by [7, Theorem 14.1.1], we have that vj converges
to some v ∈ B̊∗ as j →∞. This proves (2.1), and the last part follows from
[7, Theorem 14.3.8]. �

An operator

V (x,D) =
∑
|α|≤1

aα(x)Dα,

where aα ∈ L2
loc(R

n), is said to be short range if V (x,D) (initially defined
on C∞

c (Rn)) extends to a compact operator from B∗
2 into B. A sufficient

condition for V (x,D) to be short range is that there exists a decreasing
function M : [0,∞) → [0,∞) with

∫∞
0 M(t) dt <∞, such that

|aα(x)| ≤M(|x|), for all |α| ≤ 1.

We will assume that V (x,D) is short range and also symmetric, that is,

(V (x,D)u|v) = (u|V (x,D)v), u, v ∈ C∞
c (Rn).

For symmetric short range V the last identity remains true for u, v ∈ B∗
2

(see [7, Section 14.4]). Any such V (x,D) must be of the magnetic form

V (x,D) = 2A ·D +A2 +D ·A+ V with A(x), V (x) real.

The perturbed Hamiltonian is given by

H = H0 + V (x,D).

If V (x,D) is symmetric and short range then H, with domain S (Rn), is
essentially self-adjoint on L2(Rn) [7, Theorem 14.4.4].

The resolvent of H on the real axis is given by

R(λ± i0) = R0(λ± i0)(I + V (x,D)R0(λ± i0))−1, λ > 0, λ /∈ Λ.

Here Λ = {λ ∈ R r {0} ; (H − λ)u = 0 for some u ∈ L2, u 6= 0} is the set
of eigenvalues. By [7, Section 14.5] the operator I + V (x,D)R0(λ ± i0) is
invertible on B when λ > 0 is not an eigenvalue, and the resolvent maps B
to B∗

2 . If

(2.2) |aα(x)| ≤ C〈x〉−1, |α| ≤ 1,

then the fact that any eigenfunction is rapidly decreasing [7, Theorem 14.5.5]
and unique continuation at infinity [8, Theorem 5.2] show that there are no
positive eigenvalues and the resolvent is defined for all λ > 0.
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2.3. Scattering matrix. Let V (x,D) be a symmetric short range pertur-
bation. By [7, Theorem 14.4.6] the wave operators, defined by

W±u = lim
t→±∞

eitHe−itH0u, u ∈ L2(Rn),

exist as strong limits and are isometric operators intertwining the closures
of H and H0. Their range is the projection of L2 onto continuous spectrum,
and the scattering operator

S = W ∗
+W−

is a unitary operator on L2(Rn) [7, Theorem 14.6.5].
Let λ > 0. It follows from [7, Theorem 14.6.8] that there exists a unitary

map Σλ on L2(Mλ, dSλ/2
√
λ) such that for f ∈ L2(Rn) one has

(FSF−1)f |Mλ
= Σλ(f |Mλ

)

for almost every λ. The map Σλ is the scattering matrix at energy λ.
It will be convenient to describe the scattering matrix in terms of the

Poisson operators. The free Poisson operator acts on functions g ∈ L2(Mλ)
by

P0(λ)g(x) =
i

(2π)n−1

∫
Mλ

eix·ξg(ξ)
dSλ(ξ)
2
√
λ
, λ > 0,

and the (outgoing) Poisson operator for H is defined by

P (λ)g = P0(λ)g −R(λ+ i0)(V (x,D)P0(λ)g).

These operators map L2(Mλ) continuously into B∗
2 by [7, Theorem 7.1.26]

and the above discussion, and one has (H0−λ)P0(λ)g = (H−λ)P (λ)g = 0.
Stationary phase [7, Theorem 7.7.14] and an approximation argument imply
the asymptotics (with cλ given in Proposition 2.1)

(2.3) P0(λ)g ∼ cλr
−n−1

2

[
ei
√
λrg(

√
λθ) + in−1e−i

√
λrg(−

√
λθ)

]
.

Proposition 2.2. If g ∈ L2(Mλ) then

(2.4) P (λ)g ∼ cλr
−n−1

2

[
ei
√
λr(Σλg)(

√
λθ) + in−1e−i

√
λrg(−

√
λθ)

]
.

Proof. Let g ∈ L2(Mλ), and define v− = g. As in [7, Theorem 14.6.8] define

(2.5) u− = F−1{v−δ0(|ξ|2 − λ)} =
1

2πi
P0(λ)g.

Here by [7, Theorem 6.1.5] one has δ0(|ξ|2 − λ) = dSλ/2
√
λ.

Let u ∈ B∗
2 satisfy u = u− − R0(λ + i0)V u. Such a function u exists by

the proof of [7, Theorem 14.6.8], and then

u = u− −R0(λ+ i0)V u = u− −R(λ+ i0)V (I +R0(λ+ i0)V )u

=
1

2πi
P (λ)g.(2.6)

Define u+ = u + R0(λ − i0)V u. Since u+ ∈ B∗ and (H0 − λ)u+ = 0,
Proposition 2.1 shows that u+ = F−1(v+δ0(|ξ|2−λ)} for some v+ in L2(Mλ).
By [7, Theorem 14.6.8], one has

Σλv− = v+
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and therefore

(2.7) u+ =
1

2πi
P0(λ)Σλg.

Combining (2.6) with the representations of u in terms of u− and u+ and
using (2.5) and (2.7), we obtain

P (λ)g = P0(λ)g −R0(λ+ i0)w,

P (λ)g = P0(λ)Σλg −R0(λ− i0)w̃

for some w, w̃ ∈ B. The result follows from (2.1), (2.3), and the uniqueness
of such asymptotics. �

The next result gives an analog of Green’s theorem for this setting. This
is the ”boundary pairing” appearing in [11], [27].

Proposition 2.3. Assume u, v ∈ B∗ and (H0 − λ)u ∈ B, (H0 − λ)v ∈ B. If
u and v have the asymptotics

u ∼ r−
n−1

2

[
ei
√
λrg+(θ) + e−i

√
λrg−(θ)

]
,(2.8)

v ∼ r−
n−1

2

[
ei
√
λrh+(θ) + e−i

√
λrh−(θ)

]
(2.9)

for some g±, h± ∈ L2(Sn−1), then

(u|(H0 − λ)v)− ((H0 − λ)u|v) = 2i
√
λ [(g+|h+)Sn−1 − (g−|h−)Sn−1 ] .

Here (g|h)Sn−1 =
∫
Sn−1 gh̄ dS.

Proof. Write f = (H0 − λ)u, and let u = F−1{v+ dSλ}+R0(λ− i0)f as in
Proposition 2.1. Choose v+j ∈ C∞(Mλ) and fj ∈ C∞

c (Rn) with v+j → v+
in L2(Mλ) and fj → f in B, and write uj = F−1{v+j dSλ}+R0(λ− i0)fj .
Then uj → u in B∗ and (H0 − λ)uj → (H0 − λ)u in B. By (2.1) and (2.3)

uj = ψ(r)r−
n−1

2

[
ei
√
λrg+j(θ) + e−i

√
λrg−j(θ)

]
+ wj

where g±j ∈ C∞(Sn−1) converge to g± in L2(Sn−1), and wj are smooth
functions with |wj | ≤ Cr−

n−3
2 converging to some w in B̊∗. In fact, since

fj and g±j are smooth one also has the estimate |∇wj | ≤ Cr−
n−3

2 (see [11,
Sections 1.3 and 1.7]).

Performing a similar approximation for v, we integrate by parts in a ball
B(0, R) to obtain

(uj |(H0−λ)vj)B(0,R)−((H0−λ)uj |vj)B(0,R) =
∫
∂B(0,R)

(
∂uj
∂ν

v̄j − uj
∂v̄j
∂ν

)
dS.

Here
∂uj
∂ν

(rθ) = i
√
λψ(r)r−

n−1
2

[
ei
√
λrg+j(θ)− e−i

√
λrg−j(θ)

]
+ w̃j

with |w̃j | ≤ Cr−
n−3

2 , and similarly for vj . Inserting the asymptotics in the
boundary term and letting R→∞ gives

(uj |(H0 − λ)vj)− ((H0 − λ)uj |vj) = 2i
√
λ [(g+j |h+j)Sn−1 − (g−j |h−j)Sn−1 ] .

The result follows upon taking j →∞. �
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The last result here concerns the density of the scattering solutions P (λ)g
in the set of all exponentially growing solutions, as in [27]. The result is valid
for exponentially decaying coefficients.

Proposition 2.4. Let V (x,D) be a symmetric short range perturbation
with

|aα(x)| ≤ Ce−γ0〈x〉, |α| ≤ 1,

for some γ0 > 0. Let 0 < γ < γ0. Given any w ∈ eγ〈x〉L2 with (H−λ)w = 0,
there exist gj ∈ L2(Mλ) such that P (λ)gj → w in eγ0〈x〉L2.

Proof. Suppose f ∈ e−γ0〈x〉L2 and

(u|f) = 0

for any u = P (λ)g where g ∈ L2(Mλ). Let w ∈ eγ〈x〉L2 with (H − λ)w = 0.
We need to show that (w|f) = 0, which will imply that w is in the closure
of the subspace {P (λ)g ; g ∈ L2(Mλ)} of eγ0〈x〉L2 as required.

Write v = R(λ − i0)f , so that v = R0(λ − i0)f ′ where f ′ is the solution
of (I + V R0(λ − i0))f ′ = f . The operator V R0(λ − i0) maps e−γ

′〈x〉L2

compactly into itself for any γ′ < γ0, which shows that f ′ ∈ e−γ′〈x〉L2 for all
such γ′.

For g ∈ L2(Mλ), let u = P (λ)g. Then

0 = (u|f) = (u|(H − λ)v) = (u|(H − λ)v)− ((H − λ)u|v).

Since V is symmetric we may replace H by H0 in the last part, and then
Proposition 2.3 implies

(g+|h+)Sn−1 − (g−|h−)Sn−1 = 0

if g± and h± are as in (2.8) and (2.9). But h+ = 0 by (2.1), and since g was
arbitrary we obtain from (2.4) and (2.1) that h− = f̂ ′(−

√
λ · ) = 0. Now

Lemma 2.5 below shows that v ∈ e−γ′〈x〉H2 for any γ′ < γ0.
Choose vj ∈ C∞

c (Rn) with vj → v in e−γ〈x〉H2. Then

(w|f) = (w|(H − λ)v) = lim
j→∞

(w|(H − λ)vj) = lim
j→∞

((H − λ)w|vj) = 0

as required. �

Lemma 2.5. If f ∈ e−γ〈x〉L2 for γ < γ0, and if f̂ |Mλ
= 0, then one has

R0(λ± i0)f ∈ e−γ〈x〉H2 for any γ < γ0.

Proof. Let U = {z ∈ Cn ; |Im z| < γ0}. Then the Paley-Wiener theorem for
exponentially decaying functions, [19, Theorem IX.13], shows that f̂ extends
as an analytic function in U with

(2.10) sup
|η|≤γ

‖f̂( · + iη)‖L2 <∞ for all γ < γ0.

Define MC
λ = {z ∈ U ; z · z = λ}. This is a complex submanifold of U of

complex codimension one, and since f̂ vanishes on the real zeros of z · z− λ
we have

f̂(z) = (z · z − λ)g(z), z ∈ U,
for some function g analytic in U .
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To see the last claim, let z0 be any point in MC
λ ∩ Rn. Then some

coordinate, say z0
n, is nonzero and the map ϕ(z′, zn) = (z′, z · z − λ) is a

biholomorphic diffeomorphism defined on a neighborhood W of z0 in U by
the inverse function theorem. Since f̂ ◦ϕ−1 vanishes on all real points (ξ′, 0)
in ϕ(W ), it vanishes on all points (z′, 0) in ϕ(W ) and thus f̂ vanishes on
MC
λ ∩W . Now f̂ is analytic on the connected manifold MC

λ , so it vanishes
on this manifold. Using a corresponding biholomorphic map ϕ near any
point of MC

λ shows that f̂/(z · z − λ) is locally bounded in U rMC
λ , so the

required function g exists by the removable singularities theorem in several
complex variables.

Let |α| ≤ 2. The fact that f̂(ξ) vanishes on Mλ implies

(DαR0(λ± i0)f )̂ (ξ) =
ξα

ξ · ξ − λ
f̂(ξ), ξ ∈ Rn.

We define
hα(z) = zαg(z) =

zα

z · z − λ
f̂(z), z ∈ U.

This is an analytic function in U , hence bounded on compact subsets of U ,
and if |Im z| ≤ γ < γ0 then zα/(z · z − λ) is bounded for |Re z| large. By
the estimates (2.10) we see hα satisfies similar estimates. The result now
follows from [19, Theorem IX.13]. �

2.4. Magnetic Schrödinger operator. We now specialize to the case of
the magnetic Schrödinger operator with exponentially decaying coefficients.
More precisely, suppose that A and V satisfy (1.1), and let H be the corre-
sponding magnetic Schrödinger operator. Clearly H = H0 + V (x,D) where

V (x,D) = 2A ·D + Ṽ , Ṽ (x) = A2 +D ·A+ V (x).

Thus V (x,D) is a symmetric short range perturbation satisfying (2.2), so
H has no positive eigenvalues and the resolvent R(λ± i0) is well defined for
all λ > 0.

Next we show that the scattering matrix for H is preserved under gauge
transformations.

Lemma 2.6. If α ∈ e−γ0〈x〉W 2,∞(Rn;R), then the scattering matrices for
the coefficients (A, V ) and (A+∇α, V ) are equal.

Proof. We will use Proposition 2.2. Writing H ′ for the Schrödinger operator
with coefficients (A+∇α, V ), we have

H ′ = e−iαHeiα.

Then u′ = e−iαP (λ)g with g ∈ L2(Mλ) solves (H ′ − λ)u′ = 0, and by (2.4)

u′ = P (λ)g + (e−iα − 1)P (λ)g

∼ cλr
−n−1

2

[
ei
√
λr(Σλg)(

√
λθ) + in−1e−i

√
λrg(−

√
λθ)

]
.

We have (H ′ − λ)(u′ − P ′(λ)g) = 0, and by (2.4) again

u′ − P ′(λ)g ∼ cλr
−n−1

2 ei
√
λr

[
(Σλg)(

√
λθ)− (Σ′

λg)(
√
λθ)

]
.

Then [7, Lemma 14.6.6] and (2.1), (2.3) show that Σλg = Σ′
λg. �
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Let now H ′ be another magnetic Schrödinger operator with coefficients
A′ and V ′ satisfying (1.1). The following orthogonality identity for expo-
nentially growing solutions will be used in recovering the coefficients.

Lemma 2.7. If Σλ = Σ′
λ, then

((2A ·D + Ṽ )w|w′)− (w|(2A′ ·D + Ṽ ′)w′) = 0

for all w,w′ ∈ eγ〈x〉H1 with (H − λ)w = 0, (H ′ − λ)w′ = 0, and γ < γ0
2 .

Further, if A = A′, then

(V w|w′)− (w|V ′w′) = 0

for all such w, w′.

Proof. Let g, g′ ∈ L2(Mλ) and choose u = P (λ)g and u′ = P ′(λ)g′ where
g′ = (Σ′

λ)
∗g̃′. The functions u and u′ satisfy the conditions of Proposition

2.3, and we obtain by (2.4) and the unitarity of Σ′
λ that

(V (x,D)u|u′)− (u|V ′(x,D)u′) = 2ic2λ
√
λ((Σλ − Σ′

λ)g(
√
λ · )|g̃′(

√
λ · ))Sn−1 .

Therefore

(2.11) ((2A ·D + Ṽ )u|u′)− (u|(2A′ ·D + Ṽ ′)u′) = 0.

The density result in Proposition 2.4 implies that we can find scattering
solutions uj and u′j so that uj → w and u′j → w′ in eγ〈x〉L2. Then by (1.1)
(2A ·D+ Ṽ )uj → (2A ·D+ Ṽ )w in e−γ〈x〉H−1 and similarly for w′, and we
obtain the first identity by taking suitable limits in (2.11).

If A = A′, (2.11) gives upon integrating by parts in a large ball and using
the exponential decay of A that

(V u|u′)− (u|V ′u′) = 0

for all scattering solutions u and u′. Approximation yields the same identity
for w and w′. �

Finally, we record a result which will guarantee the existence of an ap-
propriate gauge transformation.

Lemma 2.8. Let A ∈ e−γ〈x〉W 1,∞(Rn;Rn) with dA = 0. Then A = ∇α
for some α ∈ e−γ〈x〉W 2,∞(Rn;R).

Proof. We define

α(x) =
∫ 1

0
x ·A(tx) dt.

Then α is Lipschitz, and ∇α = A follows by a direct computation using the
fact that dA = 0. If r > 0 and ω ∈ Sn−1, we have

α(rω) =
∫ r

0
ω ·A(tω) dt =

∫
[0,rω]

A

where the last integral is the integral of a 1-form over the line segment from
0 to rω. Since dA = 0, such an integral over a closed curve vanishes by the
Stokes theorem, and we have

lim
r→∞

(α(rω1)− α(rω2)) = lim
r→∞

∫
[rω2,rω1]

A = 0
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for any ω1, ω2 ∈ Sn−1. Therefore, limr→∞ α(rω) is a constant independent
of ω, and by substracting a constant from α we may assume that this limit
is 0. We may now write

α(rω) = −
∫ ∞

r
ω ·A(tω) dt,

and an easy computation gives that α ∈ e−γ〈x〉W 2,∞. �

3. Complex geometrical optics solutions

Instead of the scattering solutions to (H − λ)u = 0 considered in the
previous section, we want use use solutions with ”complex frequency” to
recover the coefficients from the scattering matrix. These will be the complex
geometrical optics solutions introduced by Sylvester-Uhlmann [24], based on
earlier work of Calderón [1].

In this section we assume that A and V satisfy

A ∈ 〈x〉−1−εCb(Rn;Cn), ∇ ·A ∈ 〈x〉−1Ln,(3.1)
V ∈ 〈x〉−1Ln(Rn;C),(3.2)

for some ε > 0 (we write Cb for the bounded continuous functions). For the
main result we also assume

(3.3) ‖〈x〉A‖L2 + ‖〈x〉Ṽ ‖L2 <∞.

Here and below we will write

Ṽ = A2 +D ·A+ V.

We consider solutions to (H − λ)u = 0 of the form

(3.4) uρ = eiρ·x(1 + vρ)

where ρ ∈ Cn satisfies ρ · ρ = λ, and vρ ∈ H1
δ where −1 < δ < 0. The main

point is that when |ρ| is sufficiently large, these complex geometrical optics
solutions exist and the asymptotic behaviour of vρ as |ρ| → ∞ is known.

We introduce some notation. Consider the conjugated operator

(3.5) e−iρ·x(H − λ)eiρ·x = Pρ + 2A ·Dρ + Ṽ

where
Pρ = −∆ + 2ρ ·D, Dρ = D + ρ.

The operator Pρ has a right inverse Gρ, whose mapping properties are well
known.

Proposition 3.1. Let −1 < δ < 0, and let ρ ∈ Cn with ρ · ρ = λ and
|ρ| ≥ 1. Then for any f ∈ L2

δ+1 the equation Pρu = f has a unique solution
u ∈ L2

δ . The solution operator Gρ : f 7→ u satisfies

‖∂αGρf‖L2
δ
≤ C|ρ||α|−1‖f‖L2

δ+1

whenever |α| ≤ 2.

Proof. This is proved in [24] in the case α = 0 and λ = 0, but the same
proof works for λ 6= 0. See [21] for the simple extension to |α| ≤ 2. �
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We will write
Kρ = (2A ·Dρ + Ṽ )Gρ.

The following is the main result. The formulation may look complicated,
but the result is stated so that one only needs to know the statement of this
proposition in the later sections.

Proposition 3.2. Let −1 < δ < 0 and suppose ρ ∈ Cn with ρ · ρ = λ > 0.
Assume (3.1) – (3.3). If |ρ| is sufficiently large, the equation (H − λ)u = 0
has a unique solution u = uρ of the form (3.4) where vρ ∈ H1

δ . In fact

(3.6) vρ = Gρ(I +Kρ)−1(−2A · ρ− Ṽ ),

where I+Kρ is bounded and invertible on L2
δ+1, and the norm of (I+Kρ)−1

is uniformly bounded for |ρ| large. Further, if

(3.7) ρ = ρ(h) = h−1(ν1 + i(1− h2λ)1/2ν2)

where ν1, ν2 ∈ Rn are orthogonal unit vectors and h is small, and if

(3.8) φ(x) = − 1
2π

∫
R2

1
y1 + iy2

(ν1 + iν2) ·A(x− y1ν1 − y2ν2) dy1 dy2,

then one has the asymptotics 1 + vρ = aρ + rρ where

‖aρ‖L∞ = O(1), h‖∇aρ‖L∞ = o(1), aρ → eiφ pointwise,(3.9)
‖rρ‖L2

δ
+ h‖∇rρ‖L2

δ
= o(1),(3.10)

as h→ 0.

The rest of this section is devoted to proving Proposition 3.2. Inserting
(3.4) in the equation (H−λ)u = 0, we see that to obtain complex geometrical
optics solutions, it is enough to solve the conjugated equation

(3.11) e−iρ·x(H − λ)eiρ·xvρ = f

for a certain right hand side f . Most of the work will be to establish the
following estimates for this equation.

Proposition 3.3. Let −1 < δ < 0, and suppose ρ ∈ Cn satisfies ρ · ρ = λ.
If (3.1) – (3.2) hold and |ρ| is sufficiently large, then for any f ∈ L2

δ+1 the
equation (3.11) has a unique solution v ∈ H1

δ . Further, v ∈ H2
δ , and

‖∂αv‖L2
δ
≤ C|ρ||α|−1‖f‖L2

δ+1

whenever |α| ≤ 2.

In the case where A ∈ Cc and V ∈ L∞c this was proved in [21] by using
conjugation with semiclassical pseudodifferential operators. The conjuga-
tion method is due to Nakamura and Uhlmann [14] in the context of inverse
boundary value problems, and to Eskin and Ralston [4] in inverse scatter-
ing problems. In [21] the method was extended to yield global solutions in
weighted Sobolev spaces, and to handle nonsmooth coefficients. The proof
involves a smoothing procedure and also a cutoff argument as in Kenig-
Ponce-Vega [10]. The proof of Proposition 3.3 is parallel to that of [21,
Theorem 1.1], except for the modifications needed because of coefficients
which are not compactly supported.
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We use the notation (3.5) and find the solution to (3.11) by a perturbation
argument. We try v = Gρw, so w must satisfy

(I +Kρ)w = f.

We note that Kρ is bounded and compact on L2
δ+1 but it may not be small

in norm. Therefore, one can not directly invert I +Kρ by Neumann series.
Also, a possible Fredholm theory argument might not give the required
uniform norm bound for (I +Kρ)−1 for |ρ| large. To avoid these problems,
we conjugate the original equation by pseudodifferential operators so that
one obtains a norm small perturbation, which can be inverted by Neumann
series.

It will be convenient to switch to semiclassical notation, since this auto-
matically keeps track of the dependence of the norm estimates on |ρ|. Thus,
let h = (1

2(|ρ|2 + λ))−1/2 be the small parameter, and let

P = −h2∆ + 2ρ̂ · hD,
Q = 2A · (hD + ρ̂)

where ρ̂ = hρ. Using ρ ·ρ = λ, there are orthogonal unit vectors ν1, ν2 ∈ Rn

so that
ρ̂ = ν1 + i(1− h2λ)1/2ν2.

Here we assume h small enough so 1− h2λ > 0.
We will use the usual semiclassical symbol classes, see [3].

Definition. If 0 ≤ σ < 1/2 and m ∈ R, we let Smσ be the space of all
functions c(x, ξ) = c(x, ξ;h) where x, ξ ∈ Rn and h ∈ (0, h0], h0 ≤ 1, such
that c is smooth in x and ξ and

|∂αx ∂
β
ξ c(x, ξ)| ≤ Cαβh

−σ|α+β|〈ξ〉m

for all α, β. If c ∈ Smσ we define an operator C = Oph(c) by

Cf(x) = (2π)−n
∫
Rn

eix·ξc(x, hξ)f̂(ξ) dξ.

Note that we use the standard quantization instead of Weyl quantization
in the definition of the operators. We will need the following basic properties.

Proposition 3.4. [3], [21] Let c ∈ Smσ with m ∈ R and 0 ≤ σ < 1/2.
(a) If m = 0 and δ ∈ R then Oph(c) is bounded L2

δ → L2
δ , and there is

a constant M with

‖Oph(c)‖L2
δ→L2

δ
≤M

for 0 < h ≤ h0.
(b) hDxjOph(c) = Oph(c)hDxj + hOph(Dxjc).
(c) If c ∈ Smσ and d ∈ Sm

′
σ then Oph(c)Oph(d) = Oph(r) where r ∈

Sm+m′
σ satisfies for any N

r =
∑
|α|<N

h|α|∂αξ cD
α
xd

α!
+ hN(1−2σ)Sm+m′

σ .
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Also, [Oph(c),Oph(d)] = Oph(s) where s ∈ Sm+m′
σ and

s =
h

i
Hcd+ h2(1−2σ)Sm+m′

σ

where Hc = ∇ξc · ∇x −∇xc · ∇ξ is the Hamilton vector field of c.

Finally, to manage the nonsmooth coefficients, we introduce the standard
mollifier χδ(x) = δ−nχ(x/δ) where χ ∈ C∞

c (Rn), 0 ≤ χ ≤ 1, and
∫
χdx = 1.

Fix σ0 with 0 < σ0 < 1/3, and consider the h-dependent smooth approxi-
mation

A] = A ∗ χδ,

with the specific choice
δ = hσ0 .

We write A[ = A − A], and note the following standard estimates whose
proof is included for completeness.

Lemma 3.5. If 0 < ε0 < ε, then as h→ 0

‖〈x〉1+ε∂αxA]‖L∞ = O(h−σ0|α|), ‖〈x〉1+ε0A[‖L∞ = o(1).

Proof. If f ∈ L1
loc(R

n) and r is a real number we have

〈x〉r∂αx (f ∗ χδ)(x) = δ−|α|
∫
K(x, y)〈y〉rf(y) dy

where K(x, y) = 〈x〉r
〈y〉r δ

−n∂αxχ(x−yδ ). If δ is small enough one sees that

|K(x, y)| ≤ 2|r|δ−n|∂αxχ(x−yδ )|, and∫
|K(x, y)| dx ≤ Cr,α,

∫
|K(x, y)| dy ≤ Cr,α.

Schur’s lemma implies ‖〈x〉r∂αx (f ∗ χδ)‖Lp ≤ Cr,αδ
−|α|‖〈x〉rf‖Lp . This and

(3.1) give the L∞ estimates for A].
For the estimates on A[, we write

〈x〉r(f ∗ χδ − f)(x) = (g ∗ χδ − g)(x) +
∫
K(x, y)g(y) dy

where g = 〈x〉rf and K(x, y) = χδ(x− y)
[ 〈x〉r
〈y〉r − 1

]
. Since

|K(x, y)| ≤ Crδχδ(x− y)

we have from Schur’s lemma that ‖
∫
K( · , y)g(y) dy‖Lp → 0 as δ → 0, for

1 ≤ p ≤ ∞. For A[ it is enough to note that g = 〈x〉1+ε0A is bounded and
uniformly continuous, so gδ − g → 0 in L∞. �

We will use a decomposition Q = Q] + Q[ where Q] = 2A] · (hD + ρ̂)
and Q[ = 2A[ · (hD + ρ̂). Then, we will use pseudodifferential operators
to conjugate away the smooth part Q], and when h is small the nonsmooth
part Q[ will be negligible. We are finally ready to give the pseudodifferential
conjugation argument.
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Proposition 3.6. Given σ with σ0 < σ < 1/3, there exist c, c̃, s ∈ S0
σ and

β > 0 such that

(3.12) (P + hQ])C = C̃P + h1+β〈x〉−1S.

Further, C and C̃ are elliptic, in the sense that c and c̃ are nonvanishing for
small h.

Proof. Suppose c ∈ S0
σ is any symbol. We use Proposition 3.4 and compute

(3.13) (P + hQ])C = CP + hOph(
1
i
Hpc+ 2((ξ + ρ̂) ·A])c)

+ h2Oph(−∆xc+ 2A] ·Dxc).

Here p(ξ) = ξ2 + 2ρ̂ · ξ is the symbol of P , and Hp = 2(ξ + ρ̂) · ∇x is the
Hamilton vector field. The last term is of the form h2−2σOph S0

σ, and since
σ < 1/2 this has order lower than one. Thus, we would like to choose c such
that

(3.14)
1
i
Hpc+ 2((ξ + ρ̂) ·A])c = 0.

This is a Cauchy-Riemann type equation near the zero set

p−1(0) = {ξ ∈ Rn ; |ξ + ν1| = 1, ξ · ν2 = 0}.
Since the principal part P of P + hQ] is elliptic away from the zero set, it
will be sufficient to solve (3.14) near p−1(0), and the ellipticity will take care
of the rest.

Consider a neighborhood of p−1(0),

U = U(δ) = {ξ ∈ Rn ; 1− δ < |ξ + ν1| < 1 + δ, |ξ · ν2| < δ}
where δ = 1

200 . We introduce frequency cutoffs ψ,ψ1 ∈ C∞
c (U(δ)) with

ψ1(ξ) = 1 on U(δ/2) and ψ(ξ) = 1 near supp(ψ1), and also spatial cutoffs
χ, χ1 ∈ C∞

c (B(0, 1)) with χ1(x) = 1 for |x| ≤ 1/2, and χ(x) = 1 near
supp(χ1). The spatial cutoffs will actually be adapted to a ballB = B(0,M),
where M = h−θ is a large parameter depending on h, and θ = σ − σ0 > 0.

The symbol c is chosen as c = eiχ1(hθx)φ, where φ is the solution provided
by Lemma 3.8 below (with γ1(ξ) = ξ + ν1 and γ2(ξ) = (1 − h2λ)1/2ν2) to
the equation

(3.15) (ξ + ρ̂) · ∇xφ(x, ξ) = −ψ(ξ)χ(hθx)(ξ + ρ̂) ·A](x), (x, ξ) ∈ B × U.

The lemma also implies the norm estimates

|∂αx ∂
β
ξ φ(x, ξ)| ≤ Cαβε

( ∑
|γ|≤|α+β|

‖〈x〉1+ε∂γxA]‖L∞
)
h−θ|β|〈x〉−ε,

and Lemma 3.5 in turn gives

(3.16) |∂αx ∂
β
ξ φ(x, ξ)| ≤ Cαβεh

−σ|α+β|〈x〉−ε,

for (x, ξ) ∈ B × U . The fact that φ vanishes when ξ is outside of U shows
that c ∈ S0

σ, and c is nonvanishing.
With c as above, the left hand side of (3.14) can be written as

1
i
Hpc+ 2((ξ + ρ̂) ·A])c = b1p+ 〈x〉−1s1
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where

b1 =
1− ψ1(ξ)

p
(
1
i
Hpc+ 2((ξ + ρ̂) ·A])c),

s1 = ψ1(ξ)〈x〉(
1
i
Hpc+ 2((ξ + ρ̂) ·A])c).

Since 1−ψ1(ξ)
p ∈ S−2

σ , we get b1 ∈ h−σS−1
σ . For s1 we use (3.15) to obtain

s1 = 2cψ1(ξ)
[
hθ〈x〉(ξ + ρ̂) · ∇χ1(hθx)φ+ (1− χ1(hθx))(ξ + ρ̂) · 〈x〉A]

]
.

This is a sum of two terms where the first term is in hθεS0
σ, using that

‖hθ〈x〉∇χ1(hθx)‖L∞ <∞, the estimates (3.16), and the fact that 〈x〉 ∼ h−θ

on supp(∇χ1(hθ · )). Also the second term is in hθεS0
σ, which follows since

|〈x〉A](x)| ≤ Cεh
εθ‖〈x〉1+εA]‖L∞ on supp(1− χ1(hθx)).

Going back to (3.13), we have proved that

(P + hQ])C = C̃P + h1+β〈x〉−1S

where c̃ = c+hb1 is in S0
σ and nonvanishing for small h, and we have chosen

β = min{1− 2σ − θ, θε} > 0. One has

s = h−βs1 + h1−β〈x〉(−∆xc+ 2A] ·Dxc).

Then s ∈ S0
σ, and the proof is finished. �

The proof of the preceding result is complete modulo Lemma 3.8 which
is deferred to the end of the section. We move to the proof of Proposition
3.3.

Proof of Proposition 3.3. We start by showing existence of solutions to (3.11).
Using the notation above, we need to solve

(3.17) (Pρ + 2A] ·Dρ + 2A[ ·Dρ +A2 +D ·A+ V )v = f.

We try a solution of the form v = Gρw with w ∈ L2
δ+1. Then v = CC−1Gρw,

where C−1 is the inverse of C on L2
δ which exists for small h. Inserting this

in (3.17) and using (3.12) gives

(M + T )w = f

where

M = C̃PρC
−1Gρ,(3.18)

T = h−1+β〈x〉−1SC−1Gρ + 2A[ ·DρGρ + (A2 +D ·A+ V )Gρ.(3.19)

The mapping properties of Gρ and S, together with the estimates in Lemma
3.5 and Sobolev embedding, show that ‖T‖L2

δ+1→L2
δ+1

= o(1) as |ρ| → ∞.
More precisely, the term involving V (the term with D ·A is similar) can be
handled by taking V0 = 〈x〉V and by considering the smooth approximation

V ](x) = 〈x〉−1χ(x/|ρ|)(V0 ∗ χα)(x)

where χα is the mollifier considered above and α = |ρ|−σ0 . If V [ = V − V ]

one obtains

‖〈x〉V ]‖L∞ ≤ ‖V0‖Ln‖χα‖Ln/(n−1) ≤ C|ρ|σ0 ,

‖〈x〉V [‖Ln ≤ ‖(1− χ(x/|ρ|))(V0 ∗ χα)‖Ln + ‖V0 ∗ χα − V0‖Ln = o(1).
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The embedding H1 ⊆ L
2n

n−2 and the estimates for Gρ imply

‖V Gρ‖L2
δ+1→L2

δ+1
≤ C

|ρ|
‖〈x〉V ]‖L∞ + C‖〈x〉V [‖Ln

which gives the required result.
We want to show that for M there is an explicit inverse N = PρCGρC̃

−1.
Using (3.12), we can write M and N as

M = I + h−1Q]Gρ − h−1+β〈x〉−1SC−1Gρ,(3.20)

N = I − h−1Q]CGρC̃
−1 + h−1+β〈x〉−1SGρC̃

−1.(3.21)

It follows that both M and N are bounded on L2
δ+1, with norms uniformly

bounded in ρ when |ρ| is large. Now, if u, f ∈ L2
δ+1 one can show that

Mu = f if and only if u = Nf , by Proposition 3.1 and the boundedness
of pseudodifferential operators on weighted Sobolev spaces. This gives that
N = M−1. Then, for ρ large, (M + T )−1 exists by Neumann series and we
obtain a solution

v = Gρ(M + T )−1f.

The norm estimates follow from the mapping properties of Gρ.
It remains to show uniqueness of solutions to (3.11). Suppose v ∈ H1

δ and
(Pρ + 2A ·Dρ + Ṽ )v = 0. We can rewrite this as Pρv = w with w ∈ L2

δ+1,
and Proposition 3.1 implies v = Gρw. We may now write v = CC−1Gρw
and argue as in Step 1, to obtain that (M + T )w = 0. The invertibility of
M + T was shown above, and consequently w = 0 and v = 0. �

We may now prove the main result.

Proof of Proposition 3.2. We go back to the proof of Proposition 3.3 and
note that (3.20) and (3.19) imply

(3.22) I +Kρ = M + T.

Since for large |ρ|, M + T was bounded and invertible on L2
δ+1 with the

norm of (M + T )−1 uniformly bounded, the same is true for I +Kρ.
The condition that (H −λ)u = 0 with u = uρ given by (3.4) is equivalent

with (3.11) where f = −2A · ρ − Ṽ . By Proposition 3.3, for |ρ| large there
is a unique solution vρ ∈ H1

δ given by

vρ = Gρ(M + T )−1f.

Then (3.6) follows from (3.22).
It remains to prove the asymptotics (3.9), (3.10). We use the approxima-

tion scheme in Lemma 3.5, now choosing σ0 > 0 small enough. With θ > 0
also small, from the proof of Proposition 3.6 we guess that the main term
in the asymptotics should be

aρ(x) = eiχρφ]

where ρ is given by (3.7), χρ(x) = χ(hθx), and φ] is given by

(3.23) φ](x) = − 1
2π

∫
R2

1
y1 + iy2

(ν1 + iν2) ·A](x− y1ν1 − y2ν2) dy1 dy2,
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and χ ∈ C∞
c (Rn) with 0 ≤ χ ≤ 1, χ = 1 for |x| ≤ 1/2, and χ = 0 for |x| ≥ 1.

Using Lemma 3.7 below, we see that (ν1 + iν2) · ∇φ] = −(ν1 + iν2) ·A], and
one has the estimates

|∂αφ](x)| ≤ Cα,εh
−σ0|α|〈xT 〉−ε〈x⊥〉−1

by Lemma 3.5. Here xT = (x · ν1)ν1 + (x · ν2)ν2 and x⊥ = x − xT . This
shows (3.9).

Let uρ be the solution (3.4) with vρ ∈ H1
δ , and define rρ = 1 − aρ + vρ.

Since aρ − 1 ∈ C∞
c we have rρ ∈ H1

δ . Also, rρ satisfies

(3.24) e−iρ·x(H − λ)eiρ·xrρ = −f
with

(3.25)

f = (Pρ + 2A ·Dρ + Ṽ )aρ = eiχρφ]
[
− iχρ∆φ] − 2i∇χρ · ∇φ] − iφ]∆χρ

+ (χρ∇φ] + φ]∇χρ)2 + 2ρ · (∇χρ)φ] + 2ρ · (∇φ])χρ

+ 2A · (∇χρ)φ] + 2A · (∇φ])χρ + 2A] · ρ+ 2A[ · ρ+ Ṽ
]
.

We note that when −1 < δ < 0 and s > 0 is small,

(3.26) ‖χρ∂αφ]‖L2
δ+1

≤ Ch−θ(1−s)‖∂αφ]‖L2
δ+s

≤ Cαh
−σ0|α|−θ(1−s)

by Lemma 3.7 and since ‖〈x〉∂αA]‖L2 ≤ Cαh
−σ0|α|. This and (3.3), or its

consequence

‖〈x〉A]‖L2 = O(1), ‖〈x〉A[‖L2 = o(1),(3.27)

can be used to show that the L2
δ+1 norms of most terms in (3.25) are o(|ρ|)

as |ρ| → ∞. The worst terms in (3.25) cancel because of the equation for φ]

and (3.7), or more precisely because

2χρ(ρ · ∇φ]) + 2ρ ·A]

= 2ih−1χρ((1− h2λ)1/2 − 1)ν2 · (∇φ] +A]) + 2(1− χρ)(ρ ·A])

and the L2
δ+1 norm of this is o(|ρ|) by (3.26), (3.27) and since |x| ≥ Ch−θ on

supp(1−χρ). Thus ‖f‖L2
δ+1

= o(|ρ|), and since rρ is the unique H1
δ solution

of (3.24), Proposition 3.3 shows (3.10). �

To end this section, we give the two lemmas which were used in the proofs
of Proposition 3.2 and Proposition 3.6. In both cases it is straightforward to
check that the given function is a solution and satisfies the required estimates
(see Lemmas 3.1 and 3.2 in [21]).

Lemma 3.7. Let γ1, γ2 ∈ Rn with |γj | = 1 and γ1 · γ2 = 0. If f ∈ C∞(Rn)
satisfies ‖〈x〉1+ε∂αf‖L∞ <∞ for all α, then the equation (γ1 + iγ2) ·∇φ = f
has a solution φ ∈ C∞(Rn), given by

φ(x) =
1
2π

∫
R2

1
y1 + iy2

f(x− y1γ1 − y2γ2) dy1 dy2,

which satisfies

|∂αφ(x)| ≤ Cα,ε‖〈x〉1+ε∂αf‖L∞〈xT 〉−ε〈x⊥〉−1,
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where xT = (x · γ1)γ1 + (x · γ2)γ2 and x⊥ = x− xT . Also, if −1 < δ < 0 one
has the estimates [24]

‖∂αφ‖L2
δ
≤ C‖∂αf‖L2

δ+1
.

Lemma 3.8. Let U ⊆ Rn be open, and suppose γj(ξ) (j = 1, 2) are smooth
functions in U satisfying for any ξ ∈ U

1− δ < |γj(ξ)| < 1 + δ, |γ1(ξ) · γ2(ξ)| < δ, |∂αγj(ξ)| ≤ 1

where δ < 1
100 and |α| ≥ 1. Let B = B(0,M) with M > 1 given. Then for

any f ∈ C∞
c (B × U), the equation (γ1(ξ) + iγ2(ξ)) · ∇xφ(x, ξ) = f(x, ξ) has

a solution φ ∈ C∞(B × U), given by

φ(x, ξ) =
1
2π

∫
R2

1
y1 + iy2

f(x− y1γ1(ξ)− y2γ2(ξ), ξ) dy1 dy2,

which satisfies

|∂αx ∂
β
ξ φ(x, ξ)| ≤ CN,ε

( ∑
|γ+δ|≤N

‖〈x〉1+ε∂γx∂δξf‖L∞(Rn×U)

)
M |β|〈x〉−ε

when |α+ β| ≤ N and (x, ξ) ∈ B × U .

4. Analytic dependence

We will now proceed to show that the complex geometrical optics solutions
uρ in (3.4) depend analytically on ρ in a certain sense. Given the existence
of uρ for large ρ ∈ Cn with ρ ·ρ = λ, this will follow from analytic Fredholm
theory as in [27].

We will assume that A and V satisfy (1.1) for some γ0 > 0. Let ν be a
fixed vector in Rn with |ν| = 1, and let λ > 0 be fixed. We write ρ ∈ Cn as
ρ = zν + ρ⊥ where z ∈ C and ρ⊥ ∈ Cn with ρ⊥ · ν = 0. The vectors ρ will
be identified with the pairs (z, ρ⊥). Consider the variety

Γ = {ρ ∈ Cn ; ρ = zν + ρ⊥, |ρ| ≥ 1, ρ⊥ ∈ Rn, and ρ · ρ = λ}.

Identifying {ν}⊥ with Rn−1, we view the error term v = vρ in (3.4) as a
function of z ∈ C r R and ρ⊥ ∈ Rn−1.

The error term vρ is explicitly given by (3.6), and the result will follow
by extending all operators in that identity analytically outside the variety
ρ · ρ = λ. The first step is to do this for Gρ. The extension follows from
a contour integration argument appearing for instance in [4] and [11]. We
use the formulation in [27]. Here B(X,Y ) is the space of bounded operators
between Banach spaces X and Y .

Proposition 4.1. [27] Suppose that γ > 0 and fix ν ∈ Sn−1. Then there
exists a neighborhood U of Rn−1 r {0} in Cn−1 and an analytic map

(C r R)× U 3 (z, ρ⊥) 7→ Gρ ∈ B(e−γ〈x〉L2, eγ〈x〉H2),

such that Gρ = Gρ when ρ ∈ Γ.

We remark that for ρ /∈ Γ, Gρ may not coincide with the natural Fourier
multiplier definition of Gρ, which explains the different notation for the
analytic extension. The next step is to consider Kρ = (2A ·Dρ + Ṽ )Gρ.



INVERSE SCATTERING FOR THE MAGNETIC SCHRÖDINGER OPERATOR 20

Lemma 4.2. If γ ≤ γ0/2 there is an analytic map

(C r R)× U 3 (z, ρ⊥) 7→ Kρ ∈ B(e−γ〈x〉L2, e−γ〈x〉L2),

with values in compact operators, such that Kρ = Kρ when ρ ∈ Γ.

Proof. Define Kρ = (2A ·Dρ+ Ṽ )Gρ. Analyticity and boundedness are clear
from Proposition 4.1, and compactness follows from the compact embedding
H1 → L2. �

One could now consider invertibility of I + Kρ by using the analytic
Fredholm theorem in several complex variables as in [30]. However, for our
purposes it is enough to consider vectors ρ parametrized by one complex
variable. The main analyticity result is as follows.

Proposition 4.3. Let U0 be an open connected set in C, and let t 7→ ρ(t)
be an analytic map from U0 to (C r R) × U such that ρ(U0) ∩ Γ contains
complex vectors whose norms are arbitrarily large. Assume that γ ≤ γ0/2.
There exists a discrete subset E0 of U0, locally given by the zeros of an
analytic function, and an analytic map

U0 r E0 3 t 7→ vρ(t) ∈ eγ〈x〉H2

such that vρ with ρ = ρ(t) coincides with (3.6) when ρ ∈ Γ and |ρ| is large.

Proof. We know that t 7→ Kρ(t) is an analytic family of compact operators
on e−γ〈x〉L2 for γ ≤ γ0/2, and that Kρ → 0 in norm when ρ ∈ Γ and |ρ| → ∞
by Proposition 3.2. Analytic Fredholm theory [19, Theorem VI.14] implies
that there is a discrete set E0 ⊆ U0, which is locally the set of zeros of an
analytic function, such that (I + Kρ(t))−1 is an analytic family of bounded
operators on e−γ〈x〉L2 whenever t ∈ U0 r E0.

For such t we define

vρ(t) = Gρ(t)(I + Kρ(t))
−1(−2A · ρ(t)− Ṽ ),

and the result follows from Proposition 4.1. �

5. Uniqueness result

We assume the hypotheses in Theorem 1.1, and proceed to prove the
theorem. The assumption Σλ = Σ′

λ and Lemma 2.7 imply that

(5.1) ((2A ·D + Ṽ )u|u′)− (u|(2A′ ·D + Ṽ ′)u′) = 0

for all u, u′ ∈ eγ〈x〉H1 such that (H − λ)u = 0 and (H ′ − λ)u′ = 0, where
γ < γ0

2 .
We would like to use the solutions constructed in Section 3 as u and u′.

However, these solutions are constructed only for large |ρ| and they may not
be in eγ〈x〉H1 when γ is small. To get around this we will instead use the
solutions in Proposition 4.3 obtained by analyticity.

We make a standard choice of complex vectors given also in [27]. Fix
ξ ∈ Rn, and let µ, ν ∈ Rn be unit vectors so that {ξ, µ, ν} is an orthogonal
set. We further require that

(5.2) 2
√
λ < |ξ| < 2

√
λ+

γ2
0

4
.
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For t >
√

|ξ|2
4 − λ, define

ρ = ρ(t) =
ξ

2
+ (t2 + λ− |ξ|2

4
)1/2µ+ itν,

ρ′ = ρ′(t) = −ξ
2

+ (t2 + λ− |ξ|2

4
)1/2µ− itν.

Then ρ · ρ = ρ′ · ρ′ = λ.

Let U0 be a connected neighborhood of the half line (
√

|ξ|2
4 − λ,∞) in C

such that Re(t2 + λ− |ξ|2
4 ) > 0 for t ∈ U0 and both ρ(t) and ρ′(t) belong to

(C r R)× U for t ∈ U0. Here we have used the notations in Section 4 and
the principal branch of the square root, so that ρ(t) and ρ′(t) are analytic
maps in U0.

Next, we take uρ and u′ρ′ to be solutions of (H−λ)u = 0 and (H ′−λ)u′ =
0, of the form

(5.3) uρ = eiρ·x(1 + vρ), u′ρ′ = eiρ
′·x(1 + v′ρ′)

where vρ and v′ρ′ are given by Proposition 4.3 and can be assumed to be in
eγ

′〈x〉H2 for any small γ′ > 0. This works for all t in the set U0 r (E ∪ E ′)
where E and E ′ are discrete subsets of U0 which are locally given by the
zeros of analytic functions. Also the set E ∪ E ′ is discrete in U0 since it is
locally given by the zeros of a product of analytic functions.

Now, if t ∈ U0 r (E ∪ E ′) and additionally t < γ0/2, we may insert the
solutions uρ and uρ′ in (5.1). This shows that for such t we have I(t) = 0,
where

(5.4) I(t) = ((2A · (D + ρ) + Ṽ )(1 + vρ)|e−ix·ξ(1 + v′ρ′))

− (eix·ξ(1 + vρ)|(2A′ · (D + ρ′) + Ṽ ′)(1 + v′ρ′)).

By Proposition 4.3, I(t) is analytic in U0 r (E ∪ E ′). On the other hand we
already saw that I(t) = 0 in the intersection of this set and {t < γ0/2}. This
intersection must contain a small interval. Then by analyticity I(t) ≡ 0, and
in particular I(t) = 0 as t→∞ on the positive real axis. But in this case vρ
and v′ρ′ are given by Proposition 3.2, and they have the asymptotics (3.9),
(3.10).

If φ and φ′ are given by (3.8) for A and A′, respectively, a computation
using the asymptotics shows

0 = lim
t→∞

I(t)
t

= lim
t→∞

((2(A · ρ
t
)aρ|e−ix·ξa′ρ′)− (eix·ξaρ|2(A′ · ρ

′

t
)a′ρ′))(5.5)

= 2(A · (µ+ iν)eiφ|e−ix·ξeiφ′)− 2(eix·ξeiφ|A′ · (µ− iν)eiφ
′
)

= 2
∫
Rn

eix·ξeiΦ(µ+ iν) · (A−A′) dx

Here Φ = φ− φ′ is the Cauchy transform

Φ(x) = − 1
2π

∫
R2

1
y1 + iy2

(µ+ iν) · (A−A′)(x− y1µ− y2ν) dy1 dy2.



INVERSE SCATTERING FOR THE MAGNETIC SCHRÖDINGER OPERATOR 22

Now (5.5) says that a certain nonlinear Fourier transform related to A−A′
vanishes for ξ satisfying (5.2), where µ and ν are unit vectors and {ξ, µ, ν}
is an orthogonal set. An argument of Eskin and Ralston [4], reproduced in
Lemma 6.2 of [21], shows that∫

Rn

eix·ξeiΦ(µ+ iν) · (A−A′) dx =
∫
Rn

eix·ξ(µ+ iν) · (A−A′) dx.

This means that the nonlinear Fourier transform reduces to the usual one.
Choosing suitable vectors ξ, µ, ν, we see that the Fourier transform of each
component of d(A − A′) vanishes on the shell (5.2). Since d(A − A′) is
exponentially decaying, so the Fourier transform is analytic, we get dA ≡
dA′. Thus the magnetic fields coincide.

Finally, we show that V = V ′. Since d(A − A′) = 0, Lemma 2.8 shows
that A−A′ = ∇α with α ∈ e−γ0〈x〉W 2,∞. Then by gauge invariance (Lemma
2.6), the scattering matrices for the coefficients (A′, V ′) and (A′+∇α, V ′) =
(A, V ′) are the same. We may thus assume that A = A′ in the argument.
Since the scattering matrices for (A, V ) and (A, V ′) at energy λ > 0 coincide,
from Lemma 2.7 we obtain∫

Rn

(V − V ′)uu′ dx = 0

for solutions in eγ〈x〉H1 if γ < γ0/2.
Take u = uρ and u′ = u′ρ′ as in (5.3), with ρ = ρ(t) and ρ′ = ρ′(t)

as earlier. Repeating the argument given above, we may take the limit as
t → ∞ and use the asymptotics in Proposition 3.2. In particular we have
aρa′ρ′ → 1 since A = A′, and we obtain∫

Rn

eix·ξ(V − V ′) dx = 0

for ξ in the frequency shell (5.2). Again the exponential decay of coefficients
implies that the Fourier transform is analytic, and it follows that V = V ′.
This ends the proof of Theorem 1.1.
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