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ABSTRACT. We prove that the electromagnetic material parameters are
uniquely determined by boundary measurements for the time-harmonic
Maxwell equations in certain anisotropic settings. We give a uniqueness
result in the inverse problem for Maxwell equations on an admissible
Riemannian manifold, and a uniqueness result for Maxwell equations
in Euclidean space with admissible matrix coefficients. The proofs are
based on a new Fourier analytic construction of complex geometrical
optics solutions on admissible manifolds, and involve a proper notion of
uniqueness for such solutions.

1. INTRODUCTION

Let (M,g) be a compact Riemannian manifold with smooth boundary
OM, and assume that dim M = 3. We consider the inverse problem of
recovering electromagnetic material parameters of the medium (M, g) by
probing with time-harmonic electromagnetic fields. The fields in (M, g) are
described by complex 1-forms F and H (electric and magnetic fields), and
the behavior of the fields is governed by the Maxwell equations in M,

xdF = iwuH,
{ xdH = —iwek. (1.1)

Here w > 0 is a fixed frequency, d is the exterior derivative, and * is the

Hodge star operator on (M, g). The material parameters are given by the

complex functions € and p (permittivity and permeability, respectively). We

assume the following conditions on the parameters:

e € C(M), (1.2)

Re(e) > 0, Re(p) > 0 in M. (1.3)

For the inverse problem, we need to describe the electromagnetic field

measurements at the boundary OM. Let i : OM — M be the canonical
embedding, and consider the tangential trace on k-forms,

t:QF (M) — QF(OM), nw—i*n.

There is a discrete set of resonant frequencies such that if w is outside this
set, then for any f in Q!(0M) the system (1.1) has a unique solution (E, H)
satisfying tF = f (see Theorem A.1). We shall assume that

w > 0 is not a resonant frequency. (1.4)
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The boundary measurements are given by the admittance map
A:QYOM) — QY OM), tE s tH.

The inverse problem for time-harmonic Maxwell equations is to recover the
material parameters € and p from the knowledge of the admittance map A.

In the case of lossy materials, one writes ¢ = Re(e) + io/w where o > 0
is the conductivity. The zero frequency case (that is, w = 0) then formally
corresponds to the conductivity equation

d(odu) = 0.

Here § is the codifferential. In three and higher dimensions, the inverse
problem of determining ¢ from boundary measurements for the conductivity
equation was studied in [4] in a special class of Riemannian manifolds.

Definition. A compact 3-manifold (M, g) with smooth boundary OM is
called admissible if (M, g) is embedded in (T, g) where T' = R x My, (M, go)
is a simple 2-manifold, and g = c¢(e®gy) where ¢ is a smooth positive function
and e is the Euclidean metric on R.

Simple manifolds are defined as follows:

Definition. A compact manifold (M, gg) with smooth boundary 0Mj is
called simple if for each p in My the map exp, is a diffeomorphism from a
closed neighborhood of 0 in T,,My onto My, and if dMj is strictly convex
(meaning that the second fundamental form of M is positive definite).

Admissible manifolds include compact submanifolds of Euclidean space,
hyperbolic space, and S® minus a point, and also sufficiently small subman-
ifolds of conformally flat manifolds. If M is a bounded open set in R? with
smooth boundary, equipped with a metric which in some local coordinates
x = (z1,2') has the form

o) =) (g e )

then (M, g) is admissible if gy is a simple metric in some sufficiently large
ball. Also, admissible manifolds are stable under small perturbations of go.
See [4] for more details.

We will prove the following result, showing that boundary measurements
for the Maxwell equations uniquely determine the material parameters in
an admissible manifold.

Theorem 1.1. Let (M, g) be an admissible manifold, and let (e1, 1) and
(g2, 12) be two sets of coefficients satisfying (1.2)—(1.4). If the admittance
maps satisfy A1 = Ao, then 61 = &9 and g = po in M.

The second result involves Maxwell equations in a bounded domain 2 in
R3 with smooth boundary. The coefficients ¢, 1 are assumed to be smooth
positive definite symmetric (1,1)-tensors. Associated to these tensors are
traveltime metrics g. and g,,, which are Riemannian metrics in €2 describing
propagation of waves with different polarizations. We shall assume that the
velocity of wave propagation is independent of polarization, which amounts
to the property that ¢ and p are in the same conformal class [12].
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The Maxwell equations in €2 can be written as
{ VxE = iw,uﬁ ,

S 1.5
V x H = —iwek, (15)

where E and H are complex vector fields and w > 0 is a fixed frequency.
We consider the electric boundary condition

Etan‘aﬂ - ]?7 (1.6)

where f is a smooth tangential vector field on 9 and Etan]ag is the tan-
gential part of E lan- Under the above assumptions, there is a discrete set of
resonant frequencies outside which the boundary problem for Maxwell equa-
tions has a unique smooth solution (E, H) (see Section 7). The admittance
map is given by

A : Eanloq = Hianlo-

The next result considers the inverse problem of recovering the electromag-
netic parameters from A.

Theorem 1.2. Let ¢; and y; be smooth symmetric positive definite (1,1)-
tensors on ﬁ, and suppose that w > 0 is not a resonant frequency for the
corresponding boundary problems. Let A; be the corresponding admittance
maps (j = 1,2). Assume that there is a fixed admissible metric g in Q such
that €1, u1, €2, and ug are conformal multiples of g~!. If the admittance
maps satisfy A1 = Ao, then &1 = &9 and p1 = po in Q.

To our knowledge, Theorems 1.1 and 1.2 are the first positive results
on the inverse problem for time-harmonic Maxwell equations in anisotropic
settings. For bounded domains in R? where ¢ is the Euclidean metric,
Theorems 1.1 and 1.2 were proved in [17].

There has recently been considerable interest in invisibility cloaking [7],
where one looks for anisotropic materials for which uniqueness does not hold.
The prescriptions of electromagnetic parameters for cloaking [6] satisfy that
€ = pu. Moreover the parameters are singular, so that one of the eigenvalues
is zero at the boundary of the cloaked region. Theorems 1.1 and 1.2 imply
that there is no cloaking for materials whose electromagnetic parameters
satisfy the given conditions.

Formally, the proofs of Theorems 1.1 and 1.2 follow the Euclidean case.
The proof of the uniqueness result in [17] was considerably simplified in [19],
and the simplified proof can be described by the following seven steps:

1. Reduction of the Maxwell system to a Dirac system, by introducing
two auxiliary scalar fields ® and W. A solution X of the Dirac system
gives a solution to the original Maxwell system iff ® = ¥ = 0.

2. Reduction to a rescaled Dirac system (P — k+ W)Y = 0, where YV’
is obtained by rescaling the components of X by /2 and p!/2.

3. Reduction to the Schrédinger equation (—A — k% + Q)Z = 0, which
is possible since (P —k +W)(P+k - W) = -A - k> + Q.

4. Construction of complex geometrical optics solutions to the equation
(—A - k% +Q)Z = 0, which also gives solutions Y = (P+k—W')Z
to the Dirac system.
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5. Construction of solutions to the original Maxwell system. This re-
quires showing that the scalar fields in Step 1 vanish identically,
which follows from a uniqueness result for Z.

6. Inserting complex geometrical optics solutions in an integral identity,
which allows to recover nonlinear differential expressions involving
the electromagnetic parameters.

7. An application of the unique continuation principle for a semilinear
elliptic system to recover the parameters.

In [18], it was shown that Steps 1 to 3 above can be carried out also for
the Maxwell equations on a Riemannian manifold (M, g). However, Step 4
requires complex geometrical optics solutions, and these were only available
for the Euclidean metric. Therefore, it was not possible to go further in the
non-Euclidean case.

A construction of complex geometrical optics solutions for scalar elliptic
equations, valid on admissible Riemannian manifolds (M, g), was given in
[4]. We will combine the ideas in [4] with the scheme outlined above to
prove the uniqueness result for the inverse problem for Maxwell equations
on admissible manifolds.

It will turn out that the main technical obstacle is Step 5, which requires
a uniqueness result for the complex geometrical optics solutions. In [4] the
construction of solutions is based on Carleman estimates, and there is no
concept of uniqueness for the solutions so obtained. In this article we give
a new construction of solutions based on direct Fourier arguments. This
construction comes with a suitable uniqueness result, which can be used to
carry out the proof of the Maxwell result.

The main step in the new construction is a counterpart of the basic norm
estimates of Sylvester-Uhlmann [22]. We outline the idea in a simple case.
The estimate is valid in (7, g) where T'= R x My and g = e @ gg, but here
(Mo, go) can be any compact (n — 1)-dimensional manifold with boundary
(no restrictions on the metric). We look for solutions of the equation

e (=Ag)(e ™ u) = f inT, (1.7)

with Ay the Laplace-Beltrami operator in (7, g) and 7 a large parameter.

In the Sylvester-Uhlmann estimates T = R"™ and ¢ is the Euclidean
metric, f is in a weighted L? space such that (z)°T!f € L?(R") where
—1 < § < 0, and one obtains a unique solution u with (z)%u € L*(R™).
Here

(@) = (1+ |2*)'/2.

In our case we write x1 for the special Euclidean coordinate in 7', and use
Agmon-type weighted spaces

LYT) = {f € Liye(T)s I1{z1)° fllz2(ry < o0}

The Sobolev space Hj(T) is defined via the norm [[u|| g1y = || <a:1>5u|]Hs(T),
and H} (T) is the set {u € H}(T); ulrxonm, = 0}-

The next result is a special case of Proposition 4.1 (since there is no
potential it follows that one may take 79 = 1).
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Theorem 1.3. Let § > 1/2. If |7| > 1 is outside a discrete set, then for any
[ € L(T) there is a unique solution u € Hlé,o(T) of the equation (1.7). In

fact, one has u € H? (T) and
lull s yry < Ol Il 2y, 0S5 <2,
with C independent of 7.

In the Sylvester-Uhlmann result, the proof applies the Fourier transform
and one obtains uniqueness by fixing decay at infinity. In our case there is a
transversal metric in My, and the Fourier transform or conditions at infinity
are not readily available. However, one can ask for decay in the Euclidean
variable and Dirichlet boundary values on dMy. This makes it possible to
use the Fourier transform in z; and eigenfunction expansions in M.

The proof of Theorem 1.3 is robust in the sense that one can essentially
replace the Laplacian in My by any positive operator with a complete set
of eigenfunctions. We will need this flexibility in the Maxwell result when
proving similar estimates for the Hodge Laplacian on forms. There is also
an extra twist in the construction of solutions since one needs a result like
Theorem 1.3 which applies to functions f which may not decay (so one is
out of the standard Agmon setting), see Sections 4 and 5 for these more
general results.

The construction could also be used to develop constructive methods for
certain anisotropic inverse problems. In the Euclidean case, results of this
type were given in [16] for the 3D conductivity equation and in [17] for
Maxwell equations.

Earlier work on the inverse problem for the Maxwell system in Euclidean
space includes a study of the linearized inverse problem [20], a local unique-
ness result [21], and a result for the corresponding inverse scattering prob-
lem in the case where p is constant [2]. As mentioned above, the full inverse
problem was solved in [17], and in [19] the proof was simplified and also a
reconstruction from measurements based on dipole point sources was given.
The paper [18] is a survey and also considers the manifold setting. The in-
verse problem for Maxwell equations in chiral media was considered in [15].
Boundary determination results are given in [10] and [14]. Finally, [1] gives
a partial data result for this problem, based on Isakov’s method [9]. For
results on inverse problems for the Maxwell equations in time domain, we
refer to [12] and the references therein.

The structure of the paper is as follows. Section 2 contains notation
and identities in Riemannian geometry which will be used throughout the
article. The reductions of the Maxwell equations to Dirac and Schrodinger
equations are given in Section 3. The norm estimates and uniqueness results
required for constructing complex geometrical optics solutions are given in
Sections 4 and 5, and the construction of solutions is taken up in Section 6.
In Section 7 we prove Theorems 1.1 and 1.2. There are two appendices, one
on the wellposedness theory of boundary value problems for Maxwell, and
one including a unique continuation result for principally diagonal systems
required for our results.
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2. NOTATION AND IDENTITIES

We will briefly introduce some basic notation and identities in Riemannian
geometry which will be used throughout. We refer to [23] for these facts.

In this section let (M, g) be a smooth (= C*°) n-dimensional Riemannian
manifold with or without boundary. All manifolds will be assumed to be
oriented. We write (v, w) for the g-inner product of tangent vectors, and
lv| = (v,v)1/2 for the g-norm. If = (z1,...,2,) are local coordinates and
0; the corresponding vector fields, we write gj; = (0, O) for the metric in
these coordinates. The determinant of (gj;) is denoted by |g|, and (¢’*) is
the matrix inverse of (g;).

We shall often do computations in normal coordinates. These are coor-
dinates 2 defined in a neighborhood of a point p € M™® such that z(p) = 0
and geodesics through p correspond to rays through the origin in the x
coordinates. The metric in these coordinates satisfies

9ik(0) = ik, O1g;x(0) = 0.

For points p € 9M we will employ boundary normal coordinates, which are
coordinates y = (¢',y,) near p so that y(p) = 0, ' are normal coordinates
on OM centered at p, and y,(q) is the geodesic distance from a point ¢ to
OM . The metric has the form

9(y) = < ! O(()y) ! > - 90(y) = (930 ®))]52 1,

and g;1(0) = 6k, 0,9jx(0) = 0. We denote by v the 1-form corresponding to
the outer unit normal vector of M, so that v = —dy™ in boundary normal
coordinates.

The Einstein convention of summing over repeated upper and lower in-
dices will be used. We convert vector fields to 1-forms and vice versa by the
musical isomorphisms, which are given by

(X78;)" = Xy da®, Xj = gjp X7,
(wp da®)? = W0, Wl = g?*wy.

The set of smooth k-forms on M is denoted by Q*M, and the graded algebra
of differential forms is written as

QM = @} _QF M.

The set of k-forms with L? or H® coefficients are denoted by L?(Q¥M) and
H?*(QFM), respectively. Here H® for s € R are the usual Sobolev spaces on
M. The inner product and norm are extended to forms and more generally
tensors on M in the usual way.

Let d : Q¥M — QFYIM be the exterior derivative, and let % : QKM —
Q" kM be the Hodge star operator. We introduce the sesquilinear inner
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product on QFM,

o) = [ wdyav= [ nas

Here dV = 1 = |g|"/?daz"--- da™ is the volume form. The codifferential
§: QFM — QF 1M is defined as the formal adjoint of d in the inner product
on real valued forms, so that

(dn|¢) = (|6¢), for n € Q¥ 1M, ¢ € Q¥ M compactly supported and real.
These operators satisfy the following relations on k-forms in M:

ok — (_1)k(n—k) 5= (_1)k(n—k)—n+k—1 wdx

)

If ¢ is a 1-form then the interior product ¢, is the formal adjoint of £A in the
inner product on real valued forms, and on k-forms it has the expression

ie = (=1)"F=D e A,
The Hodge Laplacian on k-forms is defined by
~A=(d+6)* =ds+dd.

It satisfies Ax = *xA.

The Levi-Civita connection, defined on tensors in M, is denoted by V.
We will slightly abuse notation and reserve the expression Vf (where f is
any function) for the metric gradient of f, defined by

VS = (df)f = g7 0; for.
The H' and H? norms may be expressed invariantly as

£l ey = 1 f L2 any + IV £l L2y
1 erzcary = W e ory + V2 F I 20y -

Here of course || Tl 2y = (31T clV)l/2 for a tensor T'.
For n = 3, the surface divergence of f € H*(Q}(0M)) is given by

Div(f) = (doar f,dS)

where dS is the volume form on OM. A computation in boundary normal
coordinates shows that Div(f) = —(v, *du)|gas where v € H*FY/2(QM) is
any 1-form with tu = f (here s > 0).

Finally, in the case n = 3, we collect a number of identities which will be
useful for computations. Below let f be a smooth function, o = a; da’ and
B = Bjdx’ and v = ~y; dz? three 1-forms, n a k-form, and ¢ an [-form. For
the Hodge star one has

51 =1,
(@A #f) = {a, B),
*aA[BAT]) = (@,7)B = (e, B),
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and the operators d and § satisfy

on = (—l)k * d * 1,

o = —|g|7120;(1g"* g  ewr),
d(nA¢) =dnAC+ (1) Adg,
8(fn) = fon+ (=1)" = df s,
3(a A B) = (0a)B — (58)a — [oF, 7.

3. REDUCTION TO SCHRODINGER EQUATION

In this section we present the reductions of the time-harmonic Maxwell
system to Dirac and Schrédinger equations, which corresponds to Steps 1
to 3 in the introduction. This mostly follows [18] and [19] although with
different notations. We will also give a reduction to the case where the
coefficients are constant near the boundary, namely,

€ =¢g and p = o near M for some constants g, g > 0. (3.1)

It is well known that the Maxwell system (1.1) is not elliptic as it is
written. We perform an elliptization by adding the constituent equations,
obtained from (1.1) by applying d+ to both equations:

dlpxH) =0,
{ d(;—:*E) =0. (3.2)

Adding two equations requires adding two unknowns, which will be the
scalar fields ® and W. The choice for how to couple ® and ¥ into the larger
system obtained from (1.1), (3.2) was motivated in [19] by dimensionality
arguments. The end result is the following system:

DxE+DaA*xE—wux® =0,
«*DU + DE —wpu+x H+«Da AWV =0,
Dx«H+DBANxH —wexW¥ =0,
xD® — DH +*xDGANP —wex £ =0.

(3.3)

Here we have written D = %d and a = log ¢, 8 = log . We will also write
D* = —%5 for the formal adjoint of D in the sesquilinear inner product on
forms.

We wish to express (3.3) as an equation for the graded differential form
X =&+ F+ xH + %V, written in vector notation as

X=(o «H|+v E)".

Note that we have grouped the even and odd degree forms together. This
will result in a block structure for the equation. Now, taking Hodge star of
the first and last equations in (3.3) results in the system

(P+V)X =0 (3.4)
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where P and V are given in matrix notation by
D* —wp x*Dac A\ *

D* D v — —wp | *Da A *
o DBAN|  —we

D

D D* DBA

—we

This is the first Dirac equation we will use. Note that P is just the self-
adjoint Dirac type operator D + D* on QM, and that (E,H) solves the
original Maxwell system (1.1) iff X solves (3.4) with & = ¥ = 0.

For the reduction to a Schrodinger equation, it will be convenient to
rescale X by

12
X = ( —17 )Y, (3.5)

where Y = (YO Y2 [Y3 Y! )’ and Y* is the k-form part of Y € QM.
Assuming (3.1) for the moment, a direct computation using the identities

in Section 2 shows that (3.4) is equivalent with the rescaled Dirac equation
for Y:

(P—k+W)Y =0. (3.6)
Here W is the potential, with compact support in M™, given by

*Da N *
*sDaAx —DaA

1
W:—(Iﬂ?—k‘>+5 Dﬁ/\

DBN DS A *

where k = w(ep)'/?, k = w(eopo)'/?.

We will also need the potential W, which is the formal transpose of W
in the inner product on real valued forms, given by

xDO A x
«xDBAN*x —DgA

1
t .
W' = —(k k)+2 Dan

DaN xDa A *

The adjoint is W* = W?. The following result contains the Schrédinger
equations, involving the Hodge Laplacian —A = dd + dd on Q2M, in a form
which will be convenient below.

Lemma 3.1. We have
(P—k+W)P+k—-W")=-A-k+Q,
(P+k—-—WHP—-k+W)=-A-k+Q,
(P—k+WHP+k—W)=-A—k+0Q,
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where @Q, @', and Q are smooth potentials with compact support in M™t,

Aa+ 3{da,da) 0 . .

_ 2 2 0 ° ° °
@=k —r"+3 . o[ AB+Ldp,dp) o |’

° ° 0 °

AB —(dB,dB) 0 0 0

1 ° ° ° °

/.2 2 -

@=k—r=3 0 0[Aa—{da,day 0 |’

[ [ [ ] [ ]

and e denote smooth coefficients.

Proof. We give the proof of the first identity, the other ones being analogous.
One has

(P—k4+W)P+k—-W)=-A-k2+W(P+k)—(P-kEW —WW'
The point is to show that the first order term vanishes. We write W as
W=—(k—k)+ %WO,
where W acts on a graded form X = X, + X_, with X, = X% + X? and
X_ =X+ X3 by
WoX = (—Da A +ipa)X— + (DBA —ipg)X+.
We will use the identities in Section 2. If u is a 0-form then
(WoP — PWiyu = %(Wodu — (d—5)(uDa))
= —(—da A du + xda A xdu — du A da + u(dda)) — *du A *da)
= (Aa)u.
If v is a 1-form we have
(WoP — PWiyu %(Wg(du —Su) = (d—8)(=DB Au+ (DB, u)))
= —(dB N du+ *df A xdu — (du)df — dB N du — d{(dB,u) — 6(dB A u)).
The identity §(df A u) = (=AB)u — (Ju)dB — [V3,uf]” and a computation

in normal coordinates implies that
(WoP — PW)u = 2(V?B)u — (AB)u.

Here (V23)u denotes the 1-form corresponding to the vector field (V23)uf.
The computation for 2-forms and 3-forms can be reduced to the previous
cases by noting that if « is a k-form, then

(A= 0) s u=(—1F % ([ 0)u, (A —ig)#1= (1)L (5 A +iy)u.
Thus, if *u is a 2-form then
(WoP — PW{) xu
= x[da A du + (du)da — *da A xdu — da A du + d{da, u) + §(da A u)]
= +[2(V2a)u — (Aa)u).
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Similarly, if *u is a 3-form then
(WoP — PWE) xu = (AB) * u.
We have P(fu) — fPu= (Df A+ips)u for a function f, so

1
WP — PW'= 5 (WoP — PW{) + Dk A +ipy.

This shows that (P —k + W)(P+k — W) = —A — k% + Q where Q is an
operator of order 0. Since

1 1
KW 4+WH —WW =§* — 5% + 35 (Wo + W) — ZWOWS

where WoW{X = —[(DaA—ipa)?X++(DBA—ipg)>X_], and since one has
(€N —ig)?u = —(&,&)u for any k-form u, we obtain the required expression
for Q. O

The preceding arguments show how to reduce the original Maxwell system
to Dirac and Schrodinger equations. In the next lemma, which is similar to
[19, p. 1135], we give a reduction on the level of boundary measurements:
if the admittance maps for two Maxwell systems coincide, then one has an
integral identity involving the potentials @); and solutions of the Schrodinger
and Dirac systems. Note that Z; has to be related to a solution for Maxwell,
but Y5 need not be. This flexibility in the choice of Yo will simplify the
recovery of coeflicients.

Lemma 3.2. Let (g1, 1) and (g2, pu2) be two sets of coefficients satisfying
(1.2)—(1.4), and assume that A; = Ag. After replacing (M, g) by a larger
manifold (which is admissible if (M, g) is), one may assume that

e1 =e9 =¢gp and p; = pg = po near OM for constants g, g > 0, (3.7)
and one has the identity
((Q1—Q2)Z1|Y2) =0 (3.8)
for any smooth graded forms Z;,Y; satisfying the following properties:
(P—k+W)Y1 =0, Yi=(P+k-WHz,
(P—k+W5)Y, =0,
YP=Y2=0.

The reduction to the case where (3.7) holds is a consequence of the next
boundary determination result.

Theorem 3.3. Let (M, g) be a compact 3-manifold with smooth boundary,
and let ¢ and p satisfy (1.2)—(1.4). Given a point on OM, the admittance
map A uniquely determines the Taylor series of ¢ and p at that point in
boundary normal coordinates.

Proof. This result was proved in [10], [14] in the case where M is a smooth
domain in R? and g is the Euclidean metric (the result was for complex € and
real y, but the same proof works also for complex ). The argument proceeds
by showing that the admittance map is a pseudodifferential operator on dM,
and by computing the symbol of A in boundary normal coordinates at a
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fixed point p € M. One then proves, by looking at the difference of two
admittance maps, that the Taylor series of € and p are uniquely determined
at p.

Fortunately, if (M, g) is a Riemannian manifold with boundary, the form
of the metric in boundary normal coordinates is exactly the same as in the
Euclidean case. This means that the arguments of [10], [14], which were
given in boundary normal coordinates of a Euclidean domain, carry over
without changes to establish Theorem 3.3 for any Riemannian manifold
(M, g). O

Proof of Lemma 3.2. We first establish (3.8) in the original manifold M.
Note that if (3.7) is not satisfied, we may formally take & = 0 in the preceding
arguments and then all conclusions remain valid except that W} and (); may
not be compactly supported in M,

Let Z; and Y; be as described, and let X; be the solution to (3.4), with
potential Vi, corresponding to Y] as in (3.5). Since A; = Ag, we can find a
solution Xs of (P—I—VQ)XQ = 0 with tHy = tH; and tE» = tE; on OM. Here
we write

Xi=(0 «H; |0 E ), Xo=(0 =l |0 E )"

If Y3 is the solution to (P —k + W5)Ys = 0 corresponding to X5 as in (3.5),
then t(Y7 — Y3) = 0 since €1 = g9 and py = pg on M by Theorem 3.3.
We wish to argue that

A(Y1 —=Ys) =0, (Y7 —Yz)=0ondM. (3.9)

The first part is immediate since v Anp = 0 on M iff tn = 0. For the
second part we use the surface divergence. The fact that X; and X5 solve
the Maxwell equations, together with Theorem 3.3, implies that

1 - _
(v, Hy — H2>raMf <vu1 « dEy — py '+ dE2)|ons

=— Div(t(Ey — Ey)) = 0.
iwm iv(t(E1 — E2)) =0

A similar result is true for E; — Ey. This proves (3.9) since we have xv A*n =
iyn = (v,n) for any 1-form 7.
Let us next prove that

(W1 = Wa)Y1|Y2) =
We have

(W1 = W2)Y1[Ys
W|(P = k)Ys
= W|(P - k)Ys
M|(P = k)Y2

(W1in1]Y2) — (V1[W3Ya)
((P = k)Y1]Yz)
(P = k)(Y1 — Y2)|Y2) — (P — k)Ya|Y2)

) =
) —
) —
) — (Y1 = Yo| (P — k)Y2) — (P — k)Ya|Y2).
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In the last step, the boundary term arising from the integration by parts
vanishes because of (3.9). We obtain

(W1 = W2)Yi|Y2) = (Ya| (P — k)Y2) — (P — k)Y2|Y2)
= —(Y2|W5Y2) + (WaY2|Ya) = 0.
Now (3.8) will follow if we can prove that
(W1 = W2o)N1[Y2) = ((Q1 — Q2) Z1[Y2).
To show this, we recall that ); in Lemma 3.1 has the form
Qj = Wi(P+k)— (P —k)Wj— W;Wj.
Then
(W1 = Wo)Yq|Ya) = (W1 — Wa)(P + k — WY)Z1|Y3)
= ((Q1+ (P = k)W])Z1|Y2) — (Q2 + (P — k)W5 + Wa(Wy — WY)) Z1|Yz)
= (@1 — Q2)Z1[Y2) + (W Z1|(P — k)Ya2) — (W3 Z1|(P — k)Ya)
— (W = W) 21| W5 Ya).
Here, we used that W} = W{ on OM by Theorem 3.3 so there are no
boundary terms. Now (3.8) follows by using the identity —Ws5Ys = (P—k)Y>
in the last term.
Finally, we show how it is possible to arrange that (3.7) holds. The

definition of admissible manifolds allows to find (upon enlarging (Mo, go) if
necessary) a connected admissible manifold (M, g) such that

Mcc MccT.

If M is not required to be admissible then any choice M D> M will do.
By the condition A; = Ay and by Theorem 3.3, we may extend ¢; and
i smoothly to M so that e = &9 and p1 = pg in M ~ M, g; and pu;
have positive real parts in M, and further for some constants e, o one has
€1 =€2=¢& and M1 = (2 = o near aM

Let now Z1, Y7, Yo be smooth graded forms in M satisfying the conditions
in the statement of the lemma in M. Since the restrictions to M satisfy the
same conditions in M, we have (3.8) in the set M. However, Q; = @2 in
M~ M, so (3.8) remains valid in M. This proves the lemma upon replacing
M with M. O

4. NORM ESTIMATES AND UNIQUENESS

In this section let (M, go) be a compact (n — 1)-dimensional Riemannian
manifold with smooth boundary, without any restrictions on the metric.
Consider the cylinder T'= R x My with metric g = ¢(e @ go), where e is the
Euclidean metric on R and c is any smooth positive function in 7" satisfying

c(xy1,2") = 1 when |21] is large.

Here and below, we write z1 for the Euclidean coordinate and z’ for coor-
dinates on My. The Laplace-Beltrami operators on (7, g) and (M, go) are
denoted by A = Ay and A, = Ay, respectively. We will use the L? space
L*(T) = L*(T, dV,) and the Sobolev spaces H*(T).
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If 6 € R, define the weighted norms
lull 27y = @) ull g2y,
[wll s () = 1z 1) ul s () -
Let L(T) and H(T) be the corresponding spaces. We also consider the
spaces HL (T) ={ue L} (T); u € H'([-R, R] x My) for all R > 0} and

loc
H;o(T) = {u € Hy(T); ulrxon, = 0},
Hl]-OC,O(T) - {’LL S Hlloc(T) ) u‘RXBMO - 0}

The construction of complex geometrical optics solutions in [4] and [11]
is based on limiting Carleman weights. It is shown in [4] that the function
o(r) = 1 is a natural limiting Carleman weight in (7, g). We consider the
conjugated Helmholtz operator

e (—A— k2 +q)e .

The following result gives a norm estimate, corresponding to the Carleman
estimate in [4, Theorem 4.1], and a uniqueness result for this operator.

Proposition 4.1. Let & > 0 be fixed, let 6 > 1/2, and let g be a potential
satisfying (x1)2°q € L(T). There exists 79 > 1 such that whenever
7| > 79 and 724 k? ¢ Spec(—A,),

then for any f € L2(T) there is a unique solution u € HL;’O(T) of the
equation

(A -k +g)e ™ u=f inT. (4.1)
Further, u € H?5(T'), and the solution satisfies the estimates

||u||Hi5(T) < C‘T|871”fHL§(T)7 0 <s< 2,
with C independent of 7 and f.

For the proof, we first claim that it is enough to consider the case where
¢ = 1. To see this, note that if g = ¢g where § = e ® gg, one has the identity
n+2

et (—A,—k*+ q)(c_nT_Qv)
=(-A;—k*+ |[F*(1—¢)+ecqg—c

n+2 n—2

1 Ag(em 1) v. (4.2)

Consequently, u solves (4.1) iff v = "7 u solves
e (— Ay — k2 + §)e "y = chHf.
Here ¢ = k*(1 — ¢) + cq — chHAg(cfnT&) is another potential such that
(x1)%G € L>™(T), since ¢ = 1 for |x1| large. This reduction shows that
Proposition 4.1 will follow from the special case where ¢ = 1.
Thus, we assume that ¢ = 1 and initially also ¢ = 0. Then g has the form

glo) = ( é go?fﬁ/) ) ’

and the equation (4.1) may be written as

(=02 +270) — 72 — k> — Ay)u = f. (4.3)
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We are looking for a solution u with u|grxgn, = 0. This motivates the
partial eigenfunction expansions along the transversal manifold:

u(ay,a’) =Y (e, Do),  flaa’) =Y fler,Déi(a’)
=0 =0

where ¢; are the eigenfunctions of —A, on My, satisfying —A,¢; = A\j¢; in
My and ¢ylang, = 0.
Inserting the expansions of u and f into (4.3) results in the equations

(=02 4270 — 72 — k2 + Nz, 1) = fa, D). (4.4)

These are second order ODE for the partial Fourier coefficients. To solve
them, we will use the following simple result on solutions of linear ODE
involving Agmon type weights.

Lemma 4.2. If y = a + ib where a, b are real, a # 0, consider the equation
o —pu=f inR. (4.5)

There is a unique solution v = S, f € .#/(R) for any f € .#/(R). One has
S, : L3(R) — L(R) if § € R, and also the norm estimates

15,2y < G lizys lal > 1 and § € R,

[al

1Sz m) < Cllfllrzmy a#0and s> 1/2.

The constant C' only depends on J.

Proof. We take Fourier transforms in (4.5) and observe that for f € .%/(R),
there is a unique solution u = S, f € /(R) given by

u=7"{m(&f©)}

where m(¢) = (i€ — u)~!. The condition a # 0 implies that m is a smooth
function which satisfies

Im®|[ e < Kla| =D, k=0,1,2,....
Thus, for any 6 € R we have mf € H® if f € H®, which implies S.f e Lg.
If |a| > 1 then [[mf| s < Cslal™ | fllgs and [|SufllL2 < Cslal ™[I fI|z-
We now assume f € L% for § > 1/2. If a > 0, the solution to (4.5) is
given by

Sufte) == [ s

This has the estimate

S < [ 1ld < ( | dt)m 112

T

< Gsllf 2

since 6 > 1/2. Thus one has HSufHL2_5 < C’(;HfHL§ again since 6 > 1/2. A
similar argument gives the result if a < 0. (]
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Proof of Proposition 4.1. As argued above, we may assume ¢ = 1. Let us
also first take ¢ = 0. Then we are looking for solutions to the equation (4.3).

Let 0 < A1 < A9 < ... be the Dirichlet eigenvalues on —A,s in My, and
let ¢ € H}(Mp) be the corresponding eigenfunctions normalized so that
{#1}32, is an orthonormal basis for L*(My). If u(z1, -) € L*(Mp) we write

’l](.fl,l) = /M u(xl, )¢l dVgo.

For uniqueness, let u € H110C70(T) be a solution of (4.3) with f = 0. This
means that for all ¢ € CgO(Tint)7

/ u(—0% — 2101 — 7% — k* — Ay dV = 0.
T

We choose 9(z1,2") = x(z1)¢y;(2') where x € C°(R) and ¢; € C(M™)
with ¢;; — ¢; in H'(Mjy) as j — oo. Since T'= R x My, we have

/ </ w(z1, - )i dVgo> (—8% — 270y — 12 — kQ)X(xl) dxy
R My

+ /R ( /MO en ~><—Ax/¢>lj>dvgo) x(@1) dzy = 0.

One has —Ay¢y; — Ny in H™1(Mp) as j — oo. Since u(zy, -) € H} (M)
for a.e. x1, we have the limits as j — oo

/ w(xt, - )y dVy, — t(z1,1), / uw(xt, - )(=Apdij) dVy, — Na(z1,1),
M() MO

which are valid for a.e. 1 and for all [. Dominated convergence implies
(=0 + 2701 — 7% — k* + \)i(x1,]) =0 in R
for all [. By taking Fourier transforms in the x; variable we obtain
(& +2ir& — 72 — K* + N)a(&, 1) = 0,

with @ the Fourier transform of @ with respect to x1. The symbol £ +2i1&; —
72 — k2 + )\ is never zero because of the condition 72 + k? ¢ Spec(—A,).
This implies that u = 0.

Let us next show existence of solutions to (4.3). We consider the case
T > 0, the case with negative 7 being analogous. We start by writing (4.4),
where [ is fixed, in the form

@ -7 =N -k a=]. (4.6)

This equation can be factored into first order equations, where the factor-
ization will depend on the sign of \; — k2.
If \; > k2, then (4.6) can be written in the form

—(61—7‘+ )\l—kQ)(al—T—\/)\l—k2)ﬂ:f.

Since f € L(Qg and 7 # /A — k%2 by assumption, Lemma 4.2 implies that
there is a solution

ﬂ,( o l> - _STJr\/)\lkaSTf\//\lflﬂfN( ) ’l)
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On the other hand, if \; < k%, then (4.6) takes the form

—(O =TIV =N O —T— iV = N)i=f

and since 7 > 1 one has a solution

a(-,1) =— mszf(wl)-

Lemma 4.2, with the trivial estimate HUHLié < HvHLg, implies that

‘QIIf’( Dllzz» A< k2
@, Dllgz, <4 Clr+ )1 f(-, Dllgz, N> K2,
C( l_ ) 1||f(7 )HL%? Al>k2+47'2.

At this point C only depends on 6.
We write, for N > 1,

N

un(z1,2') =Y iz, (). (4.7)

=1

The objective is to show that as N — oo, uy converges in H?4(T) to a
function u with ulrxon, = 0 and [lullgs (1) < CT5_1||f||L§(T). If these
properties hold, then since @ satisfies (4.4) one has for uy

N
(<3} + 270 — 7 — K — Agduy = 3 Flar, Dan(a).
=1

Consequently, u will be the required solution of (4.3).
Assume that 7 > 79 > k. If 0 < s < 2, the estimates for o show that

Z/\lllu DI7z, < CR*r=0 Y IFC DI

A <k?

+C7—2(S_1) Z Hf(al)||i§+0 Z Af(/\l—kQ)_Q”f('al)H%g

k2<)\ <572 A\ >5712
< or2s=h) ZHf HLz (4.8)

The last sum on the right converges since

HfH%g(T)_/<$1>26Z]f(m1,l)\2dx1 ZHf ||L2
R =1

Then the limit v = imy_ o uy exists in L2 5(T') because of the estimate
(4.8) with s = 0. One also obtains the estimate

1
lullpz () < CT 7 fllL2er)
For the first order derivatives, note that for fixed [

o = N
(T+Z\/ k2 — )\l)u T_imf, A< k2
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so that [|0ra( - J)”L§5 < C|If(- ,Z)HLE for 7 large. Also, if Vs is the metric
gradient on My, then

IVorunllZ2 o) =/R<:v1>‘2‘5(VquN|VI/uN)MO dzy

= / (1) "2 (= Apun|un) v, dy

/ Z .21?1 6)\1‘?1 .%'1, )’ d.?Ul
R

=1
The estimate (4.8) with s = 1 shows that uy converges to u in H! 4(T'), and
||uHH16(T) < CHfHLg(T). Since un|rxam, = 0, the same is true for u.
Regarding the second derivatives, note that —Auy converges in L? 5(T)
by (4.8) with s = 2, and then ||*Aa:’u||L§5(T) < C’7'||f||L§(T). It follows
that —Ayu(zy, -) € L?(My) for a.e. 1. The boundary condition for u and
elliptic regularity imply that u(zy, - ) € H?(My) for a.e. x1, and that

IVa (@, )z < CllAzu(ze, - )llzzam)-

Thus HV%“HLQ(T) < CT||fHL§(T). Similar estimates are true for V,01u
and for

u=—f+ (210 — 1% — k* — Ay)u.
This proves that HUHHE(S(T) < CTHfHL§(T) as required.

It remains to consider the case of nonzero ¢. Denote by G the solution
operator constructed above for the free case ¢ = 0 (we may still assume that
¢ = 1), and let ¢ be such that (z1)?q € L>®(T). Ifu € Hlé,O(T) solves (4.1)
with f =0, then

Tzl( A — k2) —TT1, —qu.
Since qu € L3(T), the uniqueness result for the free case shows that u =
—G-(qu) and Hu||L35(T) < CT‘1||qu||L§(T). If 7 is sufficiently large, this
implies v = 0. For existence of a solution to (4.1), we try v = G,v where
v € LZ(T) should satisfy

(I+q¢Grv=f inT.

If 7 is sufficiently large then ¢G; is an operator on L(T') with norm < 1/2,
and consequently one can take v = (I +¢G,) ! f with ||vHL2 < 2HfHL2(T
The required norm estimates follow from the estimates for G

Remark. If ¢ € L>(T) is compactly supported, the preceding proof shows
that the claims in Proposition 4.1 remain true if one looks for a unique
solution u € H _(T) instead of u € H! 5 (T).

Definition. We let G, : L3(T') — H? ;N H'; ,(T) be the solution operator
given in Proposition 4.1 in the case ¢ = 0.

In the construction of solutions, we will need to apply the operator G, to
functions which may not decay in z;. The proof of Proposition 4.1 involves
operators S, in two cases: where |Re(u)| is large and where Re(n) may be
close to 0. The latter case is problematic since good estimates may not be
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available if there is no decay in x1. However, we only need to apply G, to
functions of special form: the behaviour in x; can be assumed to be like
€1 where A > 0. The following result will be sufficient for our purposes.

Proposition 4.3. Let k£ > 0 be fixed, let 6 > 1/2 and A > 0, and suppose
that (x1)2°q € L>®(T). There exists 79 > 1 (independent of ) such that
whenever

7| > 79 and 724 k? ¢ Spec(—Ay),
then for any f = fi1 + fo where f1 € Lg(T), f2 € L?4(T), and
F ., fo(+,2') has support in {|&1] > A} for a.e. 2’ € My, (4.9)
there is a unique solution u € H! 50(T) of the equation
E(-A -k 4+ q)e ™ u=f inT.

Further, u € H?4(T), and the solution satisfies the estimates

lullgs () < Clr~ Ifillzzer) + ||f2||L36(T)} , 0<s<2,
with C' independent of 7 and fi, fa.

Proof. We follow the proof of Proposition 4.1, and may assume ¢ = 1 (this
uses that ¢™i° f= [c% f1 + xf2] + fo where x is compactly supported in
z1, so the term in brackets is in LZ(7)) and 7 > 0. Uniqueness is proved
similarly as in Proposition 4.1, and that result also gives existence if fo = 0.
Thus, it is enough to consider the case where f = fo.

Assume first that ¢ = 0. Let 7 > 19 > k, and recall that G is defined by

Grf(xr,a) == ) {STJri\/kz_,\lST_i\/kz_Alf(‘J)} (z1)¢n (")

A <k?2

- > [STﬂ/,\l,szT,\/Al,sz('al)] (z1) (")
k2< N <572

= Y S S a0 @aa).
A >512

By Lemma 4.2 the first and third sums satisfy || - || 20y < C772|| f||2(r) for
any real number r. For the second sum we need to analyze the operator S,
more carefully. If 4 € R~ {0}, and if w € L2(R) with w(£) = 0 for |¢] < A,
we have

Suw(z) = F~Hmp ()b (€)}

where my (&) = ¥(&/M) (i€ — p)~! and 1 is a fixed smooth function satisfying
1 =0 for [{] <1/2 and ¢ =1 for || > 1. Since

m ()] < CpA 1k,

we have ||S,wl[zz2 < Cp|w|| 2.
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Using the assumption (4.9), the last estimate for S,,, and Lemma 4.2, we
have for k2 < \; < 572 that

. C, .
||5T+\/,\l,k2577\/)\l,k2f( SOIZES m”i,mﬂ SOL>:

Cr,)\ I3
S e [ LIS
It follows that G, maps L2(T) to L2(T) with norm < C't~!. The proof that
G, maps into H2 N H}}O(T ) with the right norm estimates is similar to the
corresponding part in Proposition 4.1.

It remains to prove existence when f = fy and ¢ is a potential with
(x1)%q € L°(T). We seek a solution u = G,v, where v solves

(I +qGr)v = f.

Here f satisfies the support condition (4.9), but solving this equation by
Neumann series involves multiplication with ¢ which breaks the support
condition. However, we obtain a solution v = f + v if ¥ satisfies

(I +qGr)v = —qG-f.

The right hand side is in L3(T) since G, maps f = f> into L? 5(T). We may
then use the estimate in Proposition 4.1 to show that for large 7 there is a
solution @ € L3(T) with Hz7||L§ < CT_1||f|]L36. Thus, we obtain a solution
to the original equation having the form

u=Grf+ G

This satisfies ||U||Hi5(T) < 07'8_1||f||L35(T)' =

Remark. As in the remark after the proof of Proposition 4.1, if ¢ € L (7))
is compactly supported, the claims in Proposition 4.3 remain valid if one
looks for a unique solution u € H _(T) instead of u € H'; ,(T).

oc,0

5. NORM ESTIMATES FOR DIFFERENTIAL FORMS

The purpose in this section is to prove a counterpart of Proposition 4.3
which applies to the Hodge Laplacian on differential forms. We will assume
that My and T are as in Section 4. For simplicity, we make the further
assumptions that My is two dimensional (so that 7" has dimension 3) and
the conformal factor satisfies ¢ = 1.

Let QT = QT @ Q'T @ Q>T @ Q3T be the graded algebra of differential
forms. If U is in Q7' as in Section 3 we use the vector notation

U=(R" «S'|«5° R') (5.1)

where R7,S7 € WT (j =0,1).

Let —A = dd + d be the Hodge Laplacian on Q7T, and write —A, =
dy10yr + 0prdy for the Hodge Laplacian on 2My. We will sometimes write
—Ai, for —A, acting on j-forms. Similarly to Section 4, the proof of norm
estimates for the conjugated Laplacian will require an orthonormal set of
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eigenvectors for —A,/. In the case of O-forms, we already used the orthonor-
mal basis {¢;}7°, of L?(Mj), where

Ay = N¢y in My, ¢ =0 on dMp.

Here 0 < A1 < Ao < ... are the eigenvalues of the Laplace-Beltrami operator,
counted with multiplicity.

In the case of 1-forms, one needs to make a choice of boundary condi-
tions to fix the orthonormal basis. In view of the applications to Maxwell
equations, the relative boundary conditions (see [23, Section 5.9]) will be
the right choice: there exists an orthonormal basis {1, }%_; of L*(Q! M)
of real valued forms such that

_Ax’wm = Hmwm in Mo, ty, = t(éx’wm) =0, (52)

with 0 < 1 < pg < ... the eigenvalues of —A,s acting on 1-forms.
We define Sobolev spaces with relative boundary values:

HR(Q°T) = {u € H*(Q°T); ulor = 0} (s > 1/2),
HE (') = {u € H¥(Q'T); tu = t(6u) =0 on T} (s> 3/2),
and
H{(QT) = {u € H*(QT); u has the form (5.1) and R;, S; € H§(¥T)}.
We say that u is in L2(QT) (respectively Hi(QT)) if (z1)°u € L2(QT)
(respectively (x1)%u € H*(QT)). These spaces have the norms
lull 2oy = @) ull 2oy
||U||H§(QT) = ||<331>6u||H5(QT)-

Also, u is in Hj (QT) iff (21)%u € H{(QT).
We may now state the norm estimates and uniqueness result for graded
forms.

Proposition 5.1. Let k£ > 0 be fixed, let 6 > 1/2 and A > 0, and suppose
that Q : L?5(QT) — L3(QT) is a bounded linear operator. There exists
79 > 1 such that whenever

|7| > 70 and 7%+ k? ¢ Spec(—A%) U Spec(—Al)),
and whenever F' = Fy + Fy where Fy € LE(QT), F» € L?4(QT), and F; is

of the form Fy(z) = w(x)Fy with w a scalar function and
supp(w) C {|€] > A}, Fy € L®°(QT) with Vg, Fy =0,
then there is a unique solution U € HE(;’R(QT) of the equation
(A + Qe ™U=F inT.
The solution satisfies the estimates
U a2 ory < CIr1P I Fill iz + 1R2llz2 omy|» 0<s<2,

with C independent of 7 and Fy, Fb.
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Proof. Assume 7 > 0, and first consider the case where Q = 0. If v is a
0-form on T', we have already observed that

ET(—A — ke Ty = (=02 4210 — 7% — k? — Ay)v. (5.3)

If n is a 1-form in T, we write n = n; dz' 4+’ where 71 = (1, dz') and where
n' = nodr?® + n3dx? is a 1-form on My depending on the parameter ;. A
direct computation in normal coordinates, using the identities in Section 2,

the fact that g(zq1,2') = ((1) go?x’)>’ and the identity on = —din1 + o1/,
implies that
—A(m da') = (=An) da't,
—An' = =Dy — (9fn2) dz® — (97n3) da®.
Thus, replacing 7 by e~"*15 and using that Vg, n' = (01m2) dz? + (01n3) d®
we obtain
e (—A —kY)e Ty = [(—0F + 2701 — 7% — k* — Ay )| da'+
+(=V3, +27Vy, — 7 =k = Ay)y. (5.4)
The formulas (5.3) and (5.4) give explicit expressions for the conjugated
Helmholtz operator acting on 0-forms and 1-forms. Now * commutes with
€™ (—A —k?)e~ "1 since it commutes with —A, so we have a corresponding
expression for e™1(—A — k?)e~ ™! acting on graded forms written as (5.1).

Let U be as in (5.1), and let F = ( F* *G' | «G F' )!. Write R' =
Rl dx! 4+ (R')', and similarly for S, F'', G'. The equation

(A —kNe ™ =F inT

can be written in terms of components as

0 0
(—02 + 270y — 72 — —Ax/){ & :{ o (5.5)
Rl Fl
—0% + 270, — Q—kQ—Ax/{ ! :{ v 5.6
( 1 TOp — T ) Sll G% ( )
Rl / Fl !
(V34219 - - -an{ @) L) e

The existence and uniqueness of solutions to (5.5) and (5.6) follows from
Proposition 4.3.

For the last two equations, we express (F')’ and (G')" in terms of the
eigenvectors (5.2) as

—_—~—

(F)(xlv )¢m( )’

WE

(F1) (@1,2) =

Il
_

m

—_—~—

(G1) (21, m)ipm ().

NE

(G (w1,2") =

3
I
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We look for (R')" and (S') in a similar form. Then (5.7) is equivalent with
the following equations for the partial Fourier coefficients:
(RpLy/ (L)
(02 + 270y — 7% — k2 4 ) 4 B wom) () @m) g
(51 (x1,m) (GY) (21, m).
Since 7% + k? ¢ Spec(—Al,), we may use the method in Propositions 4.1
and 4.3 to solve (5.7).
More precisely, if U € H?2 sr(Q7) and the right hand sides in (5.7) are
zero, then the relative boundary conditions imply that (—Au (R') |vy,) =
pm((RY) |¢br,) and one obtains for all m

(=07 + 2701 — 7% — k? + i) (RY) [tn) = 0.

Thus ((RY)|1m) = 0 for all m, showing that (R')’ = 0. The same argument
applies to (S')". Existence follows by solving (5.8) as in Propositions 4.1
and 4.3 and by writing (R')’ and (S!) in terms of the Fourier coefficients.

We have given the proof in the case Q = 0. However, the case where
@ is bounded operator L?4(T) — L%(T) is completely analogous to the
corresponding parts of Propositions 4.1 and 4.3. (]

6. CONSTRUCTION OF SOLUTIONS

In this section we present a construction of complex geometrical optics
solutions to the various Schrodinger, Dirac, and Maxwell equations which
were introduced in Section 3.

Let (My, go) be a simple 2-manifold, and let (My, go) be another simple
2-manifold with My C M. Write T = R x My, T = R x My, and
T = R x M for the various cylinders. Assume that T is equipped with
the Riemannian metric

g(z1,7) = <(1) go?x,)> . (6.1)

The following result provides the solutions which will be used in the integral
identity of Lemma 3.2 to recover the coefficients. Part (a) corresponds to a
solution for the Maxwell system, and part (b) gives a solution to the Dirac
system. We write —A,/ for the Hodge Laplacian in (Mo, go).

Theorem 6.1. Let (M, g) CC (T, g) be a compact manifold with boundary.
Assume that € and p are coefficients in M satisfying (1.2), (1.3), (3.1). Let
p be a point in My ~ My, and let (r,6) be polar normal coordinates in M
with center p.

There exists 79 > 1 such that for any 7 with

|7| > 79 and 7%+ k? ¢ Spec(—A%) U Spec(—Al)),
and for any constants sg,ty € R, the following statements hold:

(a) For any constant A > 0 and for any smooth function y = x(6), there
exists a solution to (—A — k? + Q)Z = 0 in M such that one has in M

(P—k+W)Y =0, Y=(P+k-WHZ,
Y0 =y3 =0,
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where Z has the form
S0

7 — e—’r(m-{—ir) |g|—1/4ei)\(ac1+ir)x(0)

T | TR (6.2)

0
and [|R||z2onr) < C|7|~! where C is independent of 7.
(b) There exists a solution to (P — k+ W*)Y =0 in M of the form

80
—isgdxt Adr
to * 1
it * dxt A dr

Y — e*T(:E1+’L'T‘) |g’71/4 +R (6.3)

where ||R||12(qar) < C|r|~! with C' independent of .

To prove this, we begin by considering the Schrédinger equation in (7', g),
where k > 0 is a constant and () is a smooth potential with compact support
in T™¢, Following [4, Section 5], we wish to construct a solution to

(-A—k*+Q)Z=0 inT (6.4)
by using a WKB ansatz with complex phase function, having the form
Z =¢ "P(A+ R). (6.5)

Here p = ¢ + i1 is a complex weight, where ¢(x) = z1 is the limiting
Carleman weight. Also, 7 > 0 is a large parameter, A € QT is an amplitude,
and R € H?5(QT) is a correction term where § > 1/2.

Introduce the conjugated operators on QT
dr = e"Pde”™™" =d — T dpA,
6y = €8P =5+ (= 1) r s dp A %
The conjugated Hodge Laplacian is then given by
—A;=e"P(=A)e P =d; 0 + 0,d;.

The next result gives explicit expressions for A, in terms of powers of 7.
Here V is the Levi-Civita connection and Vp is the metric gradient of p.

Lemma 6.2. If u is a O-form or 1-form, then
Aru = 72{dp,dp)u — T[2Vy,u + (Ap)u] + Au,
Arxu =% {73(dp,dp)u — T[2Vvy,u + (Ap)u] + Au} .

Proof. The first identity for 0-forms is a straightforward computation. If u
is a 1-form, we have

— Aru = (d—T7dpN)(0u+ 7(dp,u)) + (6 — T *dp A *)(du — Tudp)
= —Au+ 7[d{dp,u) — (5u)dp — 6(dp A u) — xdp A xdu) — 72 (dp, dp)u.

The identities in Section 2 and a computation in normal coordinates show
that

d{dp,u) — (6u)dp — §(dp N u) — *dp A xdu = 2Vy,u + (Ap)u.
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This proves the first identity for 1-forms. The Hodge star commutes with
A since it commutes with A, and second identity follows. O

We write A = ( AY «B! ‘ B0 Al )t where A% BY are 0-forms and
A, B! are 1-forms. Using Lemma 6.2, the WKB construction for solutions
to (6.4) having the form (6.5) results in the following equations in 7T":

(dp,dp) =0, (6.6)

2V, Al 4+ (Ap)AT =0 (j=0,1), (6.7)
2Vy,B7 + (Ap)B? =0 (j=0,1), (6.8)
eP(—A -k + Qe PR = (A + k% - Q)A. (6.9)

We follow the construction in [4, Section 5] and employ special coordi-
nates to solve these equations. Considering the real and imaginary parts
separately, the first equation (6.6) reads

|dy|? = |del?,  (dip,dg) = 0.

Recall that o(z) = 1. Choose a point p € My ~ My, and let (r,0) be polar
normal coordinates in (Mp, go) with center p. Then r is smooth in My, and
we obtain a solution v by setting

Y(x1,r,0) =1
Note that in the (x1,7,0) coordinates one has in T’

1
9(331,7“, 9) = 1
m(r, 0)

where m = |g| is smooth. We write

_2 85131 87’ '

The following result gives solutions to the transport equations (6.7)—(6.8).

Lemma 6.3. Assume the above notations.

(1) If a is a O-form, then 2Vy,a + (Ap)a = 0 iff 9(|g|*/*a) = 0.
(2) If nis a 1-form, then 2Vy,n+ (Ap)n = 0iff n = a1 dz’ +a, dr+ap df
with 9(|g|'*a1) = d(|g|"/*a,) = 8(|g|~"/*ag) = 0.

Proof. We have
p=x1 +ir, Vp = 20, Ap = 0 log|g|.

The equation for 0-forms is 40a + (5 log |g]) a = 0, which proves the first
part. For the second part, the form of g shows that

$0.(loglg|), k=1=9,

I _ I _
'y =0, Lop = { 0, otherwise.
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Consequently Vg, do’ = 0 for all j and Vg, do! = Vg, dr = 0, Vy, df =
—10,(log|g|) df. The result follows by noting that

Vvp(ar dz' + a, dr + ag db)
::(25al)dx1—%(25ar)dT—k(25a9——%iﬂﬂog|gDa9)d9
where £0,(log |g|) = d(log |g|). O

We are now ready to give the construction of complex geometrical optics
solutions to the Schrodinger equation.

Proposition 6.4. Let (Mo, go) CC (Mo, go) be two simple 2-manifolds, and
consider the cylinders T = R x My and T = R x M equipped with the
metric g given by (6.1). Let k& > 0 be a constant, let 6 > 1/2, and let @ be
a bounded linear operator L? 3(QT) — L3(QT). There exists 7o > 1 with
the following property: if

|7| > 79 and 7%+ k* ¢ Spec(—A%) U Spec(—Al)),
and if p, A, ag, a1, bg, b1 are any parameters such that

p is a point in My~ Myand A > 0is a constant,
(r,) are polar normal coordinates in My with center p,
ay, by are smooth functions in T of the form e*1w(a’),
(01 + 10y )a; = (01 +1i0, )by =0 in T,
then the equation (—A — k% + Q)Z = 0 in T has a unique solution

ao
|_1/4 bl * dﬂ?l
b(] * 1
ay dx?

Z = e Tt g +R (6.10)

where R € HE&R(QT). The remainder R satisfies HR||L2_5(QT) < Clr|7t
with C independent of 7.

Proof. Take p = x1 + ir and A% = |g|~"%ag, A = |g|~"/*a; dz', and also
B = |g|~Y*bg, B' = |g|~*/*by dz*. Tt follows from the discussion above that
equations (6.6)—(6.8) are satisfied, and that Z solves (—A — k? + Q)Z = 0
iff

eP(~A—k*+Q)e PR=F (6.11)
where F = (A + k* — Q) A.

The form of a; and b; implies that A € L? (QT), so QA € L}(QT),
and also that (A — k?)A = 1 Fy(a') € L2 4(QT) where Fy € L=(QT),
Va, Fy = 0. The latter fact follows from the formula for A acting on QT
computed in the proof of Proposition 5.1. Thus we have a decomposition
F = F| + F5 as in Proposition 5.1, and that result shows that there is a
unique solution R € HE&R(QT) to (6.11) with the required estimate if |7|
is large and outside a discrete set. U
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We now prove the main result on complex geometrical optics solutions.
For part (a) we need to use the uniqueness of the solutions above to conclude
that YO = Y3 = 0. Part (b) is in fact much easier since it is enough to
construct solutions to a Dirac equation in M without worrying about the
vanishing of scalar parts.

Proof of Theorem 6.1(a). Assume the conditions in Theorem 6.1, and ex-
tend € and g smoothly as constants into T. Then Q satisfies the assumption
in Proposition 6.4, and that result guarantees the existence of a solution Z
to (~A — k> +Q)Z = 0in T of the form (6.10) with R € HB&R(T) and
HRHLz_é(QT) < C|r|7t Setting Y = (P +k — W')Z, Lemma 3.1 shows that

Y solves (P—k+ W)Y =0inT.

The main point is to show that Y0 = Y3 = 0. For this we use an idea
appearing in [19]. By Lemma 3.1 we have (—A — k% + Q)Y = 0. Looking at
the 0-form and 3-form parts and using the special form of @', the equation
decouples and we obtain the following equations in 7":

(A=K + ¢V =0,
(A -k +¢")xY? =0,
where ¢° and ¢3 are smooth potentials with compact support in M,
1 1
q0 = k;2 - "4'2 - §Aﬁ+ Z<dﬁa d6>a
1 1
¢ =k —K? — ~Aa+ ~(da, da).
2 4
Now, writing p = x1 +4r and Z = e "?(A + R), Y has the form

YO — (Pt k—WHZ)P = e <(—15T Iy Wt> (A+ R))O
=e P (yo+ o).
Here we have written
Yo = — 30, A1 + kAL,
ro = —(W'(A+ R)) — 10, B + kR

Since R € H357R(QT) we see that 7o € H! (T) and rolar = 0.
We will choose A, A so that

Yo = 0. (6.12)
Then e~ ""rg will be a solution in H! s0(T) of the equation
e (=A = k2 4+ ¢")e ™ (e ) =0 in T,

and the uniqueness part in Proposition 4.1 will show that r¢ = 0, so also
Y9 = 0, if |7] is sufficiently large. To obtain (6.12) we make the choices
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AV = ’9’71/4660; Al = ’9’71/4@ dz! where

ag — 17 5061)\(331+ZT)X(0)7 (613)
T
1
ap = %67(@ dz'). (6.14)
This is consistent with Proposition 6.4 since (9; + i0,)a; = 0 and since
1 T — 3\
ap = %(—&al +71ay) = i a1 (6.15)

so also (9 410, )ag = 0, and both ag and a; are of the form e**1w (). Now
(6.12) holds because

1 1 1
Yo = —557141 + kAY = —;<ST(|g|*1/4a1 dxt) + /<:|g|*1/4%57(a1 dz') = 0.

We have established that Y9 = 0 given the choices (6.13)-(6.14). A
similar computation for Y3, with

by = %ei)\(m1+ir)x(‘9)
=

1
bo = %57(131 dxt),

shows that Y3 = 0. Finally, we note that Z is of the form
Z =gV (ap #bida' | xbg ardz' )+ R]

where ag = soe™@1 )y (0) + O(|7|~1) by (6.15), and a; = O(|7|~1). We
have written O(|7|~!) for quantities whose L?(M) norm is < C|7|~!. Similar
expressions are true for bg and b;. This shows that Z has the required form

(Note that a; and b; are mildly 7-dependent, but their W*°(T) norms
are bounded uniformly in 7 which implies that final constant C' does not
depend on 7). O

)

Proof of Theorem 6.1(b). Again, assume the conditions in Theorem 6.1 and
extend € and p smoothly as constants into 7. Let @ be the potential in
Lemma 3.1. We look for a solution to (—A —k?+Q)Z = 0 in M of the form

0

to * dat
0

so dzt

7 — e—T(xl—l—ir) |g|—1/4 +R

Write p = o1 +ir and A = |g|_1/4( 0 tox*daxt ‘ 0 sodx! )t. Following
the WKB construction, it is enough to solve

eP(—A—k*+Q)(e"R) = (A+ k> —Q)A in M.

Define F € L3(QT) with F = ¢ (A + k> = Q)A in M and F = 0 in
T ~ M, and let e”""R be a solution provided by Proposition 5.1 of the
equation €™ (—A—k>+Q) (e~ ™1 [e"""R]) = F in T. This gives the required
solution Z in M satisfying || R[[z2nr) < C|7r|~! and IRl g oary < C.
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We set
1 _
Y=—(P+k-W)Z
T

By Lemma 3.1 this satisfies (P — k + W*)Y =0 in M, and

Y = e <1d7 _ %(» k- v‘v) (r'A+7'R)

lg| =1/ 1 1
:e_Tp[—,dp/\(Sodﬂﬁ +to*dx)
i
lg| =1/ 1 1 1
— S xdp Ax(soda’ —to xda') + O( )
150
1
R —1/4 sodx™ Adr 1
e |lgl o +O(717)
—to * dz' Adr

Here O(|7|™1) denotes a quantity whose L*(QM) norm is < C|r|~1. The
result follows upon replacing sg by —isg and tg by —itg. O

7. RECOVERING THE COEFFICIENTS

We shall use the complex geometrical optics solutions constructed in The-
orem 6.1 to prove Theorem 1.1. The first step is a reduction to the case where
the conformal factor in the metric is equal to one. We write A = A, ., for
the admittance map in (M, g) with coefficients € and p.

Lemma 7.1. Let (M, g) be a compact Riemannian 3-manifold with smooth
boundary, and let ¢ and u satisfy (1.2)—(1.4). If ¢ is any smooth positive
function on M, then

Acg,a,u = Ag,cl/28,cl/2u‘

Proof. Follows by noting that x.,u = 3/2k *g u for a k-form u, so that

a pair (E, H) satisfies (1.1) with metric cg and coefficients ¢ and p iff it
satisfies (1.1) with metric g and coefficients ¢!/?c and ¢'/?p. O

Proof of Theorem 1.1. According to Lemma 3.2 we may assume that (3.7)
holds and the identity (3.8) is valid. By the definition of admissible mani-
folds, there are global coordinates x = (x1, ') such that g has the form

o) =) (5 i)

If Ageyn = Agespo, then also A1p 1o, a2, = A
Lemma 7.1. This shows that we may also assume c = 1.

By Theorem 6.1, if 7 is outside a discrete set and |7| is sufficiently large,
and if x(0) is a smooth function and A > 0 and s¢ and ¢y are real numbers,
then there exist Z; and Y in H?(2M) satisfying the conditions in Lemma

by

c1g,c/2e9,cM/ 2y
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3.2 and having the form

S0
7 = e—T(Il+’iT) |g|—1/4ei>\($1+i7“)x(9) ; 0 + Ry,
0k ].
0
80
, 1
¥y = erer=in) ||g-1/4 isodx* Adr + R
to * 1

—itg * dzt A dr

where || Rl 12¢quy < Cl7|~! with C independent of 7. In the second solu-
tion, we used —r instead of r as the solution of the eikonal equation.
By Lemma 3.2, these solutions satisfy the identity

/ (Q1— Q2)Z1,Ys) dV = 0.
M

Letting 7 — oo outside the discrete set and using the estimates for R;, we
obtain in terms of the x = (x1,,0) coordinates that

S0 S0

0 —150 dzt A dr iX(x1+ir) _
/M<(Q1—Q2) oxl | fox 1 >6 x(0) dz = 0.

0 ito * do' A dr

Let g, and gg be the elements of Q1 — (@2, interpreted as a 8 x 8 matrix, which
correspond to the (1, 1)th and (5, 5)th elements, respectively. By Lemma 3.1
1

1 1
Ga = EA(OQ — )+ Z<d0¢1, day) — Z<da2,da2> — w?(e111 — 212),

qp = %A(ﬂl — B2) + i<d/817d51> - i<dﬂ2,dﬁ2> — w?(e1piy — e2p12).
With the two choices (sg,t0) = (1,0) and (so,t9) = (0,1), the special form
of 1 and )2 in Lemma 3.1 shows that we obtain the two identities
Jur €2 X (0)ga (2) dz = 0,
fM eM(Wr”)X(H)qﬁ(x) dx = 0.

We extend g, and gg to be zero in T' . M, where T' 2D M is as in the
definition of admissible manifolds. Then the integrals above may be taken
over T'= R x M. Varying x(6), it follows that for all § we have

/ e A" {/ e gy (21,7, 6) dml] dr =0
0 —0o0

and similarly for gz. Now, since (r,§) are polar normal coordinates in My,
the curves r — (r, ) are geodesics in My. Denoting the expression in brack-
ets by fo(r,0) and varying the point p in Theorem 6.1 and varying 6, we

obtain that . i
|7 e |- [(xas] ar=o
0 0

for all geodesics v in My which begin and end at points of 9My. This shows
the vanishing of the geodesic ray transform of the function f, with constant
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attenuation —\. For more details we refer to [4, Section 7]. In particular,
the injectivity result given by Theorem 7.1 in [4] implies that f, = 0 for all
positive A which are sufficiently small. Thus

w .
/ ev‘“qa(:vl, r,0)dx; =0
—o

for such A and for all » and #. Since ¢, is compactly supported in z1, the
Paley-Wiener theorem shows that ¢, = 0 in M. We obtain gg = 0 in M by
the exact same argument.

We have arrived at the following two equations in M:

—3A (0 — ag) — {d(on + ), d(e1 — @2)) + w(e1p1 — eap2) = 0,
—3A(B1 — B2) — H{d(Br + B2),d(B1 — Ba)) + w?(e1p1 — e2p2) = 0.

Let u = (g1/2)Y? and v = (u1/p2)"/?. Then 2(oq — ap) = log u, and the
equations become

—A(log u) — (5152)_1/2<d(5152)1/2,d(log u)) + w?(e1 1 — eap2) = 0,

—A(log v) = (p1p2)"V2{d(p1p2) "2, d(log v)) + w? (€101 — e2p12) = 0.

Multiplying the first equation by (1£2)'/? and the second by (ju12)'/?, and

using that §(aVw) = —aAw — (da,dw), we see that u and v satisfy the
semilinear elliptic system

§(e2du) + w22 s (uv? — 1)u =0,

§(padv) + wlequd(u?v? — 1)v = 0.
The condition (3.7) ensures that one has u = 1 and v = 1 near M . Also,
the above equations imply that the pair (@,?0) = (1,1) is a solution of the
semilinear system in all of M. By Theorem B.1 unique continuation holds

for this system, and we obtain « = 1 and v = 1 in M. This proves that
€1 =¢eo and py = pe in M as required. O

We now prove Theorem 1.2. The treatment below follows [12]. Let
) C R? be a bounded open set with smooth boundary, and let € and g
be symmetric positive definite (1,1)-tensors on Q. We equip Q with the
Euclidean metric e. The Maxwell equations (1.5) can be written as

curly(E) = iwpH, (7.1)
curle(H) = —iweE. ‘

Here
curly (X) = (%.dX")*
with the flat and sharp operators taken with respect to e.

For the vector fields E = (Ey, Eo, E3) and H = (Hy, Hy, Hs), let E =
EP = E; dzd and H=H’ = H fi dz? be the corresponding 1-forms. To write
(7.1) in a form similar to (1.1), it is enough to find Riemannian metrics g.
and g, so that

*e(sﬁ)b =xg F, *e(uﬁ)b = g, H.
These conditions will be satisfied if we choose in local coordinates

) 1 . 1
Jk _ k Jk _ k. 7.2
9e det(e) EANEL (7.2)
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Then (7.1) is equivalent with

{ %g,dE = iwH,

*g.dH = —iwkE. (7.3)

We now use the assumption that £ and p are in the same conformal class,
so that u = o?¢ for some smooth positive function a on (2. This allows to
define a metric g on 2 by

g = 04295 = aizgu‘

1/2

Since *cqu = ¢~/ x4 u for a 2-form u, (7.3) is equivalent with

{ *gd B = twaH,

xgdH = —iwa 1E. (74)

This is of the form (1.1), and further the tangential boundary condition
tE = f is of the same form as (1.6). Since (7.4) is equivalent with (1.5),
Theorem A.1 implies that for w outside a discrete set of frequencies the
system (1.5)—(1.6) is uniquely solvable for a given boundary value f The
admittance map A for (1.5) reduces to the map A, -1 4.

Given this reduction, it is easy to prove the second main result of the

paper.

Proof of Theorem 1.2. Upon interpreting € and pu as (0, 2)-tensors by raising
one index with respect to the Euclidean metric, the condition (7.2) implies
that

e=det(e)g: !, p=det(n)g, "

From the assumption in the theorem, we know that there is an admissible
metric g and smooth positive functions c;, ¢; on € for which

9e, =29, Gu, =g

Using these formulas in (7.3), the Maxwell equations in Q with coefficients
€; and p; are equivalent with

*gdE = iwcjH,
xgdH = —iwc; E.
Since the admittance maps for the Maxwell equations in €2 coincide, it follows

that Ay s = Agesa- From Theorem 1.1 we obtain ¢; = ¢z and ¢ = ¢,
which implies that g., = g, and g,, = gu,. By (7.2)

1 1 1 1
_ €9, = .
2 det(/.tl)'ul M2

det(e) "' T det(ze) det(jia)

Taking determinants gives that det(e1) = det(e2) and det(u1) = det(u2).
Consequently €1 = g9 and pp = po. U

Remark. Note that in the setting of (1.1), if € and u are real valued, then
a conformal scaling of the metric would reduce (1.1) to a system of the form
(7.4). Therefore, in Sections 3 and 6 it would be enough to consider the case
where p = ¢!, which would simplify some of the arguments slightly.
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APPENDIX A. WELLPOSEDNESS THEORY

Let (M,g) be a compact oriented Riemannian 3-manifold with smooth
boundary 0M. Consider the Maxwell equations

xdE =iwpH in M,
xdH = —iweF in M,

with the tangential boundary condition
tE=f ondM. (A.2)

Here we assume that ¢ and p are complex functions in C*(M) whose
real parts are positive in M, and w is a complex number. To describe the
boundary condition in more detail, we introduce the Div-spaces

HE (M) = {u € H*QY(M); Div(tu) € H>"Y2(0M)},
THY, (OM) = {f € H*QY(OM) ; Div(f) € H*(OM)}.

There are Hilbert spaces with norms

(A1)

lulls, ) = llullzsoran + IDVEW] 1720900
[ fllrms, orr) = [1f | s oar) + 1DV s o01)-
It is easy to see that t(Hp, (M)) = THB;}/Q(@M) for s > 1/2.

Theorem A.1. Let ¢, € C*(M), k > 2, be functions with positive real
parts. There is a discrete subset 3 of C such that if w is outside this set,
then one has a unique solution (E, H) € HE. (M) x HE. (M) of (A.1)-(A.2)
given any f €T Hﬁ;}l/ 2(éUW ). The solution satisfies

1B g, oy + 1 i, oy < CNFlppgisrs o

with C' independent of f. In particular, if ¢,y € C°(M) and f € QY(OM),
then there is a unique solution (E, H) € QY(M) x QY(M).

The existence of a solution will be proved by the well-known variational
method as in [3], [13]. We proceed to describe this method. The first step is
to solve for H in the first line of (A.1) and to substitute this on the second
line, which leads to the second order equation

S(uldE) — w?eE = 0.
However, this equation does not imply the divergence condition §(eF) = 0
which is necessary for solutions of (A.1). To make up for this, we consider
the modified equation
S(u Y dE) + se 1dd(cE) — w?*cE =0
where s is a positive real number. The condition d(¢E) = 0 will follow later
from the equation
58(e 71 d[0(¢E)]) — w?6(cE) = 0,

which is obtained by applying ¢ to the earlier equation.
To connect the present situation to boundary value problems for the
Hodge Laplacian, we write e = e ' and note that e should satisfy

S(u~td(e 7 e)) + setdde — w?e = 0. (A.3)
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Taking the L? inner product of this with &€ for a 1-form é, and assuming
the relative boundary conditions (see [23, Section 5.9])

te =té =0 and t(de) = t(de) =0
or the absolute boundary conditions
t(xe) =t(x€) =0 and t(0 xe) = t(d * €) = 0,

we end up with the following bilinear form for solving the Maxwell equations.
Definition. If e,é € H!Q'(M) (where b= R or b = A), we define

B(e, &) = (ntd(e7te)|d(€€)) + s(e|dé).
Here we have used the spaces

HEQN (M) = {u € H'QY (M) ; tu = 0},

HYQN (M) = {u € H'QY(M); t(xu) = 0}.
If k > 2 we define HEQY (M) = {u € H*QY(M); tu = t(6u) = 0} and
HEQY (M) = {u € HFQY (M) ; t(xu) = (6 x u) = 0}.

One defines weak solutions of (A.3) in the usual way. The main point is
the following solvability result.

Proposition A.2. Let € and u be functions in C''(M) with positive real
parts, and let s be a positive real number. There is a discrete set ¥ in C
such that if w is outside this set, then for any f € (H}Q(M)) the equation

S(utd(e " e)) + se7ldde — wle = f (A.4)
has a unique solution e € HQY(M) (b= R or A). One has
lellz < Cllfll ey
Proof. Clearly B is a sesquilinear form on H}Q(M) with
[B(e,e)| < Cllellmlléll -
We may write B(e, e) = By(e, e) + Bi(e, e) where
By(e, e) = (ntde|de) + s(de|de),

and Bj is a sesquilinear form such that |By(e,e)| < Clle||z|le||z1- It follows
that

Re B(e,€) 2 c|de|7z + s[|del72 — Cllell2]le] -
We now invoke a Poincaré inequality for 1-forms with relative or absolute
boundary values: by [23, Section 5.9] one has

lullfp < ClullZe + lldullFe + 18ull7z),  u € HyQ'(M).
It follows that
Re B(e,e) 2 cllelfn — Clle]7..
We have proved that for some Cy > 0, the sesquilinear form B + d is
bounded and coercive on H}QY(M) for any d € L*®(M) with Re(d) >

Cy. By the Lax-Milgram theorem there is a bounded linear operator T :
(HQ'Y — H!Q! which maps f to the unique solution e of (A.4) where
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—w? is replaced by the constant C; = Cp/mingeps Re(e). Now, e solves

(A.4) iff
(I —(Cy +wHT)e=TF.
The last equation has a unique solution iff either (C; + w?)~! ¢ Spec(T') or
w? = —Cy. The operator T : Hlel — Hlel is compact by the compact
embedding H} Q' — L2Q!, and 0 ¢ Spec(T), so Spec(T') is discrete. Then
the set
¥, = {w e C~ {£i\/C1}; (C1 +w?) ™! € Spec(T)}

is also discrete and (A.4) is uniquely solvable for any w ¢ C ~\ 3. O

Given the last result, higher order regularity for solutions follows in a
similar way as for the Hodge Laplacian (for more details see [23, Proposition
9.7] and the results mentioned there).

Proposition A.3. Let € and u be functions in C*(M), k > 2, with positive
real parts, and let s > 0. If w ¢ X, then for any f € H*2QY(M) the
equation (A.4) has a unique solution e € HFQ' (M) (b= R or A), and

lellzr < Cllf iz

Further, if w is any complex number and if e € H}Q' (M) solves (A.4) for
some f € H*2Q1(M), then e € HFQ(M).

Finally, we connect the above discussion to the Maxwell system and prove
the main result.

Proof of Theorem A.1. We take ¥ to be the set X1 in Proposition A.2, and
assume that w ¢ 3. As a technical preparation, we choose s > 0 so that
w?/s is not an eigenvalue of the operator u +— &(¢~*du) defined on H}(M).
We then have w ¢ X, which may be seen as follows: if e € HLQ (M)
satisfies (A.3), then e € H30! (M) by Proposition A.3, and applying § to
both sides of (A.3) shows that u = de is a solution in Hg (M) of

s6(e tdu) — wu = 0.

By the choice of s we have v = 0, which implies that e satisfies (A.3) with
s =1. Then e = 0 by the assumption w ¢ 31, and therefore w ¢ 3.

For uniqueness, if (E, H) € Hp, (M) x H. (M) solve (A.1)~(A.2) with
f =0, then one has

S(uldE) = Ww¢cE,
i(eE) =0.
It follows that e = eE is in H5Q(M) and
S(ptd(e7te)) + e tdde — w?e = 0.

Proposition A.2 shows that e = 0, which implies £ = H = 0.

Let us proceed to prove existence of solutions. Given f € TH]];_VI/ 2 (OM),
choose E° € HE. (M) with tE = f and t5(eE°) = 0. A computation in
boundary normal coordinates shows that the extension map f — E° can be
taken to be bounded and linear TH]’;i_Vl/Q((?M) — HE. (M).
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We let e € HEQl(M) be the solution, given by Proposition A.3, of
S(utd(e te)) + seldde — wPe = F
with F' = —6(u"'dE®) — se71d§(¢E°) + w?eE° € H*2Q'(M). Now define
E=¢"'e+ E’and H = ﬁ x dE/. With these conventions, F satisfies the
equation
S(urdE) + se71dé(eE) — w?eE = 0. (A.5)
We now claim that
d(eE) =0. (A.6)
In fact, by taking ¢ of both sides of (A.5), the function u = §(eE) € H} (M)
satisfies s0(e~1du) — w?u = 0, showing that u = 0 by the choice of s.

The first equation in (A.1) is satisfied by definition, and also the second
equation is valid since by (A.5) and (A.6)

1 1
xdH = —6(u 'dE) = ——c'di(¢E) — iweE = —iweE.
1w 1w

The 1-form E is in HE (M) and tE = f. The l-form H is initially in
H*=1QY(M) by definition. However, a similar argument which was used to
establish (A.3) shows that h = pH satisfies the second order equation

S(etd(uth)) + p~tdsh — w?h = 0.

Also, a computation in boundary normal coordinates gives the following
boundary conditions for h:

H(xh) = it(dE) _ %Div( f)ds,
t(dxh) =t(xd(pH)) = t(xdu N H) —iwuef.

Since f € THII;;VI/ >and H € H k=1 one can check by a computation in
boundary normal coordinates that there exists h® € H*QY (M) for which
h=h—hYis in Hﬁ_lﬁl(M). Now h satisfies the equation

S(e td(uth)) + ptdoh — wh = F
for some F' € H*=2Q!(M). Elliptic regularity (as in Proposition A.3) implies

that h € H*Q'(M) which is then true for H too. We have H € HE. (M)
because

Div(tH) = — (v, *dH)|on = iwe (v, E)|oy € HF/2(0M).
U

Remarks. 1. If e,p € C?(M), then the conclusion of Theorem A.1 is
valid also for k¥ = 1. This follows from the above argument upon
approximating f € T H}D{g by smooth tangential fields.

2. Theorem A.1 considers the case where € and p are independent of w.
In applications the coefficients are often w-dependent, for instance in
lossy materials one writes € = Re(e) + i0/w with Re(e) > 0,0 > 0,
and p > 0 independent of w. In the last case, wellposedness in
Euclidean domains was shown in [20]. Of course, Theorems 1.1 and
1.2 are valid whenever the admittance map is well defined (this is
the content of assumption (1.4)).
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APPENDIX B. UNIQUE CONTINUATION

This section contains a unique continuation result for principally diagonal
systems required in the final recovery of coefficients. The result is well known
and follows from standard scalar Carleman estimates, but since we could not
find a proper reference a proof is included here.

Theorem B.1. Let (M, g) be a compact connected Riemannian manifold
with boundary, and let «,., 6, be Lipschitz continuous functions in M with
positive real parts (r =1,..., N). Consider the operators

P = i(S(Brdu),
Qy

P = diag(P,..., Pn).
Let I be an open subset of M. If @ € H?>(M)" satisfies
|Pi(x)| < C(|u(z)| + |Vi(z)|) for a.e. ze€ M,
i|r = dyt|r =0,
then @ =0 in M.

More generally, strong unique continuation holds in this setting. We will
deduce Theorem B.1 from the next result which is stated in R™.

Theorem B.2. Let B be a ball in R™ with center xg, let (gjk)?k:1 be a
Lipschitz continuous symmetric positive definite matrix in B, and let ay, Br
be Lipschitz continuous functions in B with positive real parts. Consider
the operators

1 )
;8567' (6Tg]kal‘ku)7

P= diag(Pl, ce 7]DN).

Pou=

If @ € H(B)" satisfies for all K > 0
|Pi(z)| < C(lu(x)| + |Vi(z)|) for ae. xz € B,

lim TK/ |ii(x)|? dx = 0,
r—0 B(zo,r)

then # =0 in B.

Proof of Theorem B.1. If @ is as in Theorem B.1, we fix a point on I' and
take M to be a manifold obtained by enlarging M slightly near this point.
Extending @ by zero to M and extending o, and 3, as Lipschitz functions,
we see that |Pi| < C(|d| 4+ |Vi]) a.e. in M and @ = 0 in some open subset.
Working in local coordinates and using Theorem B.2 with a connectedness
argument proves the result. U

To prove Theorem B.2, note that we can assume «, = 1, and by dif-
ferentiation that 8, = 1. Letting Lu = 8,,(g*0y,u), this implies that
P, = ... = Py = L. We may also assume that 2o = 0 and B = B(0,1),
and that « is real valued. The result is a consequence of the following scalar
Carleman estimate.
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Proposition B.3. Let A > 0 be such that A7!|¢|? < ¢7%¢;€, < A|¢)? in B
and szzl\gjk(m) — g% (y)| < M|z — y| for x,y € B. There exists 0 < § < 1
and M > 0, only depending on n and A, and a function w satisfying

(2l/M <w(z) < Mlz| in B,
such that for all @« > M and all u € C2°(B(0,0) ~ {0}) we have

/ (aw'™2%|Vu|? + oPw 1 72%?%) dz < M/ w? 2% (Lu)? du.
B B

This estimate is proved in [5, Theorem 2.1], and is also contained in
[8] with slightly different hypotheses. Theorem 2.1 in [5] is given in the
parabolic setting, but the result above follows by applying the estimate
in [5] to v(z,t) = O(t)u(r) where 6 is a cutoff function. One then notes
that when the coefficients are independent of ¢, the w(z,t) constructed in
[5] depends only on z, so the inequality (2.1) in [5] yields the lemma by
integrating in ¢ and absorbing the extra term on the right by making « even
larger.

As an immediate corollary to Proposition B.3, for @ € C2°(B(0,46)~{0})"
we have that

/ (aw! 20|V + w20 a@2) dz < M / w22\ Pil? da.
B B

Once we have the last estimate, after the initial reductions, Theorem B.2
follows immediately using the standard Carleman method.
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