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Abstract. We study the local behavior of a solution to the Stokes system with
singular coefficients in Rn with n = 2, 3. One of our main results a the bound

on the vanishing order of a nontrivial solution u satisfying the Stokes system,

which is a quantitative version of the strong unique continuation property for
u. Different from the previous known results, our strong unique continuation

result only involves the velocity field u. Our proof relies on some delicate

Carleman-type estimates. We first use these estimates to derive crucial optimal
three-ball inequalities for u. Taking advantage of the optimality, we then derive

an upper bound on the vanishing order of any nontrivial solution u to the

Stokes system from those three-ball inequalities. As an application, we derive
a minimal decaying rate at infinity of any nontrivial u satisfying the Stokes

equation under some a priori assumptions.

1. Introduction. Assume that Ω is a connected open set containing 0 in Rn with
n = 2, 3. In this paper we are interested in the local behavior of u satisfying the
following Stokes system:{

∆u+A(x) · ∇u+B(x)u+∇p = 0 in Ω,
∇ · u = 0 in Ω,

(1.1)

where A and B are measurable satisfying

|A(x)| ≤ λ1|x|−1| log |x||−3, |B(x)| ≤ λ1|x|−2| log |x||−3 ∀ x ∈ Ω (1.2)

and A · ∇u = (A · ∇u1, · · · , A · ∇un).
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For the Stokes system (1.1) with essentially bounded coefficients A(x), the weak
unique continuation property has been shown by Fabre and Lebeau [6]. On the
other hand, when A(x) satisfies |A(x)| = O(|x|−1+ε) with ε > 0, the strong unique
continuation property was proved by Regbaoui [20]. The results in [6] and [20]
concern only the qualitative unique continuation theorem and both results require
the vanishing property for u and p. In this work we aim to derive a quantitative
estimate of the strong unique continuation for u satisfying (1.1) with an appropriate
p.

For the second order elliptic operator, using Carleman or frequency functions
methods, quantitative estimates of the strong unique continuation (in the form of
doubling inequality) under different assumptions on coefficients were derived in [4],
[7], [8], [15], [17]. For the power of Laplacian, a quantitative estimate was obtained
in [18]. We refer to [17] and references therein for development in this direction.

Since there is no equation for p in the Stokes system (1.1), we apply the curl
operator ∇× on the first equation and obtain

∆q +∇ · F = 0, (1.3)

where q = ∇ × u is the vorticity and for n = 2, ∇ × u = ∂1u2 − ∂2u1. For
n = 3, ∇ · F is a vector function defined by (∇ · F )i =

∑3
j=1 ∂jFij , i = 1, 2, 3,

where Fij =
∑3
k,`=1 Ãijk`(x)∂ku` +

∑3
k=1 B̃ijk(x)uk with appropriate Ãijk`(x) and

B̃ijk(x) satisfying

|Ãijk`(x)| ≤ C0| log |x||−3|x|−1, |B̃ijk(x)| ≤ C0| log |x||−3|x|−2 ∀ x ∈ Ω. (1.4)

When n = 2, ∇ · F is a scalar and we simply drop the suffix i in the definition
above. Now we define ∇⊥ ×G = ∇×G for any three-dimensional vector function
G and ∇⊥ × g = (∂2g,−∂1g) for a scalar function g if n = 2. It is easy to check
that ∆u = ∇(∇ · u)−∇⊥ × (∇× u) and thus we have

∆u+∇⊥ × q = 0 (1.5)

if ∇ · u = 0. However, equations (1.3) and (1.5) do not give us a decoupled system.
The frequency functions method does not seem to work in this case. So we prove our
results using Carleman inequalities. On the other hand, since the coefficient A(x) is
more singular than the one considered in [20]. Carleman-type estimates derived in
[20] can not be applied to the case here. Hence we need to derive new Carleman-type
estimates for our purpose. The key is to use weights which are slightly less singular
than the negative powers of |x| (see estimates (2.4) and (2.15)). The estimate (2.15)
is to handle (1.3) and the idea is due to Fabre and Lebeau [6].

We can derive certain three-ball inequalities which are optimal in the sense ex-
plained in [5] using (2.4) and (2.15). We would like to remark that usually the
three-ball inequality can be regarded as the quantitative estimate of the weak unique
continuation property. However, when the three-ball inequality is optimal, one is
able to deduce the strong unique continuation from it. It seems reasonable to expect
that one could derive a bound on the vanishing order of a nontrivial solution from
the optimal three-ball inequality. A recent result by Bourgain and Kenig [3] (more
precisely, Kenig’s lecture notes for 2006 CNA Summer School [14]) indicates that
this is indeed possible, at least for the Schrödinger operator. In this paper, we show
that by the optimal three-ball inequality, we can obtain a bound on the vanishing
order of a nontrivial solution to (1.1) containing ”nearly” optimal singular coeffi-
cients. Finally, we would like to mention that quantitative estimates of the strong
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unique continuation are useful in studying the nodal sets of solutions for elliptic or
parabolic equations [4], [9], [16], or the inverse problem [1].

We now state the main results of this paper. Their proofs will be given in the
subsequent sections. Assume that there exists 0 < R0 ≤ 1 such that BR0 ⊂ Ω.
Hereafter Br denotes an open ball of radius r > 0 centered at the origin.

Theorem 1.1. There exists a positive number R̃ < 1, depending only on n, such
that if 0 < R1 < R2 < R3 ≤ R0 and R1/R3 < R2/R3 < R̃, then∫

|x|<R2

|u|2dx ≤ C

(∫
|x|<R1

|u|2dx

)τ (∫
|x|<R3

|u|2dx

)1−τ

(1.6)

for (u, p) ∈ (H1(BR0))n+1 satisfying (1.1) in BR0 , where the constant C depends
on R2/R3, n, and 0 < τ < 1 depends on R1/R3, R2/R3, n. Moreover, for fixed R2

and R3, the exponent τ behaves like 1/(− logR1) when R1 is sufficiently small.

Remark 1.2. It is important to emphasize that C is independent of R1 and τ has
the asymptotic (− logR1)−1. These facts are crucial in deriving an vanishing order
of a nontrivial (u, p) to (1.1). Due to the behavior of τ , the three-ball inequality is
called optimal [5].

It should be emphasized that three-ball inequalities (1.6) involve only the velocity
field u. This is important in the application to inverse problems for the Stokes
system, for example, see [2] and [10]. Using (1.6), we can also derive an upper bound
of the vanishing order for any nontrivial u satisfying (1.1), which is a quantitative
form of the strong unique continuation property for u. Let us now pick any R2 < R3

such that R3 ≤ R0 and R2/R3 < R̃.

Theorem 1.3. Let (u, p) ∈ (H1(BR0))n+1 be a nontrivial solution to (1.1), then
there exist positive constants K and m, depending on n and u, such that∫

|x|<R
|u|2dx ≥ KRm (1.7)

for all R with R < R2.

Remark 1.4. Based on Theorem 1.1, the constants K and m in (1.7) are given by

K =
∫
|x|<R3

|u|2dx

and

m = C̃ log
(∫
|x|<R3

|u|2dx∫
|x|<R2

|u|2dx

)
,

where C̃ is a positive constant depending on λ1, n and R2/R3.

From Theorem 1.3, we immediately conclude that if (u, p) ∈ (H1
loc(Ω))n+1 satis-

fies (1.1) and for any N ∈ N, there exists CN > 0 such that∫
|x|<r

|u|2dx ≤ CNrN ,

then u vanishes identically in Ω. Consequently, p is a constant in Ω. This is a new
strong unique continuation result for the Stokes system with singular coefficients.

By three-ball inequalities (1.6), one can also study the minimal decaying rate of
any nontrivial velocity u to (1.1) with a suitable assumption on the coefficients A
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and B (see [3] for a related result for the Schrödinger equation). Consider (u, p)
satisfying (1.1) with Ω = Rn, n = 2, 3. Assume here that

‖u‖L∞(Rn) + ‖A‖L∞(Rn) + ‖B‖L∞(Rn) ≤ λ2. (1.8)

Denote
Mr(t) = inf

|x|=t

∫
|y−x|<r

|u(y)|2dy.

Then we can prove that

Theorem 1.5. Let (u, p) ∈ (H1
loc(Rn))n+1 be a nontrivial solution to (1.1). Assume

that (1.8) holds. Then for any r < 1, there exists c > 0 such that

Mr(t) ≥ rcζ
(1+ t

r
)
,

where c depends on λ2, n,
∫
|x|<r |u|

2dx and ζ = 1 + 2C̃ log(1/r) with C̃ given in
Remark 1.4.

We can apply Theorem 1.5 to the stationary Navier-Stokes equation.

Corollary 1.6. Let (u, p) ∈ (H1
loc(Rn))n+1 be a nontrivial solution of the stationary

Navier-Stokes equation:

−∇u+ u · ∇u+ ρu+∇p = 0, ∇ · u = 0, in Rn

with n = 2, 3. Assume that

‖u‖L∞(Rn) + ‖ρ‖L∞(Rn) ≤ λ3.

Then for any r < 1, there exists c̃ > 0 such that

Mr(t) ≥ rc̃ζ
(1+ t

r
)
,

where c̃ depends on λ3, n, and
∫
|x|<r |u|

2dx.

This paper is organized as follows. In Section 2, we derive suitable Carleman-
type estimates. A technical interior estimate is proved in Section 3. Section 4 is
devoted to the proofs of Theorem 1.1, 1.3. The proof of Theorem 1.5 is given in
Section 5.

2. Carleman estimates. Similar to the arguments used in [11], we introduce polar
coordinates in Rn\{0} by setting x = rω, with r = |x|, ω = (ω1, · · · , ωn) ∈ Sn−1.
Furthermore, using new coordinate t = log r, we can see that

∂

∂xj
= e−t(ωj∂t + Ωj), 1 ≤ j ≤ n,

where Ωj is a vector field in Sn−1. We could check that the vector fields Ωj satisfy
n∑
j=1

ωjΩj = 0 and
n∑
j=1

Ωjωj = n− 1.

Since r → 0 iff t→ −∞, we are mainly interested in values of t near −∞.
It is easy to see that

∂2

∂xj∂x`
= e−2t(ωj∂t − ωj + Ωj)(ω`∂t + Ω`), 1 ≤ j, ` ≤ n.

and, therefore, the Laplacian becomes

e2t∆ = ∂2
t + (n− 2)∂t + ∆ω, (2.1)
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where ∆ω = Σnj=1Ω2
j denotes the Laplace-Beltrami operator on Sn−1. We recall that

the eigenvalues of −∆ω are k(k + n− 2), k ∈ N, and the corresponding eigenspaces
are Ek, where Ek is the space of spherical harmonics of degree k. It follows that∫∫

|∆ωv|2dtdω =
∑
k≥0

k2(k + n− 2)2
∫∫
|vk|2dtdω (2.2)

and ∑
j

∫∫
|Ωjv|2dtdω =

∑
k≥0

k(k + n− 2)
∫∫
|vk|2dtdω, (2.3)

where vk is the projection of v onto Ek. Let

Λ =

√
(n− 2)2

4
−∆ω,

then Λ is an elliptic first-order positive pseudodifferential operator in L2(Sn−1). The
eigenvalues of Λ are k + n−2

2 and the corresponding eigenspaces are Ek. Denote

L± = ∂t +
n− 2

2
± Λ.

Then it follows from (2.1) that

e2t∆ = L+L− = L−L+.

Motivated by the ideas in [19], we will derive Carleman-type estimates with
weights ϕβ = ϕβ(x) = exp(−βψ̃(x)), where β > 0 and ψ̃(x) = log |x|+log((log |x|)2).
Note that ϕβ is less singular than |x|−β , For simplicity, we denote ψ(t) = t+ log t2,
i.e., ψ̃(x) = ψ(log |x|). From now on, the notation X . Y or X & Y means that
X ≤ CY or X ≥ CY with some constant C depending only on n.

Lemma 2.1. There exist a sufficiently small r0 > 0 depending on n and a suffi-
ciently large β0 > 1 depending on n such that for all u ∈ Ur0 and β ≥ β0, we have
that

β

∫
ϕ2
β(log |x|)−2|x|−n(|x|2|∇u|2 + |u|2)dx .

∫
ϕ2
β |x|−n|x|4|∆u|2dx, (2.4)

where Ur0 = {u ∈ C∞0 (Rn \ {0}) : supp(u) ⊂ Br0}.

Proof. Using polar coordinates as described above, we have∫
ϕ2
β |x|4−n|∆u|2dx

=
∫∫

e−2βψ(t)e4t|∆u|2dtdω

=
∫∫
|e−βψ(t)e2t∆u|2dtdω. (2.5)

If we set u = eβψ(t)v and use (2.1), then

e−βψ(t)e2t∆u = ∂2
t v + b∂tv + av + ∆ωv =: Pβv, (2.6)

where a = (1+2t−1)2β2+(n−2)β+2(n−2)t−1β−2t−2β and b = n−2+2β+4t−1β.
By (2.5) and (2.6), (2.4) holds if for t near −∞ we have∑

j+|α|≤1

β3−2(j+|α|)
∫∫
|t|−2|∂jtΩαv|2dtdω ≤ C̃1

∫∫
|Pβv|2dtdω, (2.7)
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where C̃1 is a positive constant depending on n.
From (2.6), using the integration by parts, for t < t0 and β > β0, where t0 < −1

and β0 > 0 depend on n, we have that∫∫
|Pβv|2dtdω

=
∫∫
|∂2
t v|2dtdω +

∫∫
|b∂tv|2dtdω +

∫∫
|av|2dtdω +

∫∫
|∆ωv|2dtdω

−
∫∫

∂tb|∂tv|2dtdω − 2
∫∫

a|∂tv|2dtdω +
∫∫

∂2
t a|v|2dtdω

−
∫∫

∂t(ab)|v|2dtdω + 2
∑
j

∫∫
|∂tΩjv|2dtdω

+
∑
j

∫∫
∂tb|Ωjv|2dtdω − 2

∑
j

∫∫
a|Ωjv|2dtdω

≥
∫∫
|∆ωv|2dtdω +

∫∫
{b2 − ∂tb− 2a}|∂tv|2dtdω

+
∑
j

∫∫
{∂tb− 2a}|Ωjv|2dtdω +

∫∫
{a2 + ∂2

t a− ∂t(ab)}|v|2dtdω

≥
∫∫
|∆ωv|2dtdω +

∑
j

∫∫
{−4t−2β − 2a}|Ωjv|2dtdω

+
∫∫
{a2 + 11t−2β3}|v|2dtdω +

∫∫
β2|∂tv|2dtdω. (2.8)

In view of (2.8), using (2.2),(2.3), we see that∫∫
|∆ωv|2dtdω − 2

∑
j

∫∫
a|Ωjv|2dtdω +

∫∫
a2|v|2dtdω

=
∑
k≥0

∫∫
[a− k(k + n− 2)]2|vk|2dtdω. (2.9)

Substituting (2.9) into (2.8) yields∫∫
|Pβv|2dtdω

≥
∑
k≥0

∫∫
{11t−2β3 − 4t−2βk(k + n− 2) + [a− k(k + n− 2)]2}|vk|2dtdω

+
∫∫

β2|∂tv|2dtdω

=
( ∑
k,k(k+n−2)≥2β2

+
∑

k,k(k+n−2)<2β2

) ∫∫
{11t−2β3 − 4t−2βk(k + n− 2)

+[a− k(k + n− 2)]2}|vk|2dtdω +
∫∫

β2|∂tv|2dtdω. (2.10)

For k such that k(k + n− 2) < 2β2, we have

11t−2β3 − 4t−2βk(k + n− 2) ≥ t−2β3 + t−2βk(k + n− 2). (2.11)
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On the other hand, if 2β2 < k(k+n−2), then, by taking t even smaller, if necessary,
we get that

− 4t−2βk(k + n− 2) + [a− k(k + n− 2)]2 & t−2βk(k + n− 2). (2.12)

Finally, using formula (2.3) and estimates (2.11), (2.12) in (2.10), we immediately
obtain (2.7) and the proof of the lemma is complete. 2

To handle the auxiliary equation corresponding to the vorticity q, we need an-
other Carleman estimate. The derivation here follows the line in [20].

Lemma 2.2. There exists a sufficiently small number t0 < 0 depending on n such
that for all u ∈ Vt0 , β > 1, we have that∑

j+|α|≤1

β1−2(j+|α|)
∫∫

t−2ϕ2
β |∂

j
tΩ

αu|2dtdω .
∫∫

ϕ2
β |L−u|2dtdω, (2.13)

where Vt0 = {u(t, ω) ∈ C∞0 ((−∞, t0)× Sn−1)}.

Proof. If we set u = eβψ(t)v, then simple integration by parts implies∫∫
ϕ2
β |L−u|2dtdω

=
∫∫
|∂tv − Λv + βv + 2βt−1v + (n− 2)v/2|2dtdω

=
∫∫
|∂tv|2dtdω +

∫∫
| − Λv + βv + 2βt−1v + (n− 2)v/2|2dtdω

+β
∫∫

t−2|v|2dtdω.

By the definition of Λ, we have∫∫
| − Λv + βv + 2βt−1v + (n− 2)v/2|2dtdω

=
∑
k≥0

∫∫
| − kvk + βvk + 2βt−1vk|2dtdω

=
∑
k≥0

∫∫
(−k + β + 2βt−1)2|vk|2dtdω,

where, as before, vk is the projection of v on Ek. Note that

(−k + β + 2βt−1)2 + βt−2 ≥ 1
8β

(2βt−1)2 +
1

16β
(β − k)2.

Considering β > (1/2)k and β ≤ (1/2)k, we can get that∫∫
ϕ2
β |L−u|2dtdω

=
∫∫
|∂tv|2dtdω + Σk≥0

∫∫
[(−k + β + 2βt−1)2 + βt−2]|vk|2dtdω

&
∫∫
|∂tv|2dtdω + Σk≥0

∫∫
(β−1t−2k(k + n− 2) + βt−2)|vk|2dtdω.

(2.14)

The estimate (2.13) then follows from (2.3). 2
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Next we need a technical lemma. We then use this lemma to derive another
Carleman estimate.

Lemma 2.3. There exists a sufficiently small number t1 < −2 depending on n such
that for all u ∈ Vt1 , g = (g0, g1, · · · , gn) ∈ (Vt1)n+1 and β > 0, we have that∫∫

ϕ2
β |u|2dtdω .

∫∫
ϕ2
β(|L+u+ ∂tg0 +

n∑
j=1

Ωjgj |2 + ‖g‖2)dtdω.

Proof. This lemma can be proved by exactly the same arguments used in Lemma
2.2 of [20]. So we omit the proof here. 2

Lemma 2.4. There exist a sufficiently small number r1 > 0 depending on n and
a sufficiently large number β1 > 2 depending on n such that for all w ∈ Ur1 and
f = (f1, · · · , fn) ∈ (Ur1)n, β ≥ β1, we have that∫

ϕ2
β(log |x|)2(|x|4−n|∇w|2 + |x|2−n|w|2)dx

. β

∫
ϕ2
β(log |x|)4|x|2−n[(|x|2∆w + |x|divf)2 + ‖f‖2]dx, (2.15)

where Ur1 is defined as in Lemma 2.1.

Proof. Replacing β by β + 1 in (2.15), we see that it suffices to prove∫
ϕ2
β(log |x|)−2(|x|2|∇w|2 + |w|2)|x|−ndx

. β

∫
ϕ2
β [(|x|2∆w + |x|divf)2 + ‖f‖2]|x|−ndx. (2.16)

Working in polar coordinates and using the relation e2t∆ = L+L−, (2.16) is equiv-
alent to ∑

j+|α|≤1

∫∫
β2−2(j+|α|)t−2ϕ2

β |∂
j
tΩ

αu|2dtdω

. β

∫∫
ϕ2
β(|L+L−w + ∂t(

n∑
j=1

ωjfj) +
n∑
j=1

Ωjfj |2 + ‖f‖2)dtdω. (2.17)

Applying Lemma 2.3 to u = L−w and g = (
∑n
j=1 ωjfj , f1, · · · , fn) yields

β

∫∫
ϕ2
β |L−w|2dtdω

. β

∫∫
ϕ2
β(|L+L−w + ∂t(

n∑
j=1

ωjfj) +
n∑
j=1

Ωjfj |2 + ‖f‖2)dtdω. (2.18)

Now (2.17) is an easy consequence of (2.13) and (2.18). 2

3. Interior estimates. To establish the three-ball inequality for (1.1), the follow-
ing interior estimate is useful.

Lemma 3.1. Let (u, p) ∈ (H1
loc(Ω))n+1 be a solution of (1.1). Then for any 0 <

a3 < a1 < a2 < a4 such that Ba4r ⊂ Ω and |a4r| < 1, we have∫
a1r<|x|<a2r

|x|4|∇q|2 + |x|2|q|2 + |x|2|∇u|2dx ≤ C ′
∫
a3r<|x|<a4r

|u|2dx (3.1)

where the constant C ′ is independent of r and u. Here q = ∇× u.
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Proof. The proof of this lemma is motivated by ideas used in [12]. Let X =
Ba4r\B̄a3r and d(x) be the distant from x ∈ X to Rn\X. By the elliptic regularity,
we obtain from (1.1) that u ∈ H2

loc(Ω\{0}). It is trivial that

‖v‖H1(Rn) . ‖∆v‖L2(Rn) + ‖v‖L2(Rn) (3.2)

for all v ∈ H2(Rn). By changing variables x→ E−1x in (3.2), we will have∑
|α|≤1E

2−|α|‖Dαv‖L2(Rn) . (‖∆v‖L2(Rn) + E2‖v‖L2(Rn)) (3.3)

for all v ∈ H2(Rn). To apply (3.3) on u, we need to cut-off u. So let ξ(x) ∈ C∞0 (Rn)
satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =

{
1, |x| < 1/4,
0, |x| ≥ 1/2.

Let us denote ξy(x) = ξ((x− y)/d(y)). For y ∈ X, we apply (3.3) to ξy(x)u(x) and
use equation (1.5) to get that

E2

∫
|x−y|≤d(y)/4

|∇u|2dx

≤ C ′1

∫
|x−y|≤d(y)/2

|∇q|2dx+ C ′1

∫
|x−y|≤d(y)/2

d(y)−2|∇u|2dx

+C ′1(E4 + d(y)−4)
∫
|x−y|≤d(y)/2

|u|2dx. (3.4)

Now taking E = Md(y)−1 for some positive constant M and multiplying d(y)4 on
both sides of (3.4), we have

M2d(y)2
∫
|x−y|≤d(y)/4

|∇u|2dx

≤ C ′1

∫
|x−y|≤d(y)/2

d(y)4|∇q|2dx+ C ′1

∫
|x−y|≤d(y)/2

d(y)2|∇u|2dx

+C ′1(M4 + 1)
∫
|x−y|≤d(y)/2

|u|2dx. (3.5)

Integrating d(y)−ndy over X on both sides of (3.5) and using Fubini’s Theorem,
we get that

M2

∫
X

∫
|x−y|≤d(y)/4

d(y)2−n|∇u|2dydx

≤ C ′1

∫
X

∫
|x−y|≤d(y)/2

d(y)4|∇q(x)|2d(y)−ndydx

+C ′1

∫
X

∫
|x−y|≤d(y)/2

d(y)2−n|∇u|2dydx

+2C ′1M
4

∫
X

∫
|x−y|≤d(y)/2

|u|2d(y)−ndydx. (3.6)

Note that |d(x)− d(y)| ≤ |x− y|. If |x− y| ≤ d(x)/3, then

2d(x)/3 ≤ d(y) ≤ 4d(x)/3. (3.7)

On the other hand, if |x− y| ≤ d(y)/2, then

d(x)/2 ≤ d(y) ≤ 3d(x)/2. (3.8)
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By (3.7) and (3.8), we have{ ∫
|x−y|≤d(y)/4 d(y)−ndy ≥ (3/4)n

∫
|x−y|≤d(x)/6 d(x)−ndy ≥ 8−n

∫
|y|≤1

dy,∫
|x−y|≤d(y)/2 d(y)−ndy ≤ 2n

∫
|x−y|≤3d(x)/4

d(x)−ndy ≤ (3/2)n
∫
|y|≤1

dy

(3.9)
Combining (3.6)–(3.9), we obtain

M2

∫
X

d(x)2|∇u|2dx

≤ C ′2

∫
X

d(x)2|∇u(x)|2dx+ C ′2

∫
X

d(x)4|∇q|2dx+ C ′2M
4

∫
X

|u|2dx.

(3.10)

On the other hand, we have from (1.3) that

n∑
i=1

∫
|ξy(x)∇qi|2dx =

n∑
i=1

∫
∇qi · ∇(ξ2y(x)q̄i)dx−

n∑
i=1

2
∫
ξy∇qi · q̄i∇ξydx

≤ C ′3

n∑
i=1

|
∫

(divF )iξ2yqidx|+
n∑
i=1

2
∫
|ξy∇qi · q̄i∇ξy|dx

≤ C ′3

n∑
i=1

|
∫ n∑

j=1

Fij · ∂j(ξ2yqi)dx|+
1
4

n∑
i=1

∫
|ξy∇qi|2dx+ 4

∫
|x−y|≤d(y)/2

d(y)−2|q|2dx

≤ C ′4

∫
|x−y|≤d(y)/2

|F |2dx+
1
4

n∑
i=1

∫
|ξy∇qi|2dx+ C ′4

∫
|x−y|≤d(y)/2

d(y)−2|q|2dx

+
1
4

n∑
i=1

∫
|ξy∇qi|2dx+ C ′4

∫
|x−y|≤d(y)/2

d(y)−2|q|2dx.

(3.11)

Therefore, we get that∫
|x−y|≤d(y)/4

|∇q|2dx

≤
∫
|ξy(x)∇q|2dx

≤ C ′5

∫
|x−y|≤d(y)/2

|F |2dx+ C ′5

∫
|x−y|≤d(y)/2

d(y)−2|q|2dx.

(3.12)

Multiply d(y)4 on both sides of (3.12), we obtain that∫
|x−y|≤d(y)/4

d(y)4|∇q|2dx

≤ C ′6

∫
|x−y|≤d(y)/2

d(y)4|Ã|2|∇u|2dx+ C ′6

∫
|x−y|≤d(y)/2

d(y)4|B̃|2|u|2dx

+C ′6

∫
|x−y|≤d(y)/2

d(y)2|q|2dx. (3.13)
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Repeating (3.6)∼(3.10), we have that∫
X

d(x)4|∇q|2dx

≤ C ′7

∫
X

d(x)4|Ã|2|∇u|2dx+ C ′7

∫
X

d(x)4|B̃|2|u|2dx

+C ′7

∫
X

d(x)2|q|2dx. (3.14)

Combining K×(3.14), (3.10) and
∫
X
d(x)2|q|2dx, we obtain that

M2

∫
X

d(x)2|∇u|2dx+K

∫
X

d(x)4|∇q|2dx+
∫
X

d(x)2|q|2dx

≤
∫
X

(C ′2d(x)2 + C ′7Kd(x)4|Ã|2)|∇u(x)|2dx+ C ′7K

∫
X

d(x)4|B̃|2|u|2dx

+C ′2M
4

∫
X

|u|2dx+ C ′2

∫
X

d(x)4|∇q|2dx+ (C ′7K + 1)
∫
X

d(x)2|q|2dx.

(3.15)

Taking K = 2C ′2, one can eliminate
∫
X
d(x)4|∇q|2dx on the right hand side of

(3.15). Observe that∫
X

d(x)2|q|2dx ≤ C ′8
∫
X

d(x)2|∇u(x)|2dx.

So, by choosing M large enough, we can ignore
∫
X
d(x)2|∇u(x)|2dx on the right

hand side of (3.15). Finally, we get that

M2

∫
X

d(x)2|∇u|2dx+K

∫
X

d(x)4|∇q|2dx+
∫
X

d(x)2|q|2dx

≤ C ′9

∫
X

|u|2dx. (3.16)

We recall that X = Ba4r\B̄a3r and note that d(x) ≥ C̃r if x ∈ Ba2r\B̄a1r, where C̃
is independent of r. Hence, (3.1) is an easy consequence of (3.16). 2

4. Proof of Theorem 1.1 and Theorem 1.3. This section is devoted to the
proofs of Theorem 1.1 and Theorem 1.3. To begin, we first consider the case where
0 < R1 < R2 < R < 1 and BR ⊂ Ω. The small constant R will be determined
later. Since (u, p) ∈ (H1(BR0))n+1, the elliptic regularity theorem implies u ∈
H2
loc(BR0 \ {0}). Therefore, to use estimate (2.4), we simply cut-off u. So let

χ(x) ∈ C∞0 (Rn) satisfy 0 ≤ χ(x) ≤ 1 and

χ(x) =


0, |x| ≤ R1/e,

1, R1/2 < |x| < eR2,

0, |x| ≥ 3R2,

where e = exp(1). We remark that we first choose a small R such that R ≤
min{r0, r1}/3 = R̃0, where r0 and r1 are constants appeared in (2.4) and (2.15).
Hence R̃0 depends on n. It is easy to see that for any multiindex α{

|Dαχ| = O(R−|α|1 ) for all R1/e ≤ |x| ≤ R1/2
|Dαχ| = O(R−|α|2 ) for all eR2 ≤ |x| ≤ 3R2.

(4.1)
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Applying (2.4) to χu gives

C1β

∫
(log |x|)−2ϕ2

β |x|−n(|x|2|∇(χu)|2 + |χu|2)dx ≤
∫
ϕ2
β |x|−n|x|4|∆(χu)|2dx.

(4.2)
From now on, C1, C2, · · · denote general constants whose dependence will be spec-
ified whenever necessary. Next applying (2.15) to w = χq and f = |x|χF , we get
that

C2

∫
ϕ2
β(log |x|)2(|x|4−n|∇(χq)|2 + |x|2−n|χq|2)dx

≤ β

∫
ϕ2
β(log |x|)4|x|2−n[|x|2∆(χq) + |x|div(|x|χF )]2dx

+β
∫
ϕ2
β(log |x|)4|x|2−n‖|x|χF‖2dx. (4.3)

Multiplying by M1 on (4.2) and combining (4.3), we obtain that

M1β

∫
R1/2<|x|<eR2

(log |x|)−2ϕ2
β |x|−n(|x|2|∇u|2 + |u|2)dx

+
∫
R1/2<|x|<eR2

(log |x|)2ϕ2
β |x|−n(|x|4|∇q|2 + |x|2|q|2)dx

≤ M1β

∫
ϕ2
β(log |x|)−2|x|−n(|x|2∇(χu)|2 + |χu|2)dx

+
∫

(log |x|)2ϕ2
β |x|−n(|x|4|∇(χq)|2 + |x|2|χq|2)dx

≤ M1C3

∫
ϕ2
β |x|−n|x|4|∆(χu)|2dx

+βC3

∫
(log |x|)4ϕ2

β |x|−n[|x|3∆(χq) + |x|2div(|x|χF )]2dx

+βC3

∫
(log |x|)4ϕ2

β |x|−n‖|x|2χF‖2dx. (4.4)

By (1.2), (1.3), (1.4), and estimates (4.1), we deduce from (4.4) that

M1β

∫
R1/2<|x|<eR2

(log |x|)−2ϕ2
β |x|−n(|x|2|∇u|2 + |u|2)dx

+
∫
R1/2<|x|<eR2

(log |x|)2ϕ2
β |x|−n(|x|4|∇q|2 + |x|2|q|2)dx

≤ C4M1

∫
R1/2<|x|<eR2

ϕ2
β |x|−n|x|4|∇q|2dx

+C4β

∫
R1/2<|x|<eR2

(log |x|)−2ϕ2
β |x|−n(|x|2|∇u|2 + |u|2)dx

+C4M1

∫
{R1/e≤|x|≤R1/2}∪{eR2≤|x|≤3R2}

ϕ2
β |x|−n|Ũ |2dx

+C4β

∫
{R1/e≤|x|≤R1/2}∪{eR2≤|x|≤3R2}

(log |x|)4ϕ2
β |x|−n|Ũ |2dx, (4.5)

where |Ũ(x)|2 = |x|4|∇q|2 + |x|2|q|2 + |x|2|∇u|2 + |u|2 and the positive constant C4

only depends on n.
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Now letting M1 = 2 + 2C4, β ≥ 2 + 2C4, and R small enough such that
(log(eR))2 ≥ 2C4M1, then the first three terms on the right hand side of (4.5)
can be absorbed by the left hand side of (4.5). Also, it is easy to check that there
exists R̃1 > 0, depending on n, such that for all β > 0, both (log |x|)−2|x|−nϕ2

β(|x|)
and (log |x|)4|x|−nϕ2

β(|x|) are decreasing functions in 0 < |x| < R̃1. So we choose
a small R < R̃2, where R̃2 = min{exp(−2

√
2C4M1 − 1), R̃1/3, R̃0}. It is clear that

R̃2 depends on n. With the choices described above, we obtain from (4.5) that

R−n2 (logR2)−2ϕ2
β(R2)

∫
R1/2<|x|<R2

|u|2dx

≤
∫
R1/2<|x|<eR2

(log |x|)−2ϕ2
β |x|−n|u|2dx

≤ C5β

∫
{R1/e≤|x|≤R1/2}∪{eR2≤|x|≤3R2}

(log |x|)4ϕ2
β |x|−n|Ũ |2dx

≤ C5β(log(R1/e))4(R1/e)−nϕ2
β(R1/e)

∫
{R1/e≤|x|≤R1/2}

|Ũ |2dx

+C5β(log(eR2))4(eR2)−nϕ2
β(eR2)

∫
{eR2≤|x|≤3R2}

|Ũ |2dx. (4.6)

Using (3.1), we can control |Ũ |2 terms on the right hand side of (4.6). In other
words, it follows from (3.1) that

R−2β−n
2 (logR2)−4β−2

∫
R1/2<|x|<R2

|u|2dx

≤ C622β+n(log(R1/e))4(R1/e)−nϕ2
β(R1/e)

∫
{R1/4≤|x|≤R1}

|u|2dx

+C622β+n(log(eR2))4(eR2)−nϕ2
β(eR2)

∫
{2R2≤|x|≤4R2}

|u|2dx

= C622β+n(log(R1/e))−4β+4(R1/e)−2β−n
∫
{R1/4≤|x|≤R1}

|u|2dx

+C622β+n(log(eR2))−4β+4(eR2)−2β−n
∫
{2R2≤|x|≤4R2}

|u|2dx. (4.7)

Replacing 2β + n by β, (4.7) becomes

R−β2 (logR2)−2β+2n−2

∫
R1/2<|x|<R2

|u|2dx

≤ C72β(log(R1/e))−2β+2n+4(R1/e)−β
∫
{R1/4≤|x|≤R1}

|u|2dx

+C72β(log(eR2))−2β+2n+4(eR2)−β
∫
{2R2≤|x|≤4R2}

|u|2dx. (4.8)
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Dividing R−β2 (logR2)−2β+2n−2 on the both sides of (4.8) and providing β ≥ n+ 2,
we have that∫

R1/2<|x|<R2

|u|2dx

≤ C8(logR2)6(2eR2/R1)β
∫
{R1/4≤|x|≤R1}

|u|2dx

+C8(logR2)6(2/e)β [(logR2/ log(eR2))2]β−n−2

∫
{2R2≤|x|≤4R2}

|u|2dx

≤ C8(logR2)6(2eR2/R1)β
∫
{R1/4≤|x|≤R1}

|u|2dx

+C8(logR2)6(4/5)β
∫
{2R2≤|x|≤4R2}

|u|2dx. (4.9)

In deriving the second inequality above, we use the fact that
logR2

log(eR2)
→ 1 as R2 → 0,

and thus
2
e
· logR2

log(eR2)
<

4
5

for all R2 < R̃3, where R̃3 is sufficiently small. We now take R̃ = min{R̃2, R̃3},
which depends on n.

Adding
∫
|x|<R1/2

|u|2dx to both sides of (4.9) leads to∫
|x|<R2

|u|2dx ≤ C9(logR2)6(2eR2/R1)β
∫
|x|≤R1

|u|2dx

+C9(logR2)6(4/5)β
∫
|x|≤1

|u|2dx. (4.10)

It should be noted that (4.10) holds for all β ≥ β̃ with β̃ depending only on n. For
simplicity, by denoting

E(R1, R2) = log(2eR2/R1), B = log(5/4),

(4.10) becomes∫
|x|<R2

|u|2dx

≤ C9(logR2)6
{

exp(Eβ)
∫
|x|<R1

|u|2dx+ exp(−Bβ)
∫
|x|<1

|u|2dx
}
.

(4.11)

To further simplify the terms on the right hand side of (4.11), we consider two
cases. If

∫
|x|<R1

|u|2dx 6= 0 and

exp (Eβ̃)
∫
|x|<R1

|u|2dx < exp (−Bβ̃)
∫
|x|<1

|u|2dx,

then we can pick a β > β̃ such that

exp (Eβ)
∫
|x|<R1

|u|2dx = exp (−Bβ)
∫
|x|<1

|u|2dx.
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Using such β, we obtain from (4.11) that∫
|x|<R2

|u|2dx

≤ 2C9(logR2)6 exp (Eβ)
∫
|x|<R1

|u|2dx

= 2C9(logR2)6
(∫
|x|<R1

|u|2dx

) B
E+B

(∫
|x|<1

|u|2dx

) E
E+B

. (4.12)

If
∫
|x|<R1

|u|2dx = 0, then letting β → ∞ in (4.11) we have
∫
|x|<R2

|u|2dx = 0 as
well. The three-ball inequality obviously holds.

On the other hand, if

exp (−Bβ̃)
∫
|x|<1

|u|2dx ≤ exp (Eβ̃)
∫
|x|<R1

|u|2dx,

then we have ∫
|x|<R2

|u|2dx

≤

(∫
|x|<1

|u|2dx

) B
E+B

(∫
|x|<1

|u|2dx

) E
E+B

≤ exp (Bβ̃)

(∫
|x|<R1

|u|2dx

) B
E+B

(∫
|x|<1

|u|2dx

) E
E+B

. (4.13)

Putting together (4.12), (4.13), and setting C10 = max{2C9(logR2)6, exp (β̃ log(5/4))},
we arrive at∫

|x|<R2

|u|2dx ≤ C10

(∫
|x|<R1

|u|2dx

) B
E+B

(∫
|x|<1

|u|2dx

) E
E+B

. (4.14)

It is readily seen that B
E+B ≈ (log(1/R1))−1 when R1 tends to 0.

Now for the general case, we consider 0 < R1 < R2 < R3 < 1 with R1/R3 <

R2/R3 ≤ R̃, where R̃ is given as above. By scaling, i.e. defining û(y) := u(R3y),
p̂(y) := R3p(R3y) and Â(y) = A(R3y), (4.14) becomes∫

|y|<R2/R3

|û(y)|2dy ≤ C11(
∫
|y|<R1/R3

|û(y)|2dy)τ (
∫
|y|<1

|û(y)|2dy)1−τ , (4.15)

where
τ = B/[E(R1/R3, R2/R3) +B],

C11 = max{2C9(logR2/R3)6, exp (β̃ log(5/4))}.

Note that C11 is independent of R1. Restoring the variable x = R3y in (4.15) gives∫
|x|<R2

|u|2dx ≤ C11(
∫
|x|<R1

|u|2dx)τ (
∫
|x|<R3

|u|2dx)1−τ .

The proof of Theorem 1.1 is complete.
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We now turn to the proof of Theorem 1.3. We fix R2, R3 in Theorem 1.1. By
dividing

∫
|x|<R2

|u|2dx on the three-ball inequality (1.5), we have that

1 ≤ C(
∫
|x|<R1

|u|2dx/
∫
|x|<R2

|u|2dx)τ (
∫
|x|<R3

|u|2dx/
∫
|x|<R2

|u|2dx)1−τ . (4.16)

Raising both sides by 1/τ yields that∫
|x|<R3

|u|2dx ≤ (
∫
|x|<R1

|u|2dx)(C
∫
|x|<R3

|u|2dx/
∫
|x|<R2

|u|2dx)1/τ . (4.17)

In view of the formula for τ , we can deduce from (4.17) that∫
|x|<R3

|u|2dx ≤ (
∫
|x|<R1

|u|2dx)(1/R1)C̃ log(
∫
|x|<R3

|u|2dx/
∫
|x|<R2

|u|2dx)
, (4.18)

where C̃ is a positive constant depending on n and R2/R3. Consequently, (4.18) is
equivalent to

(
∫
|x|<R3

|u|2dx)Rm1 ≤
∫
|x|<R1

|u|2dx

for all R1 sufficiently small, where

m = C̃ log
(∫
|x|<R3

|u|2dx∫
|x|<R2

|u|2dx

)
.

We now end the proof of Theorem 1.3.

5. Proof of Theorem 1.5. We prove Theorem 1.5 in this section. Let us first
choose a > max{2, R̃−1}, where R̃ is given in Theorem 1.1. By doing so, we can
see that if we set R2 = ar and R3 = a2r, then R2/R3 < R̃ for r > 0. Now
let 0 < r < 1 and define R2, R3 accordingly. Let |x̃| = t. We pick a sequence
of points 0 = x0, x1, · · · , xN = x̃ such that |xj+1 − xj | ≤ r. We shall prove the
desired estimate iteratively. To see how the iteration goes, let us assume that∫
|x−xl|<r |u|

2dx ≥ rml for some ml > 0 since u is nontrivial. By Theorem 1.3 and
Remark 1.4, we have that∫

|x−xl+1|<r
|u|2dx ≥

∫
|x−xl+1|<R3

|u|2dx · rm, (5.1)

where

m = C̃ log
(∫
|x−xl+1|<R3

|u|2dx∫
|x−xl+1|<R2

|u|2dx

)
.

Using the boundedness assumption of u (see (1.8)) and r < 1, we can deduce that∫
|x−xl+1|<R3

|u|2dx∫
|x−xl+1|<R2

|u|2dx
≤ a2nλ2

2r
n−ml ≤ r−s−ml (5.2)

for some s depending on λ2 and n. Note that we can assume s ≤ ml by choosing a
larger ml. It follows from (5.2) that

rm ≥ rC̃(s+ml) log(1/r) ≥ r2mlC̃ log(1/r). (5.3)

It is clear that ∫
|x−xl+1|<R3

|u|2dx ≥
∫
|x−xl|<r

|u|2dx.



QUANTITATIVE UNIQUENESS FOR THE STOKES SYSTEM 17

Thus, combining (5.1) and (5.3) yields that∫
|x−xl+1|<r

|u|2dx ≥ rml[1+2C̃ log(1/r)] ≥ rmlζ , (5.4)

where ζ = 1 + 2C̃ log(1/r). Now starting from 0 and iterating N steps with N ≤
[t/r] + 1 ≤ t/r + 1, we obtain that∫

|x−x̃|<r
|u|2dx ≥ rm0ζ

N

≥ rm0ζ
(t/r+1)

,

where m0 satisfies ∫
|x|<r

|u|2dx ≥ rm0 .

We now take c = m0, which depends on λ2, n, and
∫
|x|<r |u|

2dx. The proof is
complete. 2
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