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Abstract

Transformation optics constructions have allowed the design of
electromagnetic, acoustic and quantum parameters that steer waves
around a region without penetrating it, so that this region is hidden
from external observations. The material parameters are anisotropic,
and singular at the interface between the cloaked and uncloaked re-
gions, making physical realization a challenge. We address this prob-
lem by showing how to construct isotropic and nonsingular parameters
that give approximate cloaking to any desired degree of accuracy for
electrostatic, acoustic and quantum waves. The technique used here
may be applicable to a wider range of transformation optics designs.
We conclude by giving several quantum mechanical applications.
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1 Introduction

Cloaking devices designs based on transformation optics require anisotropic
and singular1 material parameters, whether the conductivity (electrostatic)
[26, 27], index of refraction (Helmholtz) [36], [18], permittivity and perme-
ability (Maxwell) [41], [18], mass tensor (acoustic) [18], [8], [14], or effective
mass (Schrödinger)[48]. The same is true for other transformation optics
designs, such as those motivated by general relativity [37]; field rotators [7];
concentrators [39]; electromagnetic wormholes [19, 21]; or beam splitters [42].
Both the anisotropy and singularity present serious challenges in trying to
physically realize such theoretical plans using metamaterials. In this pa-
per, we give a general method, isotropic transformation optics, for dealing
with both of these problems; we describe it in some detail in the context
of cloaking, but it should be applicable to a wider range of transformation
optics-based designs.

A well known phenomenon in effective medium theory is that homogeniza-
tion of isotropic material parameters may lead, in the small-scale limit, to
anisotropic ones [40]. Using ideas from [1, 10] and elsewhere, we show how
to exploit this to find cloaking material parameters that are at once both
isotropic and nonsingular, at the price of replacing perfect cloaking with
approximate cloaking (of arbitrary accuracy). This method, starting with
transformation optics-based designs and constructing approximations to them,
first by nonsingular, but still anisotropic, material parameters, and then by
nonsingular isotropic parameters, seems to be a very flexible tool for creat-
ing physically realistic theoretical designs, easier to implement than the ideal
ones due to the relatively tame nature of the materials needed, yet essentially
capturing the desired effect on waves.

We start by considering isotropic transformation optics for acoustic (and
hence, at frequency zero, electrostatic) cloaking. First recall ideal cloaking for
the Helmholtz equation. For a Riemannian metric g = (gij) in n-dimensional
space, the Helmholtz equation with source term is

1√
|g|

n∑
i,j=1

∂

∂xi

(√
|g| gij ∂u

∂xj

)
+ ω2u = p, (1)

1By singular, we mean that at least one of the eigenvalues goes to zero or infinity at
some points.
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where |g| = det(gij) and (gij) = g−1 = (gij)
−1. In the acoustic equation, for

which ideal 3D spherical cloaking was described by Chen and Chan [8] and
Cummer, et al., [14],

√
|g|gij represents the anisotropic density and

√
|g| the

bulk modulus.

In [18], we showed that the singular cloaking metrics g for electrostatics con-
structed in [26, 27], giving the same boundary measurements of electrostatic
potentials as the Euclidian metric g0 = (δij), also cloak with respect to so-
lutions of the Helmholtz equation at any nonzero frequency ω and with any
source p. An example in 3D, with respect to spherical coordinates (r, θ, φ),
is

(gjk) =

 2(r − 1)2 sin θ 0 0
0 2 sin θ 0
0 0 2(sin θ)−1

 (2)

on B2 − B3 = {1 < r ≤ 2}, with the cloaked region being the ball B1 =
{0 ≤ r ≤ 1}.2 This g is the image of g0 under the singular transformation
(r, θ, φ) = F (r′, θ′, φ′) defined by r = 1+ r′

2
, θ = θ′, φ = φ′, 0 < r′ ≤ 2, which

blows up the point r′ = 0 to the cloaking surface Σ = {r = 1}. The same
transformation was used by Pendry, Schurig and Smith [41] for Maxwell’s
equations and gives rise to the cloaking structure that is referred to in [18] as
the single coating . It was shown in [18, Thm.1] that if the cloaked region is
given any nondegenerate metric, then finite energy waves u that satisfy the
Helmholtz equation (1) on B2 in the sense of distributions have the same set
of Cauchy data at r = 2, i.e., the same acoustic boundary measurements, as
do the solutions for the Helmholtz equation for g0 with source term p ◦ F .
The part of p supported within the cloaked region is undetectable at r = 2,
while the part of p outside Σ appears to be shifted by the transformation F ;
cf. [49]. Furthermore, on Σ− the normal derivative of u must vanish, so that
within B1 the acoustic waves propagate as if Σ were lined with a sound–hard
surface.

In Sec. 2 we introduce isotropic transformation optics in the setting of acous-
tics, starting by approximating the ideal singular anisotropic density and bulk
modulus by nonsingular anisotropic parameters. Then, using a homogeneiza-
tion argument [1], we approximate these nonsingular anisotropic parameters

2BR denotes the central ball of radius R. Note that ∂
∂θ , ∂

∂φ are not normalized to have
length 1; otherwise, (2) agrees with [14, (24-25)] and [8, (8)], cf. [22].
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by nonsingular isotropic ones. This yields almost, or approximate, invisi-
bility in the sense that the boundary observations for the resulting acoustic
parameters converge to the corresponding ones for a homogeneous, isotropic
medium.

In Sec. 3 we consider the quantum mechanical scattering problem for the
time-independent Schrödinger equation at energy E,

(−∇2 + V (x))ψ(x) = Eψ(x), x ∈ Rd, (3)

ψ(x) = exp(iE1/2x· θ) + ψsc(x),

where θ ∈ Rd, |θ| = 1, and ψsc(x) satisfies the Sommerfeld radiation condi-
tion. By a gauge transformation we can reduce the acoustic equation with
bulk modulus ≡ 1 to the Schrödinger equation. In this paper we restrict
ourselves to the case when the potential V is compactly supported, so that

ψsc(x) =
aV (E, x/|x|, θ)

|x| d−1
2

· eiλ|x| +O
( 1

|x| d
2

)
, as |x| → ∞.

The function aV (E, θ′, θ) is the scattering amplitude at energy E of the
potential V . The inverse scattering problem consists of determination of V
from the scattering amplitude. As V is compactly supported, this inverse
problem is equivalent to the problem of determination of V from boundary
measurements. Indeed, if V is supported in a domain Ω, we define the
Dirichlet-to-Neumann (DN) operator ΛV (E) at energy E for the potential V
as follows. For any smooth function f on ∂Ω, we set

ΛV (E)f = ∂νψ|∂Ω

where ψ is the solution of the Dirichlet boundary value problem

(−∇2 + V )ψ = Eψ, ψ|∂Ω = f.

(Of course, ΛV (E) = ΛV−E(0).) Knowing ΛV (E) is equivalent to knowing
aV (E, θ′, θ) for all (θ′, θ) ∈ Sd−1 × Sd−1. Roughly speaking, ΛV (E) can be
considered as knowledge of all external observations of V at energy E [4].

In Sec. 4 we also consider the magnetic Schrödinger equation with magnetic
potential A and electric potential V ,

(−(∇+ iA)2 + V − E)ψ = 0, ψ|∂Ω = f,
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which defines the DN operator,

ΛV,A(E)(f) = ∂νψ|∂Ω + i(A · ν)f.

There is an enormous literature on unique determination of a potential,
whether from scattering data or from boundary measurements of solutions of
the associated Schrödinger equation. In [45] it was shown that an L∞ poten-
tial is determined by the associated DN operator, and [35] and [6] extended
this to rougher potentials. In dimension d = 2, it has been shown recently
that uniqueness holds if V is in Lp, p > 2 [5].

On the other hand, for d = 2 and each E > 0, there are continuous families
of rapidly decreasing (but noncompactly supported) potentials which are
transparent, i.e., for which the scattering amplitude aV (E, θ′, θ) vanishes at
a fixed energy E, aV (E, θ′, θ) ≡ a0(E, θ

′, θ) = 0 [28]. More recently, [29]
described central potentials transparent on the level of the ray geometry.

Very recently, Zhang, et al., [48] have described an ideal quantum mechan-
ical cloak at any fixed energy E and proposed a physical implementation.
The construction starts with a homogeneous, isotropic mass tensor m̂0 and
potential V0 ≡ 0, and subjects this pair to the same singular transformation
(“blowing up a point”) as was used in [26, 27, 41]. The resulting cloaking
mass-density tensor m̂ and potential V yield a Schrödinger equation that is
the Helmholtz equation (at frequency ω =

√
E) for the corresponding sin-

gular Riemannian metric, thus covered by the analysis of cloaking for the
Helmholtz equation in [18, Sec. 3]. The cloaking mass-density tensor m̂ and
potential are both singular, and m̂ infinitely anisotropic, at Σ, combining to
make such a cloak difficult to implement, with the proposal in [48] involving
ultracold atoms trapped in an optical lattice.

In this paper, we consider the problem in dimension d = 3. For each energy
E, we construct a family {Vn}∞n=1 of bounded potentials, supported in the
annular region B3 − B1, which act as an approximate invisibility cloak : for
any potential W on B1, the scattering amplitudes aVn+W (E, θ′, θ) → 0 as
n→∞. Thus, when surrounded by the cloaking potentials Vn, the potential
W is undetectable by waves at energy E, asymptotically in n. Varying the
basic construction, the V E

n may be designed so that E either is or is not a
Neumann eigenvalue of the cloaked region. If the latter, the approximate
cloak, with high probability, keeps particles of energy E from entering the
cloaked region; i.e., the cloak is effective at energy E. If the former, the
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cloaked region supports “almost bound” states, accepting and binding such
particles and thereby functioning as a new type of ion trap. Furthermore, the
trap is magnetically tunable: application of a homogeneous magnetic field
allows one to switch between the two behaviors [24].

In Sec. 4 we consider several applications to quantum mechanics of this
approach. In the first, the study the magnetic Schrödinger equation and
construct a family of potentials which, when combined with a fixed homoge-
neous magnetic field, make the matter waves behave as if the potentials were
almost zero and the magnetic potential were blowing up near a point, thus
giving the illusion of a locally singular magnetic field. In the second, we de-
scribe “almost bound” states which are largely concentrated in the cloaked
region. For the third application, we use the same basic idea of isotropic
transformation optics but we replace the single coating construction used
earlier by the double coating construction of [18], corresponding to metama-
terials deployed on both sides of the cloaking surface, to make matter waves
behave as if confined to a three dimensional sphere, S3.

Full mathematical proofs will appear elsewhere [23]. The authors are grateful
to A. Cherkaev and V. Smyshlyaev for useful discussions on homogenization,
and to S. Siltanen for help with the numerics.

2 Cloaking for the acoustic equation

2.1 Background

Our analysis is closely related to the inverse problem for electrostatics, or
Calderón’s conductivity problem. Let Ω ⊂ Rd be a domain, at the boundary
of which electrostatic measurements are to be made, and denote by σ(x) the
anisotropic conductivity within. In the absence of sources, an electrostatic
potential u satisfies a divergence form equation,

∇ · σ∇u = 0 (4)

on Ω. To uniquely fix the solution u it is enough to give its value, f , on the
boundary. In the idealized case, one measures, for all voltage distributions
u|∂Ω = f on the boundary the corresponding current fluxes, ν·σ∇u, where
ν is the exterior unit normal to ∂Ω. Mathematically this amounts to the
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knowledge of the Dirichlet–Neumann (DN) map, Λσ. corresponding to σ,
i.e., the map taking the Dirichlet boundary values of the solution to (4) to
the corresponding Neumann boundary values,

Λσ : u|∂Ω 7→ ν·σ∇u|∂Ω. (5)

If F : Ω → Ω, F = (F 1, . . . , F d), is a diffeomorphism with F |∂Ω = Identity,
then by making the change of variables y = F (x) and setting u = v ◦ F−1,
we obtain

∇ · σ̃∇v = 0, (6)

where σ̃ = F∗σ is the push forward of σ in F ,

(F∗σ)jk(y) =
1

det[∂F j

∂xk (x)]

d∑
p,q=1

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)

∣∣∣∣∣
x=F−1(y)

. (7)

This can be used to show that

ΛF∗σ = Λσ.

Thus, there is a large (infinite-dimensional) family of conductivities which
all give rise to the same electrostatic measurements at the boundary. This
observation is due to Luc Tartar (see [33] for an account.) Calderón’s in-
verse problem for anisotropic conductivities is then the question of whether
two conductivities with the same DN operator must be push-forwards of
each other. There are a number of positive results in this direction, but it
was shown in [26, 27] that, if one allows singular maps, then in fact there
counterexamples, i.e., conductivities that are undetectable to electrostatic
measurements at the boundary. See [32] for d = 2.

From now on, for simplicity we will restrict ourselves to the three dimensional
case. For each R > 0, let BR = {|x| ≤ R} and ΣR = {|x| = R} be the central
ball and sphere of radius R, resp., in R3, and let O = (0, 0, 0) denote the
origin. To construct an invisibility cloak, for simplicity we use the specific
the singular coordinate transformation F : R3 − {O} → R3 −B1, given by

x = F (y) :=

{
y, for |y| > 2,(

1 + |y|
2

)
y
|y| , for 0 < |y| ≤ 2.

(8)
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Letting σ0 = 1 be the homogeneous isotropic conductivity on R3, F then
defines a conductivity σ on R3 −B1 by the formula

σjk(x) := (F∗σ0)
jk(x), (9)

cf. (7). More explicitly, the matrix σ = [σjk]3j,k=1 is

σ(x) = 2|x|−2(|x| − 1)2Π(x) + 2(I − Π(x)), 1 < |x| < 2,

where Π(x) : R3 → R3 is the projection to the radial direction, defined by

Π(x) v =

(
v · x
|x|

)
x

|x|
, (10)

i.e., Π(x) is represented by the matrix |x|−2xxt, cf. [32].

One sees that σ(x) is singular, as one of its eigenvalues, namely the one corre-
sponding to the radial direction, tends to 0 as |x| ↘ 1. We can then extend
σ to B1 as an arbitrary smooth, nondegenerate (bounded from above and
below) conductivity there. Let Ω = B3; the conductivity σ is then a cloak-
ing conductivity on Ω, as it is indistinguishable from σ0, vis-a-vis electro-
static boundary measurements of electrostatic potentials (treated rigorously
as bounded, distributional solutions of the degenerate elliptic boundary value
problem corresponding to σ [26, 27].

The same construction of σ|Ω−B1 was proposed in Pendry, Schurig and Smith
[41] to cloak the region B1 from observation by electromagnetic waves at
a positive frequency; see also Leonhardt [36] for a related approach for
Helmholtz in R2.

2.2 Perfect acoustic cloaks

At the present time, for mathematical proofs [23] of some of the results below
we require that σ be chosen to be the homogeneous, isotropic conductivity,
σ = κσ0 inside B1, i.e., σjk(x) = κδjk, with κ ≥ 2 a constant. However, this
assumption is not needed for physical arguments.

The cloaking conductivity σ above corresponds to a Riemannian metric gjk

that is related to σij by

σij(x) = |g(x)|1/2gij(x), |g| =
(
det[σij]

)2
(11)

8



where [gjk(x)] is the inverse matrix of [gjk(x)] and |g(x)| = det[gjk(x)]. The
Helmholtz equation, with source term p, corresponding to this cloaking met-
ric has the form

3∑
j,k=1

|g(x)|−1/2 ∂

∂xj
(|g(x)|1/2gjk(x)

∂

∂xk
u) + ω2u = p on Ω, (12)

u|∂Ω = f.

Reinterpreting the conductivity tensor σ as a mass tensor (which has the

same transformation law (7) and |g| 12 as the bulk modulus parameter, (12)
becomes an acoustic equation,(

∇·σ∇+ ω2|g|
1
2

)
u = p(x)|g|

1
2 on Ω, (13)

u|∂Ω = f.

This is the form of the acoustic wave equation considered in [8, 14]; see also
[13] for d = 2. As σ is singular at the cloaking surface Σ := Σ1 = ∂B1, one
has to carefully define what one means by “waves”, that is by solutions to
(12) or (13). Let us recall the precise definition of the solution to (12) or
(13), discussed in detail in [18]. We say that u is a finite energy solution of
the Helmholtz equation (12) or the acoustic equation (13) if

1. u is square integrable with respect to the metric, i.e., is in the weighted
L2-space,

u ∈ L2
g(Ω) = {u : ‖u‖2

g :=

∫
Ω

dx |g|1/2|u|2 <∞};

2. the energy of u is finite,

‖∇u‖2
g :=

∫
Ω−Σ

dx |g|1/2gij∂iu∂ju <∞;

3. u satisfies the Dirichlet boundary condition u|∂Ω = f ; and

4. the equation (13) is valid in the weak distributional sense, i.e., for all
ψ ∈ C∞

0 (Ω)∫
Ω

dx [−(|g|1/2gij∂iu)∂jψ + ω2uψ|g|1/2] =

∫
Ω

dx p(x)ψ(x)|g|1/2. (14)
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We note that, since g is singular, the term |g|1/2gij∂iu must also be defined
in an appropriate weak sense.

It was shown in [18] that if u is the finite energy solution of the acoustic
equation (13), then u(x) defines two functions v+(y), y ∈ Ω, and v−(y), y ∈
B1, by the formulae

u(x) =

{
v+(y), where x = F (y), for 1 < |x| < 3,
v−(y), where x = y, for 0 < |x| < 1.

(15)

These functions v±(y) satisfy the following equations,

(∇2 + ω2)v+(y) = p̃(y) := p(F (y)) in Ω, (16)

v+|∂Ω = f,

and

(∇2 + κ2ω2)v−(y) = κ2p(y) in B1, (17)

∂νv
−|∂B1 = 0

where ∂νu = ∂ru denotes the normal derivative on ∂B1.

2.3 Nonsingular approximate acoustic cloak

Next, consider nonsingular approximations to the ideal cloak that are more
physically realizable by virtue of having bounded anisotropy ratio; see [43,
20, 32] for analyses of cloaking from the point of view of similar truncations.
Studying the behavior of solutions to the corresponding boundary value prob-
lems near the cloaking surface as these nonsingular approximately cloaking
conductivities tend to the ideal σ, we will see that the Neumann boundary
condition appears in (17) on the cloaked region B1.

To this end, let 1 < R < 2, ρ = 2(R − 1) and introduce the coordinate
transformation FR : R3 −Bρ → R3 −BR,

x := FR(y) =

{
y, for |y| > 2,(

1 + |y|
2

)
y
|y| , for ρ < |y| ≤ 2.

We define the corresponding approximate conductivity, σR as

σjk
R (x) =

{
σjk(x) for |x| > R,
κδjk, for |x| ≤ R.

(18)
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Note that then σjk(x) = ((FR)∗ σ0)
jk (x) for |x| > R, where σ0 ≡ 1 is the

homogeneous, isotropic conductivity (or mass density) tensor, Observe that,
for each R > 1, the conductivity σR is nonsingular, i.e., is bounded from
above and below with, however, the lower bound going to 0 as R ↘ 1. Let
us define

gR(x) = det(σR(x))2 =


1, for |x| ≥ 2,

64|x|−4(|x| − 1)4 for R < |x| < 2,
κ6, for |x| ≤ R,

(19)

cf. (11). Similar to (13), consider the solutions of

(∇·σR∇+ ω2g
1/2
R )uR = g

1/2
R p in Ω

uR|∂Ω = f,

As σR and gR are now non-singular everywhere on D, we have the standard
transmission conditions on ΣR := {x : |x| = R},

uR|ΣR+ = uR|ΣR−, (20)

er·σR∇uR|ΣR+ = er·σR∇uR|ΣR−,

where er is the radial unit vector and ± indicates when the trace on ΣR is
computed as the limit r → R±.

Similar to (15), we have

uR(x) =

{
v+

R(F−1
R (x)), for R < |x| < 3,

v−R(x), for |y| ≤ R,

with v±R satisfying

(∇2 + ω2)v+
R(y) = p(FR(y)) in ρ < |y| < 3,

v+
R |∂B(O ,3) = f,

and

(∇2 + κ2ω2)v−R(y) = κ2p(y), in |y| < R. (21)

Next, using spherical coordinates (r, θ, ϕ), r = |y|, the transmission condi-
tions (20) on the surface ΣR yield

v+
R(ρ, θ, φ) = v−R(R, θ, φ), (22)

ρ2 ∂rv
+
R(ρ, θ, φ) = κR2 ∂rv

−
R(R, θ, φ).
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Below, we are most interested in the case p = 0, but also analyze the case

p(x) = κ−2
∑
|α|≤N

qα∂
α
x δ0(x), (23)

where δ0 is the Dirac delta function at origin and qα ∈ C, i.e., there is
a (possibly quite strong) point source the cloaked region. The Helmholtz
equation (21) on the entire space R3, with the above point source and the
standard radiation condition, would give rise to the wave

up
0(y) =

N∑
n=0

n∑
m=−n

pnmh
(1)
n (κωr)Y m

n (θ, ϕ), pnm = pnm(ω),

where Y m
n are spherical harmonics and h

(1)
n (z) and jn(z) are the spherical

Bessel functions, see, e.g., [12].

In BR the function v−R(y) differs from up
0 by a solution to the homogeneous

equation (21), and thus for r < R

v−R(r, θ, ϕ) =
∞∑

n=0

n∑
m=−n

(anmjn(κωr) + pnmh
(1)
n (κωr))Y m

n (θ, ϕ),

with yet undefined anm = anm(κ, ω;R). Similarly, for ρ < r < 3,

v+
R(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

(cnmh
(1)
n (ωr) + bnmjn(ωr))Y m

n (θ, ϕ),

with as yet unspecified bnm = bnm(κ, ω;R) and cnm = cnm(κ, ω;R).

Rewriting the boundary value f on ∂Ω as

f(θ, ϕ) =
∞∑

n=0

n∑
m=−n

fnmY
m
n (θ, ϕ),

we obtain, together with transmission conditions (22), the following equations
for anm, bnm and cnm:

fnm = bnmjn(3ω) + cnmh
(1)
n (3ω), (24)

anmjn(κωR) + pnmh
(1)
n (κωR) = bnmjn(ωρ) + cnmh

(1)
n ωρ), (25)

κR2(κωanm(jn)′(κωR) + κωpnm(h(1)
n )′(κωR)) (26)

= ρ2(bnmω(jn)′(kρ) + ωcnm(h(1)
n )′(ωρ)).
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When ω is not a Dirichlet eigenvalue of the equation (13), we can find the
anm and cnm from (25)-(26) in terms of pnm and bnm, and use the solutions
obtained and the equation (24) to solve for bnm in terms of fnm and pnm.
This yields

bnm =
1

jn(3ω) + snh
(1)
n (3ω)

(fnm − s̃nh
(1)
n (3ω)pnm),

cnm = snbnm − s̃npnm, (27)

anm = tnbnm − t̃npnm

where

sn =
κ2R2jn(ωρ)(jn)′(κωR)− ρ2(jn)′(ωρ)jn(κωR)

ρ2(h
(1)
n )′(ωρ)jn(κωR)− κ2R2h

(1)
n (ωρ)(jn)′(κωR)

,

tn =
ρ2jn(ωρ)(h

(1)
n )′(ωρ)− ρ2(jn)′(ωρ)h

(1)
n (ωρ)

ρ2(h
(1)
n )′(ωρ)jn(κωR)− κ2R2h

(1)
n (ωρ)(jn)′(κωR)

,

s̃n =
κ2R2h

(1)
n (κωR)(jn)′(κωR)− κ2R2(h

(1)
n )′(κωR)jn(κωR)

ρ2(h
(1)
n )′(ωρ)jn(ωR)− κ2R2h

(1)
n (ωρ)(jn)′(κωR)

,

t̃n =
ρ2h

(1)
n (κωR)(h

(1)
n )′(ωρ)− κ2R2(h

(1)
n )′(κωR)h

(1)
n (ωρ)

ρ2(h
(1)
n )′(ωρ)jn(κωR)− κ2R2h

(1)
n (ωρ)(jn)′(κωR)

.

Recalling that anm, bnm and cnm depend on R, let us consider what happens
as R↘ 1, i.e., as ρ := 2(R− 1) ↘ 0. We use the asymptotics

jn(ωρ) = O(ρn), j′n(ωρ) = O(ρn−1); (28)

h′n(ωρ) = O(ρ−n−1), h′n(ωρ) = O(ρ−n−2), as ρ→ 0,

and obtain

sn ∼
c1ρ

2ρn−1 + c2ρ
n

c3ρ2ρ−n−2 + c4ρ−n−1
∼ c5ρ

2n+1, (29)

tn ∼
c′1ρ

2ρnρ−n−2 + c′2ρ
2ρn−1ρ−n−1

c′3ρ
2ρ−n−2 + c4ρ−n−1

∼ c′5ρ
n+1, (30)

s̃n ∼
c′′1 + c′′2

c3ρ2ρ−n−2 + c4ρ−n−1
∼ c′′5ρ

n+1, (31)

t̃n ∼
c′′′1 ρ

2ρ−n−2 + c′′′2 ρ
−n−1

c′3ρ
2ρ−n−2 + c4ρ−n−1

∼ c′′′5 , (32)
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assuming the constant c4 does not vanish. The constant c4 is the product of
a non-vanishing constant and (jn)′(κω). Thus the asymptotics (29)-(32) are
valid if −(κω)2 is not a Neumann eigenvalue of the Laplacian in the cloaked
domain B1 and −ω2 is not a Dirichlet eigenvalue of the Laplacian in the
domain Ω. In the rest of this section we assume that this is the case.

Since the system (24)-(26) is linear, we consider separately two cases, when
fnm 6= 0, pnm = 0, and when fnm = 0, pnm 6= 0.

In the case fnm 6= 0, pnm = 0 we have

bnm = O(1), cnm = O(ρ2n+1),

anm = O(ρn+1), as ρ→ 0.

The above equations, together with (28), imply that the wave v−R in the
approximately cloaked region r < R tends to 0 as ρ → 0, with the term
associated to the spherical harmonic Y m

n behaving like O(ρn+1). As for the
wave v+

R in the region Ω−BR, both terms associated to the spherical harmonic

Y m
n and involving jn(ωr) and h

(1)
n (ωr), respectively, are of the same order

O(1) near r = ρ. However, the terms involving h
(1)
n (ωr) decay, as r grows,

becoming O(ρ2n+1) for r ≥ r0 > 1.

In the the second case, when fnm = 0, pnm 6= 0, we see that

anm ∼ −h
′
n(κωR)

jn(κωR)
pnm = O(1), as ρ→ 0.

Also,

bnm = O(ρn+1), cnm = O(ρn+1), as ρ→ 0. (33)

These estimates show that v+
R is of the order O(1) near r = ρ. However, it

decays as r grows becoming O(ρn+1) for r ≥ r0 > 1.

Summarizing, when we have a source only in the exterior (resp., interior) of
the cloaked region, the effect in the interior (resp., exterior) becomes very
small as R→ 1. More precisely, the solutions v±R with converge to v±, i.e.,

lim
R→1

v±R(r, θ, ϕ) = v±(r, θ, ϕ),

where v± were defined in (15), (16), and (17). Equations (25),(27) and (33)
show how the Neumann boundary condition naturally appears on the inner
boundary Σ− of the cloaking surface.
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2.4 Isotropic nonsingular approximate acoustic cloak

In this section we approximate the anisotropic approximate cloak σR by
isotropic conductivities, which then will themselves be approximate cloaks.
Cloaking by layers of homogeneous, isotropic EM media has been proposed
in [30] and [9].

We will consider the isotropic conductivities of the form

γε(x) = γ(x,
r

ε
)

where r := r(x) = |x| is the radial coordinate, γ(x, r′) = h(x, r′)I ∈ R3×3 and
h(x, r′) a smooth, scalar valued function to be chosen later that is periodic in
r′ with period 1, i.e., h(x, r′+1) = h(x, r′) satisfying 0 < C1 ≤ h(x, r′) ≤ C2.

Let s = (r, θ, φ) and t = (r′, θ′, φ′) be spherical coordinates corresponding to
two different scales. Next we homogenize the conductivity in the (r′, φ′, θ′)-
coordinates. With this goal, we denote by e1 = (1, 0, 0), e2 = (0, 1, 0),
and e3 = (0, 0, 1) the vectors corresponding to unit vectors in r′, θ′ and φ′

directions, respectively. Moreover, let U i(s, t), i = 1, 2, 3, be the solutions of

divt(γ(s, t)(gradt · U i(s, t) + ei) = 0, t = (r′, θ′, φ′) ∈ R3, (34)

that are 1-periodic functions in r′, θ′ and φ′ variables that satisfy, for all s,∫
[0,1]3

dt′ U i(s, t′) = 0,

where, t′ = (r′, θ′, φ′) and dt = dr′dθ′dφ′.

Define the corrector matrices [1] as

P k
j (s, t) =

∂

∂tj
Uk(s, t) + δk

j .

Then the homogenized conductivity is

γ̂jk(s) =
3∑

p=1

∫
[0,1]3

dt γjp(s, t)P k
p (s, t) (35)

and satisfies C1I ≤ γ̂ ≤ C2I.
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Since γ is independent of θ′, φ′, the above condition implies that U i = 0 for
i = 2, 3. As for U1, it satisfies

∂

∂r′

(
h(s, r′)

∂U1

∂r′

)
= −∂h(s, r

′)

∂r′
,

with U1 being 1-periodic with respect to (θ′, φ′). These imply that U1 is
independent of (θ′, φ′) with

∂U1

∂r′
= −1 +

C

h(s, r′)
.

To find the constant C we again use the periodicity of U1, now with respect
to r′, to get that C is given by the harmonic means hharm of h,

C = hharm(s) :=
1∫ 1

0
dr′ h−1(s, r′)

. (36)

Let ha(s) denote the arithmetic means of h in the second variable,

ha(s) =

∫
[0,1]

dr′ h(s, r′).

Then the homogenized conductivity will be

γ̂(x) = hharm(x)Π(x) + ha(x)(I − Π(x)),

where Π(x) is the projection (10). For similar constructions see, e.g., [10].

If

(gR(x)−1/2∇· γε(x)∇)wε = G on Ω, (37)

wε|∂Ω = f,

applying results of analogous to [1] in spherical coordinates (see [23]), we
obtain

lim
ε→0

wε = w, in L2(Ω), (38)

where

(gR(x)−1/2∇· γ̂(x)∇)w = G on Ω, (39)

w|∂Ω = f.
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The convergence (38) is physically reasonable; if we combine spherical layers
of conducting materials, the radial conductivity is the harmonic average of
the conductivity of layers and the tangential conductivity is the arithmetic
average of the conductivity of the layers. Applying this, the fact that γ̂ and
γε are uniformly bounded both from above and below, and results from the
spectral theory, e.g., [31], one can show [23] that if

gR(x)−1/2∇· γε(x)∇uε + ω2uε = G on Ω, (40)

uε|∂Ω = f

and ω2 is not a Dirichlet eigenvalue of the problem

gR(x)−1/2∇· γ̂(x)∇u+ ω2u = G on Ω, (41)

u|∂Ω = f

then

lim
ε→0

uε = u, in L2(Ω). (42)

To consider an explicit isotropic conductivity, let us consider functions φ :
R → R and φL : R → R given by

φ(t) =


0, t < 0,

1
2
t2, 0 ≤ t < 1,

1− 1
2
(2− t)2, 1 ≤ t < 2
1, t ≥ 2,

and

φL(t) =


0, t < 0,
φ(t), 0 ≤ t < 2,
1, 2 ≤ t < L− 2,

φ(L− t), t ≥ L− 2.

Let us use

γ(r,
r

ε
) =

[
1 + a1(r)ζ1(

r

ε
)− a2(r)ζ2(

r

ε
)
]2

, (43)
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where, for some positive integer L we define ζj : R → R to be 1−periodic
functions ,

ζ1(t) = φL

(
2Lt

)
, 0 ≤ t < 1,

ζ2(t) = φL

(
2L(t− 1

2
)
)
, 0 ≤ t < 1.

In (43) the first term within the brackets connects conductivity 1 smoothly
to the interior conductivity κ and the second term produces the anisotropic
cloaking conductivity after homogenization.

Temporarily fix an R > 1; eventually, we will take a sequence of these ↘ 1.
In order to guarantee that the conductivity γ̂ is smooth enough, we piece
together the cloaking conductivity in the exterior domain r > R and the
homogeneous conductivity in the cloaked domain in a smooth manner. For
this end, we introduce a new parameter η > 0 and solve for each r the
parameters a1(r) ≥ 0 and a2(r) ≥ 0 from the equations for the harmonic and
arithmetic averages,∫ 1

0

dr′ [1 + a1(r)ζ1(r
′)− a2(r)ζ2(r

′)]−2

=


2R−2(R− 1)2(1− φ(R−r

η
)) + κφ(R−r

η
), if r < R,

2r−2(r − 1)2, if R < r < 2,
1, if r > 2,∫ 1

0

dr′ [1 + a1(r)ζ1(r
′)− a2(r)ζ2(r

′)]2

=


2(1− φ(R−r

η
)) + κφ(R−r

η
), if r < R,

2, if R < r < 2,
1, if r > 2,

we obtain a1(r) and a2(r) such that the homogenized conductivity is

γ̂(x) = σR,η(x) =


πR(1− φ(R−r

η
)) + κφ(R−r

η
), if r < R,

πR, if R < r < 2,
1, if r > 2,

where

πR = 2R−2(R− 1)2Π(x) + 2(1− Π(x))
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and Π(x) is as in (10). We denote the solutions by a1
R,η(r) and a2

R,η(r). Now
when first ε→ 0, then η → 0 and finally R→ 1, the obtained conductivities
approximate better and better the cloaking conductivity σ. Thus we choose
appropriate sequences Rn → 1, ηn → 0 and εn → 0 and denote

γn(x) :=

[
1 + a1

Rn,ηn
(r)ζ1(

r

εn

)− a2
Rn,ηn

(r)ζ2(
r

εn

)

]2

, r = |x|. (44)

Note also that if a1 and a2 are constant functions then γn = γ(x0, x/εn), so
that all γn look the “same” inside the εn period; this is the case in Figs. 1
and 2. For later use, we need to assume that εn goes to zero faster than ηn,
and so choose εn < η2

n; we can also assume that all of the ε−1
n ∈ Z, which

ensures that the function γ(x, r(x)/εn) is C1,1 smooth at r = 2. Denoting
gn(x) := gRn(x), one can summarize the above analysis by:

Isotropic approximate acoustic cloaking. If p is supported at the origin
as in (23), then the solutions of(

gn(x)−1/2∇· γn(x)∇+ ω2
)
un = p on Ω, (45)

un|∂Ω = f,

tend to the solution of (13). as n→∞.

3 Cloaking for the Schrödinger equation

3.1 Gauge transformation

This section is devoted to approximate quantum cloaking at a fixed energy,
i.e., for the time-independent Schrödinger equation with the a potential V (x),

(−∇2 + V )ψ = Eψ, in Ω.

A standard gauge transformation converts the equation (45) to such a Schrödinger
equation. Assuming that un satisfies equation (45) with ω2 = E, and defining

ψn(x) = γ1/2
n (x)un(x), (46)

19



with γn as in (44), we then have that

γ−1/2
n ∇· γn∇(γ−1/2

n ψn) = ∇2ψn − Vnψn,

where
Vn = γ−1/2

n ∇2 (γ1/2
n ).

ψn thus satisfies the equation,

(−∇2 + Vn − Eγ−1
n g1/2

n )ψn = 0 in Ω,

which can be interpreted as a Schrödinger at energy E by introducing the
effective potential

V E
n (x) : = Vn(x)− Eγ−1

n g1/2
n + E, (47)

so that

(−∇2 + V E
n )ψn = Eψn in Ω. (48)

We will show that the potentials V E
n function as approximate invisibility

cloaks in quantum mechanics at energy E (recall the discussion in the Intro-
duction of the ideal quantum mechanical cloaking of [48]).

Let us next consider measurements made on ∂Ω. Let W (x) be a bounded
potential supported on B1, let ΛW+V E

n
(E) be the Dirichlet-to-Neumann (DN)

operator corresponding to the potential W + V E
n , and Λ0(E) be the DN

operator, defined earlier, corresponding to the zero potential.

The results for the acoustic equation given in Sec. 2 yield the following result,
constituting approximate cloaking in quantum mechanics; for mathematical
details of the proof, see [23]).

Approximate quantum cloaking. Let E ∈ R be neither a Dirichlet eigen-
value of −∇2 on Ω nor a Neumann eigenvalue of −∇2 + W on B1. Then,
the DN operators (corresponding to boundary measurements at ∂Ω of matter
waves) for the potentials V E

n converge to the DN operator corresponding to
free space, that is,

lim
n→∞

ΛW+V E
n

(E)f = Λ0(E)f

in L2(∂Ω) for any smooth f on ∂Ω.
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Since convergence of the near field measurements imply convergence of the
scattering amplitudes [4], we also have

lim
n→∞

aW+V E
n

(E, θ′, θ) = a0(E, θ
′, θ).

Note that the V E
n can be considered as almost transparent potentials at

energy E, but this behavior is of a very different nature than the well-known
results from the classical theory of the spectral convergence, since the V E

n

do not tend to 0 as n → ∞. (On the contrary, as we will see shortly,
they alternate and become unbounded near the cloaking surface Σ as n →
∞.) More importantly, the V E

n also serve as approximate invisibility cloaks
for two-body scattering in quantum mechanics. Any potential W supported
in B1, when surrounded by V E

n , becomes undetectable by matter waves at
energy E, asymptotically in n. Furthermore, the combination of W and the
cloaking potential V E

n have negligible effect on waves passing the cloak. As all
measurement devices have limited precision, we can interpret this as saying
that, given a specific device using particles at energy E, one can design a
potential to cloak an object from any single-particle measurements made
using that device.

3.2 Explicit approximate quantum cloak

We now make explicit the structure of the potentials V E
n , obtaining analytic

expressions used to produce the numerics and figures below. Recall that the
potential Vn when γn is given by (43), with L > 4 an integer. Since

d2

dt2
φL(t) =


0, if t < 0 or 2 ≤ t < L− 2 or L ≤ t,
1, if 0 ≤ t < 1 or L− 1 ≤ t < L

−1, if 1 ≤ t < 2 or L− 2 ≤ t < L− 1

we see that

Vn = γ−1/2
n ∇2 (γ1/2

n ) (49)

= ε−2
n

a1
Rn,ηn

(r)χ1
n( r

εn
)− a2

Rn,ηn
(r)χ2

n( r
εn

)

1 + a1
Rn,ηn

(r)ζ1(
r
εn

)− a2
Rn,ηn

(r)ζ2(
r
εn

)
+O(ε−1

n )
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where

χ1
n(r) =


1, if r ∈ (0, 1/L) + Z and R < rεn < 2,

−1, if r ∈ (1/L, 2/L) + Z and R < rεn < 2,
1, if r ∈ ((L− 2)/L, (L− 1)/L) + Z and R < rεn < 2,

−1, if r ∈ ((L− 1)/L, 1) + Z and R < rεn < 2,
0, otherwise,

and χ2
n(r) = χ1

n(r − 1
2
).

We then see that the Vn are centrally symmetric and can be considered as
being comprised of layers of potential barrier walls and wells that become
very high and deep near the inner surface ΣRn . Each Vn is bounded, but as
n → ∞, the height of the innermost walls and the depth of the innermost
wells goes to infinity when approaching the interface Σ from outside. These
same properties are then passed from Vn to V E

n by (47).
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Figure 1: Radial profile of γn with L = 10, constant a1 ≡ 2, a2 ≡ −.8.
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Figure 2: Radial profile of Vn with L = 10, constant a1 ≡ 2, a2 ≡ −.8.

3.3 Enforced boundary conditions on cloaking surface

As described in Sec. 2.2,, the natural boundary condition for the Helmholtz
and acoustic equations with perfect cloak, including those with sources within
the cloaked region B1, is the Neumann boundary condition on Σ−.3 How-
ever, the above analysis of approximate cloaking for the Schrödinger equation
makes it possible to produce quantum cloaking devices which enforce more
general boundary conditions on Σ−, e.g., the Robin boundary conditions,
which may be a useful feature in applications.

To describe this, let

χ0eε(|x|) =

{
1, if 1− ε̃ < r < 1,
0, otherwise,

with α = α(x̂), x̂ = x/|x| a function on Σ = ∂B1.

Introduce an extra potential wall inside B1 close to the surface Σ, namely,
take W (x) in the form

W (x) = Qeε(α; |x|) = α(x̂)
χ0eε(|x|)
ε̃

,

3For analysis of ideal cloaking, allowing various boundary conditions, as long as they
are consistent with von Neumann’s theory of self-adjoint extensions, see Weder [47].
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and then consider the boundary value problem,

(−∇2 − E + V E
n +Qeε)v = p in B3, (50)

v|∂Ω = f.

As n → ∞ the solution v = vneε to (50) tends, inside B1, to the solution of
the equation

(−∇2 − E +Qeε)veε = p in B1, (51)

∂rveε|Σ = 0.

Now, as ε̃↘ 0, we see that

Qeε → αδ(r − 1), (52)

so that the functions veε tend to the solution of the boundary value problem(
−∇2 − E + αδ(r − 1)

)
v = p in B1, (53)

∂rv|Σ = 0.

Note that to give the precise meaning of the above problem and its solution,
we should interpret (53) in the weak sense. Namely, v is the solution to (53),
if for all ϕ ∈ C∞(B1)∫

B1

dx [∇u·∇ϕ− Euϕ] +

∫
Σ

dS(x)αuϕ =

∫
B1

dx pϕ,

which may be obtained from (53) by a (formal) integration by parts and
utilizing (52). However, the above weak formulation is equivalent to the
boundary value problem,

(−∇2 − E)v = p in B1,

(∂rv − αv) |Σ = 0.

Thus, the Neumann boundary condition for the Schrödinger equation at the
energy level E has been replaced by a Robin boundary condition on Σ−, and
the same holds for ideal acoustic cloaking.

Returning to approximate cloaking, this means that if, for ε, ε̃ very small,
with ε << ε̃, we construct an approximate cloaking potential with layers
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of thickness ε height ε−1, and augment it by an innermost potential wall of
width ε̃ and height ε̃−1, then we obtain an approximate quantum cloak with
the wave inside B1 behaving as if it satisfies the Robin boundary condition.
It is clear from the above that the boundary condition appearing on the
cloaking surface is very dependent on the fine structure of the approximately
cloaking potential. Physically, this boundary condition may be enforced by
appropriate design of this extra potential wall (rather than being due to the
cloaking material in B3 −B1), so that we refer to this as an enforced bound-
ary condition in approximate cloaking, as opposed to the natural Neumann
condition that occurs in ideal cloaking.

3.4 Approximation of V E
n with point charges

One possible path to physical realization of these approximate quantum me-
chanical cloaks would be via electrostatic potentials, approximating (again!)
the potentials V E

n by sums of point sources. Indeed, solving the equation

V E
n (x) =

∫
BR∞

dy
−fE

n (y)

2π|x− y|
, x ∈ R3, R∞ >> 1.

for fE
n is an ill-posed problem, but using regularization methods one could

find approximate solutions; the resulting fE
n (x) could then be approximated

by a sum of delta functions, giving blueprints for approximate cloaks imple-
mented by electrode arrays.

3.5 Numerical results

We use the analytic expressions found above to compute the fields for a plane

wave with Ein(x) = Aeikx·~d. The computations are made without reference
to physical units; for simplicity, we use E = 0.5, κ = 2 and amplitude A = 1.
Unless otherwisely stated, the cloak has parameters ρ = 0.01, i.e. R = 1.005,
so that the anisotropy ratio [20] is 4×104, and η = 0.055. In the simulations
we use a cloak consisting of 20 homogenized layers inside and 30 homogenized
layers outside of the cloaking surface ΣR = {r = R}. This means that ε inside
the cloaking surface is η/20 and outside the cloaking surface (2−R)/30.
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Inside the cloak we have located a spherically symmetric potential;

W (x) = vinχ[0,0.9](r).

For the demonstration of the cloaking, we used vin +E = 100. For obtaining
a bound state, we used vin + E = −0.358.

In the numerical solution to obtain the solutions ψn and un we use the ap-
proximation that L >> 1. This implies that the cloaking conductivity γR

is piecewise constant, and correspondingly, the cloaking potential V E
n is a

weighted sum of delta functions on spheres, and their derivatives. In the
numerical solution of the problem, we represent the solution un of the equa-
tion ∇· γn∇u+ g

1/2
n ω2u = 0 in terms of Bessel functions up to order N = 14

in each layer where the cloaking conductivity is constant. The transmission
condition on the boundaries of these layers are solved numerically by solving
linear equations. After this we compute the solution ψn of the Schrödinger
equation using formula ψn(x) = γn(x)1/2un(x).

Below we give the numerically computed coefficients of spherical harmonics
Y n

0 in the case when vin + E = 100 and ρ = 0.01, in which we do not have
an eigenstate inside the cloaked region. The result are compared to the case
when we have scattering from the potential W without a cloak.

Table 1. coefficients of scattered waves for vin + E = 100 and ρ = 0.01

n cn with cloak and W cn with W but no cloak
0 −0.0057− 0.0751i +0.8881i
1 +0.0107− 0.0000i −0.0592i
2 +0.0000 + 0.0052i −0.1230i
3 −0.0007 + 0.0000i −0.0153i
4 −0.0000− 0.0000i +0.0011i
5 +0.0000− 0.0000i +0.0000i
6 +0.0000 + 0.0000i +0.0000i

(
∑
|cn|2)1/2 0.0058 0.8076
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Figure 3: The magnitudes of the far fields. The far-fields θ 7→ |a(θ, ϕ)|
with ϕ = 0 are shown: Black curve: scattering from W without the
cloak. Blue curve: scattering from W surrounded by cloak, ρ = 0.1;
Red curve: scattering from W surrounded by cloak, ρ = 0.01.
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Figure 4: Scattering from cloak Left: The total field when a plane wave
scatters from an approximate cloak in the case when we have no interior
eigenvalue. The real part of ψ is shown on left Due to the limited resolution,
the field ψ in figure is sparsely sampled in radial direction, and in reality ψ
oscillates in the cloak more than is shown. Right: A detailed sub-figure with
a denser resolution inside the cloaking layers.

4 Three applications to quantum mechanics

In this section, we consider three examples of the results and ideas above to
quantum mechanics. Further discussion of applications is in [24]

4.1 Case study 1: Amplifying magnetic potentials

We first construct a system consisting of a fixed homogeneous magnetic field
and a sequence of electrostatic potentials, the combination of which produce
boundary or scattering observations (at energy E) making it appear as if the
magnetic field blows up near a point.

The magnetic Schrödinger equation with a magnetic potential A (for mag-
netic field B = ∇× A) and electric potential V is of the form

−(∇+ iA)2ψ + V ψ = Eψ, in Ω, ψ|∂Ω = f, (54)

where we have added the Dirichlet boundary condition on ∂Ω. Take now
V = V E

n and denote the corresponding solutions of (54) by ψn. Let un :=
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γ
−1/2
n ψn; then these un satisfy, cf. (46)–(48),

−g−1/2
n ∇A· γn∇Aun = Eun, un|∂Ω = f,

where ∇A := ∇ + iA. Similar to the considerations above, we see that if
n→∞, then un → u, where u is the solution to the problem

−g−1/2∇A·σ∇Au = Eu, u|∂Ω = f.

Letting w(y) = u(x) with x = F (y), y ∈ B3 \ {O}, x ∈ Ω \B1, we have that
w is the solution to the magnetic Schrödinger equation, at energy E, with 0
electric potential and magnetic potential Ã

−(∇+ iÃ)2w − Ew = 0, in B3.

Since magnetic potentials transform as differential 1−forms, we see that,
briefly using subscripts for the coordinates,

Ãj(y) =
3∑

k=1

Ak(x)
∂xk

∂yj

Now take the linear magnetic potential A = (0, 0, ax2), corresponding to
homogeneous magnetic field B = (a, 0, 0). By the transformation rule (8),

Ã = A in B3 −B2, while in B2

Ã(y) = a

(
1 +

|y|
2

)
y2

|y|4
(
−y1y3, −y2y3, (y1)

2 + (y2)
2 + |y|3/2

)
.

From this we see that Ã(y) blows up near y = 0 as O(|y|−1) so that the

corresponding magnetic field B̃(y) blows up near y = 0 as O(|y|−2).

Consider now the Dirichlet-to-Neumann operator for the magnetic Schrödinger
equation (54) with V = V E

n , i.e., the operator ΛVn,A that maps

ΛVn,A : ψ|∂Ω 7→ ∂νψ|∂Ω.

Then the above considerations show that, as n → ∞, ΛVn,Af → Λ0, eAf . In
other words, as n → ∞, that the boundary observations, at energy E, for
the magnetic Schrödinger equation with a linear magnetic potential A, in the
presence of the large electric potentials V E

n , appear as those of a very large

magnetic potential Ã blowing up at the origin, in the presence of very small
electric potentials.
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4.2 Case study 2: Almost bound states concentrated
in the cloaked region.

Let Q ∈ C∞
0 (B1) be a real potential. The magnetic Schrödinger equation

(54) with potential V = Q + V E
n , after a gauge transformation, is closely

related to the operator Dn,

Dnu = −gn(x)−1/2∇A· γn∇Au+Qu,

with domain {u ∈ L2(Ω) : Dnu ∈ L2(Ω), u|∂Ω = 0}. We also define the
operator D,

Du = −g(x)−1/2∇A·σ∇Au+Qu,

which is a selfadjoint operator in the weighted space L2
g(Ω) with an appro-

priate domain related to the Dirichlet boundary condition u|∂Ω = 0. The
operators Dn converge to D (see [23] for details) so that in particular for all
functions p supported in B1

lim
n→∞

(Dn − z)−1p = (D − z)−1p in L2
g, (55)

if z is not an eigenvalue of D.

Assume now that E is a Neumann eigenvalue of multiplicity one of the op-
erator −∇2

A +Q in B1 but is not a Dirichlet eigenvalue of operator −∇2eA in
Ω = B3. Using formulae (15)–(17), one sees that then E is a eigenvalue of D
of multiplicity one and the corresponding eigenfunction φ is concentrated in
B1, that is, φ(x) = 0 for x ∈ Ω \B1. Assume, for simplicity, that κ = 1, and
let p be a function supported in B1 that satisfies

ap =

∫
B1

dx p(x)φ(x) =

∫
Ω

dx g1/2(x)p(x)φ(x) 6= 0,

see (18). If Γ is a contour in C around E containing only one eigenvalue of
D, then

1

2πi

∫
Γ

dz (D − z)−1p = apφ. (56)

However, by (55),

1

2πi

∫
Γ

dz (D − z)−1p = lim
n→∞

1

2πi

∫
Γ

dz (Dn − z)−1p.
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Figure 5: Plane wave and approximate cloak: Reψ when E is not a
Neumann eigenvalue. Matter wave passes cloak unaltered.
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Figure 6: Almost bound state: Reψ when E is an eigenvalue.
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By standard results from spectral theory, see e.g. [31], this implies that when
n is sufficiently large then there is only one eigenvalue En of Dn inside Γ,
and En → E as n→∞. Moreover,

apφ = lim
n→∞

an,pφn,

where φn is the eigenfunction of Dn corresponding to the eigenvalue En and
an,p is given as

an,p =

∫
Ω

dx g1/2
n (x)p(x)φn(x) =

∫
B1

dx p(x)φn(x).

This shows, in particular, that, when n is sufficiently large, the eigenfunctions
φn of Dn are close to the eigenfunction φ of D and therefore are almost 0 in
Ω−B1.

Applying the gauge transformation (46), we see that the magnetic Schrödinger
operator −∇2

A + (V En
n +Q) has En as an eigenvalue,

−∇2
Aψn + (V E

n +Q)ψn = Enψn,

where ψn = gn(x)−1/2φn. It follows from the above that this eigenfunction
ψn is close to zero outside B1. This means that the corresponding quantum
particle is mostly concentrated in B1, which we may refer to as a bound state
approximate located in B1.

4.3 Case study 3: S3 quantum mechanics in the lab

The basic quantum cloaking construction outlined above can be modified to
make the wave function on B1 behave (up to a small error) as though it
were confined to a compact, boundaryless three-dimensional manifold which
has been “glued” into the cloaked region. Mathematically, this could be any
manifold, M , but for physical realizability, one needs to take M to be the
three-sphere, S3, topologically, but not necessarily with its standard metric,
gstd. By appropriate choice of a Riemannian metric g on S3, the resulting
approximately cloaking potentials can be custom designed to support an
essentially arbitrary energy level structure.

As the starting point one uses not the original cloaking conductivity σ1 (the
single coating construction), but instead what was referred to in [18, Sec.
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Figure 7: Schematic: Constructing an S3 approximate quantum cloak.
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2] as a double coating. This is singular (and of course anisotropic) from
both sides of Σ, and in the electromagnetic cloaking context corresponds to
coating both sides of Σ with appropriately matched metamaterials. Here, we
denote a double coating tensor by σ(2). The part of such a σ(2) inside B1 is
specified by (i) choosing a Riemannian metric g on S3, with corresponding

conductivity σij = |g| 12 gij; (ii) a small ball B̃δ about a distinguished point

x0 ∈ S3; (iii) a blow-up transformation T1 : S3 − {x0} → S3 − B̃δ similar
to the F used in the standard single coating construction; (iv) and a gluing

transformation T2 : S3− B̃δ → B3−B1, identifying the boundary of B̃δ with
the inner edge of the cloaking surface, Σ−. σ(2) is then defined as T2∗ (T1∗σ)
on B1 and an appropriately matched single coating on B3 − B1 as before.
This correpsonds to a singular Riemannian metric g(2) on B3, with a two-
sided conical singularity at Σ. One can show [18, Sec. 3.3] that the finite
energy distributional solutions of the Helmholtz equation (−∇g(2) +ω2)u = 0
on B3 split into direct sums of waves on B3−B1, as for σ1, and waves on B1

which are identifiable with eigenfunctions of the Laplace-Beltrami operator
−∇2

g on (S3, g) with eigenvalue ω2.

If one takes g to be the standard metric on S3, then the first nontrivial en-
ergy level is degenerate, with multiplicity 4, while a generic choice of g yields
simple energy levels. On the other hand, it is known that, by suitable choice
of the metric g, any desired finite number of energy levels and multiplicities
at the bottom of the spectrum can be specified [11] arbitrarily, allowing ap-
proximate quantum cloaks to be built that model abstract quantum systems,
with the energy E having any desired multiplicity.
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