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Abstract

We study the asymptotic behavior of an incompressible fluid around
a bounded obstacle. The problem is modelled by the stationary Navier-
Stokes equations in an exterior domain in Rn with n ≥ 2. We will show
that, under some assumptions, any nontrivial velocity field obeys a
minimal decaying rate exp(−Ct2 log t) at infinity. Our proof is based
on appropriate Carleman estimates.

1 Introduction

Let B be a bounded domain in Rn and Ω = Rn \ B̄ with n ≥ 2. Without
loss of generality, we assume 0 is in the interior of B and B ⊂ B1(0) = {x :
|x| < 1}. Assume that Ω is filled with an incompressible fluid described by
the stationary Navier-Stokes equations{

−∆u+ u · ∇u+∇p = 0 in Ω,

∇ · u = 0 in Ω.
(1.1)
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We are interested in the following question: under some boundedness assump-
tion on u, what is the minimal decaying rate at infinity of any nontrivial u
satisfying (1.1)?

To put the problem in perspective, we first mention some related results.
In three dimensions, Finn [3] showed that if u|∂B = 0 and u = o(|x|−1), then
u is trivial. In the same setting and assuming, additionally, that u is C2

bounded, Dyer and Edmunds [2] proved that if u = O(exp(− exp(α|x|3))) for
all α > 0, then u is trivial. We remark that in Finn’s result u is required to
satisfy the homogeneous Dirichlet condition on ∂B and a decaying condition
at infinity, while in Dyer and Edmunds’s result, with the assumption of C2

boundedness, only the local behavior of u at infinity is needed. We showed
in an early paper [6] that for n = 2 or 3, if u is bounded in Ω, then any
nontrivial u of (1.1) can not decay faster than certain double exponential at
infinity (see [6, Corollary 1.6] for details). In the present paper, we improve
significantly on that result, and the result of [2] by showing that the minimal
decaying rate of any nontrivial u is close to exponential in dimension n ≥ 2.
We now state the main theorem of the paper.

Denote

M(t) = inf
|x|=t

∫
|y−x|<1

|u(y)|2dy.

Theorem 1.1 Let u ∈ (H1
loc(Ω))n be a nontrivial solution of (1.1) with an

appropriate p ∈ H1
loc(Ω). Assume that

‖u‖L∞(Ω) ≤ λ if n = 2, (1.2)

or
‖u‖L∞(Ω) + ‖∇u‖L∞(Ω) ≤ λ if n ≥ 3. (1.3)

Then there exist C > 0 depending on λ, n, and t̃ > 0 depending on λ, n,
M(10) such that

M(t) ≥ exp(−Ct2 log t) for t ≥ t̃.

Remark 1.2 It is interesting to compare our result with a similar result for
the Schrödinger equation proved by Bourgain and Kenig [1] (see also [5]). In
[1], they considered the Schrödinger equation

∆u+ V (x)u = 0 in Rn.
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Under the assumption that |V | ≤ 1, |u0| ≤ C0, and u(0) = 1, they proved

inf
|x0|=R

sup
B(x0,1)

|u(x)| ≥ C exp(−R4/3 logR) for R >> 1.

We prove our results by using appropriate Carleman estimates. We will
use weights which are slightly less singular than negative powers of |x| (see
estimates (2.1)). The method of obtaining a decaying rate is a detour from
that of deriving three-ball inequalities using Carleman estimates.

This paper is organized as follows. In Section 2, we reduce the Navier-
Stokes equations to a new system by using the vorticity function. Then we
state some suitable Carleman-type estimates. A technical interior estimate
is proved in Section 3. Section 4 is devoted to the proof of Theorem 1.1.

2 Reduced system and Carleman estimates

Fixing x0 with |x0| = t >> 1, we define

w(x) = (at)u(atx+ x0), p̃(x) = (at)2p(atx+ x0),

where a = 8/s and 0 < s < 8 is a small constant which will be determined
in the proof of Theorem 1.1. Likewise, we denote

Ωt := B 1
a
− 1

at
(0).

From (1.1), it is easy to check that{
−∆w + w · ∇w +∇p̃ = 0 in Ωt,

∇ · w = 0 in Ωt.
(2.1)

In view of (1.2) and (1.3), we have that

‖w‖L∞(Ωt) ≤ atλ (2.2)

or
‖w‖L∞(Ωt) ≤ atλ and ‖∇w‖L∞(Ωt) ≤ (at)2λ. (2.3)

To study the Navier-Stokes equation, it is often advantageous to consider
the vorticity equation. Let us now define the vorticity q of the velocity w by

q = curlw :=
1√
2

(∂iwj − ∂jwi)1≤i,j≤n.
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Note that here q is a matrix-valued function. The formal transpose of curl is
given by

(curl>v)1≤i≤n :=
1√
2

∑
1≤j≤n

∂j(vij − vji),

where v = (vij)1≤i,j≤n. It is easy to see that

∆w = ∇(∇ · w)− curl>curlw

(see, for example, [8] for a proof), which implies

∆w + curl>q = 0 in Ωt.

On the other hand, we observe that

w · ∇w = ∇(
1

2
|w|2)−

√
2(curlw)w = ∇(

1

2
|w|2)−

√
2qw.

Thus, applying curl on the first equation of (2.2), we have that

−∆q +Q(q)w + q(∇w)> − (∇w)q> = 0 in Ωt,

where
(Q(q)w)ij =

∑
1≤k≤n

(∂jqik − ∂iqjk)wk.

Now for n = 2, due to ∇ · w = 0, it is easily seen that

q(∇w)> − (∇w)q> = 0.

Therefore, we will consider the system{
−∆q +Q(q)w + q(∇w)> − (∇w)q> = 0 in Ωt,

∆w + curl>q = 0 in Ωt

(2.4)

for n ≥ 3, and {
−∆q +Q(q)w = 0 in Ωt,

∆w + curl>q = 0 in Ωt

(2.5)

for n = 2. In order to prove the main theorem, putting together (2.4), (2.5),
and using (2.2), (2.3), it suffices to consider{

−∆q + A(x) · ∇q +B(x)q = 0 in Ωt,

∆w + curl>q = 0 in Ωt

(2.6)
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with
‖A‖L∞(Ωt) ≤ atλ and ‖B‖L∞(Ωt) ≤ (at)2λ.

For our proof, we will apply Carleman estimates with weights ϕβ =
ϕβ(x) = exp(−βψ̃(x)), where β > 0 and ψ̃(x) = log |x| + log((log |x|)2).

Lemma 2.1 There exist a sufficiently small number r1 > 0, a sufficiently
large number β1 > 2, a positive constant C, such that for all v ∈ Ur1 and
β ≥ β1, we have that∫
ϕ2
β(log |x|)2(β|x|4−n|∇v|2 + β3|x|2−n|v|2)dx ≤ C

∫
ϕ2
β(log |x|)4|x|6−n|∆v|2dx,

(2.7)
where Ur1 = {v ∈ C∞0 (Rn \ {0}) : supp(v) ⊂ Br1}.

Lemma 2.1 is a modified form of [7, Lemma 2.4]. For the sake of brevity,
we omit the proof here. Applying Lemma 2.1 with β = β + 1, we have the
following Carleman estimates.

Lemma 2.2 There exist a sufficiently small number r1 > 0, a sufficiently
large number β1 > 1, a positive constant C, such that for all v ∈ Ur1 and
β ≥ β1, we have∫

ϕ2
β(log |x|)−2|x|−n(β|x|2|∇v|2 + β3|v|2)dx ≤ C

∫
ϕ2
β|x|−n(|x|4|∆v|2)dx.

(2.8)

3 Interior estimates

In addition to Carleman estimates, we also need the following interior in-
equality.

Lemma 3.1 For any 0 < a1 < a2 such that Ba2 ⊂ Ωt, let X = Ba2\B̄a1 and
d(x) be the distance from x ∈ X to Rn\X. We have∫

X

d(x)2|∇w|2dx+

∫
X

d(x)4|∇q|2dx+

∫
X

d(x)2|q|2dx

≤ C(at)12

∫
X

|w|2dx. (3.1)

where the constant C is independent of r, a, t and (w, q).
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Proof. By elliptic regularity, we obtain from (1.1) that u ∈ H2
loc(Ω) and

hence w ∈ H2(Ωt). It is trivial that

‖v‖H1(Rn) . ‖∆v‖L2(Rn) + ‖v‖L2(Rn) (3.2)

for all v ∈ H2(Rn). By changing variables x→ E−1x in (3.2), we obtain

∑
|α|≤1E

2−|α|‖Dαv‖L2(Rn) . (‖∆v‖L2(Rn) + E2‖v‖L2(Rn)) (3.3)

for all v ∈ H2(Rn). To apply (3.3) to w, we need to cut-off w. So let
ξ(x) ∈ C∞0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =

{
1, |x| < 1/4,

0, |x| ≥ 1/2.

Let us denote ξy(x) = ξ((x−y)/d(y)). For y ∈ X, we apply (3.3) to ξy(x)w(x)
and use the second equation of (2.6) to get that

E2

∫
|x−y|≤d(y)/4

|∇w|2dx

≤ C1

∫
|x−y|≤d(y)/2

|∇q|2dx+ C1

∫
|x−y|≤d(y)/2

d(y)−2|∇w|2dx

+C1(E4 + d(y)−4)

∫
|x−y|≤d(y)/2

|w|2dx. (3.4)

Now taking E = M3d(y)−1 for some constant M > 1 and multiplying d(y)4

on both sides of (3.4), we have

M6d(y)2

∫
|x−y|≤d(y)/4

|∇w|2dx

≤ C1

∫
|x−y|≤d(y)/2

d(y)4|∇q|2dx+ C1

∫
|x−y|≤d(y)/2

d(y)2|∇w|2dx

+C1(M12 + 1)

∫
|x−y|≤d(y)/2

|w|2dx. (3.5)
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Integrating d(y)−ndy over X on both sides of (3.5) and using Fubini’s
Theorem, we get that

M6

∫
X

∫
|x−y|≤d(y)/4

d(y)2−n|∇w|2dydx

≤ C1

∫
X

∫
|x−y|≤d(y)/2

d(y)4−n|∇q(x)|2dydx

+C1

∫
X

∫
|x−y|≤d(y)/2

d(y)2−n|∇w|2dydx

+2C1M
12

∫
X

∫
|x−y|≤d(y)/2

d(y)−n|w|2dydx. (3.6)

Note that |d(x)− d(y)| ≤ |x− y|. If |x− y| ≤ d(x)/3, then

2d(x)/3 ≤ d(y) ≤ 4d(x)/3. (3.7)

On the other hand, if |x− y| ≤ d(y)/2, then

d(x)/2 ≤ d(y) ≤ 3d(x)/2. (3.8)

By (3.7) and (3.8), we have{ ∫
|x−y|≤d(y)/4

d(y)−ndy ≥ (3/4)n
∫
|x−y|≤d(x)/6

d(x)−ndy ≥ 8−n
∫
|y|≤1

dy,∫
|x−y|≤d(y)/2

d(y)−ndy ≤ 2n
∫
|x−y|≤3d(x)/4

d(x)−ndy ≤ (3/2)n
∫
|y|≤1

dy.

(3.9)
Combining (3.6)–(3.9), we obtain

M6

∫
X

d(x)2|∇w|2dx

≤ C2

∫
X

d(x)2|∇w(x)|2dx+ C2

∫
X

d(x)4|∇q|2dx+ C2M
12

∫
X

|w|2dx.

(3.10)

On the other hand, we have from the first equation of (2.6) that

E2

∫
|x−y|≤d(y)/4

|∇q|2dx

≤ C3((at)2 + d(y)−2)

∫
|x−y|≤d(y)/2

|∇q|2dx

+C3(E4 + d(y)−4 + (at)4)

∫
|x−y|≤d(y)/2

|q|2dx. (3.11)
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Now taking E = Md(y)−1 and multiplying d(y)6 on both sides of (3.4), we
have

M2d(y)4

∫
|x−y|≤d(y)/4

|∇q|2dx

≤ C3((at)2d(y)2 + 1)

∫
|x−y|≤d(y)/2

d(y)4|∇q|2dx

+C3(M4 + 1 + (at)4d(y)4)

∫
|x−y|≤d(y)/2

d(y)2|q|2dx. (3.12)

Repeating the arguments in (3.6)∼(3.10), we have that

M2

∫
X

d(x)4|∇q|2dx

≤ C4

∫
X

((at)2d(x)2 + 1)d(x)4|∇q|2dx

+C4

∫
X

(M4 + 1 + (at)4d(x)4)d(x)2|q|2dx

≤ C5

∫
X

((at)2d(x)2 + 1)d(x)4|∇q|2dx

+C5

∫
X

(M4 + 1 + (at)4d(x)4)d(x)2|∇w|2dx. (3.13)

Combining (3.13) and (3.10), we obtain that if M ≥ M0 for some M0 > 1
then

M4

∫
X

d(x)2|∇w|2dx+M2

∫
X

d(x)4|∇q|2dx

≤ C6

∫
X

((at)4d(x)4)d(x)2|∇w(x)|2dx

+C6M
12

∫
X

|w|2dx+ C6

∫
X

((at)2d(x)2)d(x)4|∇q|2dx.

(3.14)

Note that Ba2 ⊂ Ωt and therefore

d(x) <
1

a
− 1

at
< 1.
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TakingM = (C6+1)at, one can eliminate
∫
X
d(x)4|∇q|2dx and

∫
X
d(x)2|∇w(x)|2dx

on the right hand side of (3.14). Finally, we get that

(at)4

∫
X

d(x)2|∇w|2dx+

∫
X

d(x)4|∇q|2dx

≤ C7(at)12

∫
X

|w|2dx. (3.15)

It is no harm to add
∫
X
d(x)2|q|2dx to the right hand side of (3.15) since∫

X
d(x)2|q|2dx ≤

∫
X
d(x)2|∇w|2dx. We then obtain (3.1). 2

4 Proof of Theorem 1.1

This section is devoted to the proof of the main theorem, Theorem 1.1.
Since (w, p) ∈ (H1(Ωt))

n+1, the regularity theorem implies w ∈ H2
loc(Ωt).

Therefore, to use estimate (2.7), we simply cut-off w. So let χ(x) ∈ C∞0 (Rn)
satisfy 0 ≤ χ(x) ≤ 1 and

χ(x) =


0, |x| ≤ 1

4at
,

1, 1
2at

< |x| < 1
a
− 3

at
,

0, |x| ≥ 1
a
− 2

at
.

It is easy to see that for any multiindex α{
|Dαχ| = O((at)|α|) if 1

4at
≤ |x| ≤ 1

2at
,

|Dαχ| = O((at)|α|) if 1
a
− 3

at
≤ |x| ≤ 1

a
− 2

at
.

(4.1)

If we choose s < 8r1, then supp (χ) ⊂ Br1 , where r1 is defined in Lemma 2.1.
Therefore, applying (2.8) to χw gives∫

(log |x|)−2ϕ2
β|x|−n(β|x|2|∇(χw)|2 + β3|χw|2)dx

≤ C

∫
ϕ2
β|x|−n|x|4|∆(χw)|2dx. (4.2)

Here and after, C and C̃ denote general constants whose value may vary
from line to line. The dependence of C and C̃ will be specified whenever
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necessary. Next applying (2.7) to v = χq yields that∫
ϕ2
β(log |x|)2(|x|4−nβ|∇(χq)|2 + |x|2−nβ3|χq|2)dx

≤ C

∫
ϕ2
β(log |x|)4|x|6−n|∆(χq)|2dx. (4.3)

Combining (4.2) and (4.3), we obtain that∫
W

(log |x|)−2ϕ2
β|x|−n(β|x|2|∇w|2 + β3|w|2)dx

+

∫
W

(log |x|)2ϕ2
β|x|−n(β|x|4|∇q|2 + |x|2β3|q|2)dx

≤
∫
ϕ2
β(log |x|)−2|x|−n(β|x|2∇(χw)|2 + β3|χw|2)dx

+

∫
(log |x|)2ϕ2

β|x|−n(β|x|4|∇(χq)|2 + β3|x|2|χq|2)dx

≤ C

∫
ϕ2
β|x|−n|x|4|∆(χw)|2dx

+C

∫
ϕ2
β(log |x|)4|x|6−n|∆(χq)|2dx, (4.4)

where W = {x : 1
2at

< |x| < 1
a
− 3

at
}. Define Y = {x : s

32t
= 1

4at
≤ |x| ≤ 1

2at
=

s
16t
} and Z = {x : 1

a
− 3

at
≤ |x| ≤ 1

a
− 2

at
}. By (2.6) and estimates (4.1), we

deduce from (4.4) that∫
W

(log |x|)−2ϕ2
β|x|−n(β|x|2|∇w|2 + β3|w|2)dx

+

∫
W

(log |x|)2ϕ2
β|x|−n(β|x|4|∇q|2 + |x|2β3|q|2)dx

≤ C

∫
W

ϕ2
β|x|−n|x|4|∇q|2dx

+C

∫
W

(log |x|)4ϕ2
β|x|−n|x|6((at)4|q|2 + (at)2|∇q|2)dx

+C(at)4

∫
Y ∪Z

ϕ2
β|x|−n|Ũ |2dx

+C(at)4

∫
Y ∪Z

(log |x|)4ϕ2
β|x|2−n|Ũ |2dx, (4.5)

10



where |Ũ(x)|2 = |x|4|∇q|2+|x|2|q|2+|x|2|∇w|2+|w|2 and the positive constant
C only depends on λ and n.

It is easy to check that there exists R̃1 > 0, depending on n, such that
for all β > 0, both (log |x|)−2|x|−nϕ2

β(|x|) and (log |x|)4|x|−nϕ2
β(|x|) are de-

creasing functions in 0 < |x| < R̃1. So we choose a small s < 8 min{r1, R̃1}.
Now letting β ≥ β̃ with β̃ = C(at)2 + 1, then the first two terms on the right
hand side of (4.5) can be absorbed by the left hand side of (4.5). With the
choices described above, we obtain from (4.5) that

β3(b1)−n(log b1)−2ϕ2
β(b1)

∫
1
at
<|x|<b1

|w|2dx

≤ β3

∫
W

(log |x|)−2ϕ2
β|x|−n|w|2dx

≤ C(at)4

∫
Y ∪Z

(log |x|)4ϕ2
β|x|−n|Ũ |2dx

≤ C(at)4(log b2)4b−n2 ϕ2
β(b2)

∫
Y

|Ũ |2dx

+C(at)4(log b3)4b−n3 ϕ2
β(b3)

∫
Z

|Ũ |2dx, (4.6)

where b1 = 1
a
− 8

at
, b2 = 1

4at
and b3 = 1

a
− 3

at
.

Using (3.1), we can control the |Ũ |2 terms on the right hand side of (4.5).
Indeed, let X = Y1 := {x : 1

8at
≤ |x| ≤ 1

at
}, then we can see that

d(x) ≥ C|x| for all x ∈ Y,

where C an absolute constant. Therefore, (3.1) implies∫
Y

(
|x|2|∇w|2 + |x|4|∇q|2 + |x|2|q|2

)
dx

≤ C

∫
Y1

(
d(x)2|∇w|2 + d(x)4|∇q|2 + d(x)2|q|2

)
dx

≤ C(at)12

∫
Y1

|w|2dx. (4.7)

On the other hand, let X = Z1 := {x : 1
2a
≤ |x| ≤ 1

a
− 1

at
}, then

d(x) ≥ Ct−1|x| for all x ∈ Z,
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where C another absolute constant. Thus, it follows from (3.1) that∫
Z

(
|x|2|∇w|2 + |x|4|∇q|2 + |x|2|q|2

)
dx

≤ C(at)4

∫
Z1

(
d(x)2|∇w|2 + d(x)4|∇q|2dx+ d(x)2|q|2

)
dx

≤ C(at)16

∫
Z1

|w|2dx. (4.8)

Combining (4.6), (4.7), and (4.8) implies that

b−2β−n
1 (log b1)−4β−2

∫
1
at
<|x|<b1

|w|2dx

≤ C(at)16b−2β−n
2 (log b2)−4β+4

∫
Y1

|w|2dx

+C(at)20b−2β−n
3 (log b3)−4β+4

∫
Z1

|w|2dx. (4.9)

Replacing 2β + n by β, (4.9) becomes

b−β1 (log b1)−2β+2n−2

∫
1
at
<|x|<b1

|w|2dx

≤ C(at)16b−β2 (log b2)−2β+2n+4

∫
Y1

|w|2dx

+C(at)20b−β3 (log b3)−2β+2n+4

∫
Z1

|w|2dx. (4.10)

Dividing b−β1 (log b1)−2β+2n−2 on the both sides of (4.10) and noting that β ≥
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n+ 2 > n− 1, i.e., 2β − 2n+ 2 > 0, we get∫
|x+

b4x0
t
|< 1

at

|w(x)|2dx

≤
∫

1
at
<|x|<b1

|w(x)|2dx

≤ C(at)16(log(4at))6(b1/b2)β
∫
Y1

|w|2dx

+C(at)20(b1/b3)β[log b1/ log b3]2β−2n+4

∫
Z1

|w|2dx

≤ C(at)16(log(4at))6(4t)β
∫
|x|< 1

at

|w(x)|2dx+ C(at)20(b1/b5)β
∫
Z1

|w(x)|2dx,

(4.11)

where b4 = 1
a
− 10

at
and b5 = 1

a
− 6

at
. In deriving the third inequality above,

we use the fact that

(
b5

b3

)(
log b1

log b3

)2 ≤ 1

for all t ≥ t′0 and s ≤ R̃2, where t′0 and R̃2 are absolute constants. So we pick
s < min{8r1, 8R̃1, R̃2} and fix it from now on. We observe that s depends
only on n.

From (4.11), (2.2) and the definition of w(x), the change of variables
y = atx+ x0 leads to

M(10) ≤ Ct16(log(4at))6(4t)β
∫
|y−x0|<1

|u(y)|2dy + C(λ2ωn)t20+n

≤ C(4t)β+22

∫
|y−x0|<1

|u(y)|2dy + Ct20+n(
t

t+ 2
)β

≤ C(4t)2β

∫
|y−x0|<1

|u(y)|2dy + Ct20+n(
t

t+ 2
)β, (4.12)

where ωn is the volume of the unit ball and thus C depends on λ, n. It should
be noted that (4.12) holds for all t ≥ t′′0, β ≥ β̃(≥ 22), where t′′0 depends only
on n. For simplicity, by denoting

A(t) = 2 log 4t, B(t) = log(
t+ 2

t
),
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(4.12) becomes

M(10) ≤ C
{

exp(βA(t))

∫
|y−x0|<1

|u(y)|2dy + t20+n exp(−βB(t))
}
. (4.13)

Now, we consider two cases. If

exp(β̃A(t))

∫
|y−x0|<1

|u(y)|2dy ≥ t20+n exp(−β̃B(t)),

then we have∫
|y−x0|<1

|u(y)|2dy ≥ t20+n exp(−β̃A(t)− β̃B(t))

≥ t20+n

(
t+ 2

t

)−β̃
(4t)−2β̃

≥ (4t)−3β̃ ≥ exp(−Ct2 log t), (4.14)

where C depends on λ and n and t ≥ t′′′0 .
On the other hand, if

exp(β̃A(t))

∫
|y−x0|<1

|u(y)|2dy ≤ t20+n exp(−β̃B(t)),

then we can pick a β > β̃ such that

exp(βA(t))

∫
|y−x0|<1

|u(y)|2dy = t20+n exp(−βB(t)).

Using such β, we obtain from (4.13) that

M(10) ≤ C exp(βA(t))

∫
|y−x0|<1

|u(y)|2dy

= C

(∫
|y−x0|<1

|u(y)|2dy
)τ

(t20+n)1−τ , (4.15)

where τ = B(t)
A(t)+B(t)

. Thus, (4.15) implies that

t20+n ≤
(∫
|y−x0|<1

|u(y)|2dy
)(

t20+nC

M(10)

)1/τ

. (4.16)
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In view of the formula for τ , we can see that

1

τ
log

(
t20+nC

M(10)

)
=

2 log(4t) + log(1 + (2/t))

log(1 + (2/t))
log

(
t20+nC

M(10)

)
≤ β̃

for all t > t̃. It suffices to choose t̃ ≥ max{t′0, t′′0, t′′′0 }. It is obvious that t̃
depends on λ, n, and M(10). Therefore, we get from (4.16) that∫

|y−x0|<1

|u(y)|2dy ≥ t20+n exp(−Ct2), (4.17)

where C depends on λ and n. Theorem 1.1 now follows from (4.14) and
(4.17). 2
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