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We consider the inverse boundary value problem in two dimensions
of determining the coefficients of a general second-order elliptic op-
erator from the Cauchy data measured on a non-empty arbitrary
relatively open subset of the boundary. We give a complete charac-
terization of the set of coefficients yielding the same partial Cauchy
data. As a corollary we prove several uniqueness results in determin-
ing coefficients from partial Cauchy data for the isotropic conductiv-
ity equation, the so-called Calderón’s problem [5], the Schrödinger
equation, the convection-diffusion equation, the anisotropic conduc-
tivity equation modulo a group of diffeomorphisms that are the iden-
tity at the boundary, and the magnetic Schrödinger equations mod-
ulo gauge transformations. The key step is the construction of novel
complex geometrical optics solutions using Carleman estimates.

partial Cauchy data, general second-order elliptic equations, complex geometrical op-

tics solutions

1 Main result
Let Ω ⊂ R2 be a bounded domain with smooth boundary
∂Ω = ∪Nk=1γk, where γk, 1 ≤ k ≤ N , are smooth closed

contours, and γN is the external contour. Let eΓ ⊂ ∂Ω
be an arbitrarily fixed non-empty relatively open subset of
∂Ω. Let ν be the unit outward normal vector to ∂Ω and let
∂u
∂ν

= ∇u · ν. We set i =
√−1 and identify x = (x1, x2) ∈ R2

with z = x1 + ix2 ∈ C, and by z we denote the complex
conjugate of z ∈ C.

We consider a second-order elliptic operator:

L(x, D)u = ∆gu + 2A
∂u

∂z
+ 2B

∂u

∂z
+ qu. [1]

Here g = g(x) = {gjk}1≤j,k≤2 is a positive definite symmetric
matrix in Ω and ∆g is the Laplace-Beltrami operator associ-
ated to the Riemannian metric g:

∆g =
1√
detg

2X

j,k=1

∂

∂xk
(
p

detg gjk ∂

∂xj
),

where we set {gjk} = g−1. Throughout this paper, we as-

sume that g ∈ C7+α(Ω), (A, B, q), (Aj , Bj , qj) ∈ C5+α(Ω) ×
C5+α(Ω)×C4+α(Ω), j = 1, 2 for some α ∈ (0, 1), are complex-
valued functions. We set

Lk(x, D) = ∆gk + 2Ak
∂

∂z
+ 2Bk

∂

∂z
+ qk.

We define the set of partial Cauchy data by

Cg,A,B,q = {(u|eΓ,
∂u

∂νg
|eΓ);

L(x, D)u = 0 in Ω, u ∈ H1(Ω), u|∂Ω\eΓ = 0},
where ∂

∂νg
=
√

detg
P2

j,k=1 gjkνk
∂

∂xj
is the conormal deriva-

tive with respect to the metric g.
The goal of this paper is to determine the metric g and

coefficients A, B, q from the partial Cauchy data Cg,A,B,q. In
the general case this is impossible. There are the following
main invariants of the Cauchy data in the problem.

• Conformal Invariance. Let β ∈ C7+α(Ω) be a strictly pos-
itive function. Then

Cg,A,B,q = Cβg, A
β

, B
β

, q
β
. [2]

This follows since the Laplace-Beltrami operator is confor-
mal invariant in two dimensions:

∆βg =
1

β
∆g.

• Gauge Transformations. It is easy to see that the set of
partial Cauchy data of the operators e−ηL(x, D)eη and
L(x, D) are the same provided that η is a smooth complex-
valued function such that

η ∈ C6+α(Ω̄), η|eΓ =
∂η

∂ν
|eΓ = 0. [3]

• Diffeomorphism Invariance. Let F = (F1, F2) : Ω → Ω be
a diffeomorphism such that F |eΓ = Id. The pull back of a
Riemannian metric g is given as composition of matrices
by

F ∗g = ((DF ) ◦ g ◦ (DF )T ) ◦ F−1 [4]

where DF denotes the differential of F , (DF )T its trans-
pose and ◦ denotes matrix composition.
Moreover we introduce the functions: AF = {(A +

B)( ∂F1
∂x1

−i ∂F2
∂x1

)+i(B−A)( ∂F1
∂x2

−i ∂F2
∂x2

)}◦F−1|det DF−1|, BF =

{(A + B)( ∂F1
∂x1

+ i ∂F2
∂x1

) + i(B − A)( ∂F1
∂x2

+ i ∂F2
∂x2

)} ◦
F−1|det DF−1|, qF = |det DF−1|(q ◦ F−1). Then

Cg,A,B,q = CF∗g,AF ,BF ,qF . [5]

We show the converse, namely, a complete list of invari-
ants of the problem. We have
Theorem 1. Suppose that for some α ∈ (0, 1), there exists

a positive function eβ ∈ C7+α(Ω) such that (g1 − eβg2)|eΓ =
∂(g1−eβg2)

∂ν
|eΓ = 0. Then Cg1,A1,B1,q1 = Cg2,A2,B2,q2 if and only

if there exist a diffeomorphism F ∈ C8+α(Ω), F : Ω → Ω satis-

fying F |eΓ=Id, a positive function β ∈ C7+α(Ω) and a complex
valued function η satisfying (3) such that

L2(x, D) = e−ηK(x, D)eη,
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where

K(x, D) = ∆βF∗g1 +
2

β
(A1F

∂

∂z
+ B1F

∂

∂z
) +

1

β
q1F .

2 Calderón’s problem and other
applications

2.1 Calderón’s Problem. The question proposed by
Calderón [5] is whether one can determine the electrical con-
ductivity of a medium by making voltage and current mea-
surements at the boundary.

In the anisotropic case the conductivity depends on direc-
tion and is represented by a positive definite symmetric matrix
{σjk}. The conductivity equation with voltage potential f on
∂Ω is given by

2X

j,k=1

∂

∂xj
(σjk ∂u

∂xk
) = 0 in Ω, u|∂Ω = f ∈ H

1
2 (∂Ω).

We define the partial Cauchy data by

Vσ =

(0
@f |Γ̃,

2X

j,k=1

σjkνj
∂u

∂xk

˛̨
˛
Γ̃

1
A
˛̨
˛

2X

j,k=1

∂

∂xj
(σjk ∂u

∂xk
) = 0

[6]

in Ω, u ∈ H1(Ω), u|∂Ω = f, supp f ⊂ eΓ
)

.

It has been known for a long time that Vσ does not determine
σ uniquely in the anisotropic case [10]. Let F : Ω → Ω be a

diffeomorphism such that F (x) = x for x on Γ̃. Then

V|det DF−1|F∗σ = Vσ,

where F ∗σ is given by (4).

In the case of full Cauchy data (i.e., eΓ = ∂Ω), the question
whether one can determine the conductivity up to the above
obstruction has been solved in two dimensions for C2 conduc-
tivities in [11], Lipschitz conductivities in [13] and merely L∞

conductivities in [3]. See also [2]. The method of proof in all
these papers is based on the reduction to the isotropic case
using isothermal coordinates [1].

We can prove the uniqueness for Calderón’s problem with
partial Cauchy data:

Theorem 2. Let σ1, σ2 ∈ C7+α(Ω) with some α ∈ (0, 1) be posi-

tive definite symmetric matrices on Ω. If Vσ1 = Vσ2 then there
exists a diffeomorphism F : Ω → Ω satisfying F |eΓ = Id and

F ∈ C8+α(Ω) such that

|det DF−1|F ∗σ1 = σ2.

For the isotropic case this result was proven in [8] and
in fact follows from Theorem 1 in the case where g = I and
A = B = 0. We mention that [7] has proven a similar result
for general Riemann surfaces in the case where g is not the
identity but fixed.

2.2 Case where the principal part is the Laplacian. In the
rest of section 2, we assume that the principal parts of second
order elliptic operators under consideration are the Laplacian:
g = I ≡ {δjk}.

For the case when A1 = A2, B1 = B2 and full data this
result was proven by Bukgheim [4].

Theorem 3. If CI,A1,B1,q1 = CI,A2,B2,q2 , then

A1 = A2, B1 = B2 on eΓ, [7]

and in the domain Ω we have

−2
∂

∂z
(A1 −A2)−A1B1 + A2B2 + (q1 − q2) = 0, [8]

−2
∂

∂z
(B1 −B2)−A1B1 + A2B2 + (q1 − q2) = 0. [9]

Corollary 4. The relation CI,A1,B1,q1 = CI,A2,B2,q2 holds true
if and only if there exists a function η ∈ C6+α(Ω̄) satisfying

η|Γ̃ = ∂η
∂ν
|Γ̃ = 0 such that

L1(x, D) = e−ηL2(x, D)eη. [10]

Proof of Corollary 4. We only prove the sufficiency since the
necessity of the condition is easy to check. By (8) and (9), we
have ∂

∂z
(A1−A2) = ∂

∂z
(B1−B2). This equality is equivalent

to

∂( bA− bB)

∂x1
= i

∂( bB + bA)

∂x2
where ( bA, bB) = (A1−A2, B1−B2).

Applying Lemma 1.1 (p.313) of [14], we obtain that there ex-
ists a function η̃ in the domain Ω0 which satisfies

η̃ = η0 + h,∇η̃ ∈ C5+α(Ω), ∆h = 0 in Ω0, [11]

[h]|Σk are constants,
h

∂h
∂νk

i
|Σk = ∂h

∂ν
|γN = 0 ∀k ∈ {1, . . . ,N}

and
(i( bB + bA), ( bA− bB)) = ∇η̃.

Here Ω0 = Ω \ Σ is simply connected where Σ = ∪N−1
k=1 Σk,

Σj ∩ Σk = ∅ for j 6= k, Σk are smooth curves which do not
self-intersect and are orthogonal to ∂Ω. We choose a normal
vector νk = νk(x), 1 ≤ k ≤ N − 1 to Σk at x contained in the
interior Σ0

k of the closed curve Σk. Then, for x ∈ Σ0
k, we set

[h](x) = limy→x,(−→xy,νk)>0 h(y) − limy→x,(−→xy,νk)<0 h(y) where

(·, ·) denotes the scalar product in R2. Setting 2η = −iη̃ we
have

(( bB + bA), i( bB − bA)) = 2∇η.

Therefore by (8)

q1 = q2 + ∆η + 4
∂η

∂z

∂η

∂z̄
+ 2

∂η

∂z
A2 + 2

∂η

∂z̄
B2. [12]

The operator L1(x, D) given by the right hand side of (10) has
the Laplace operator as the principal part, the coefficients of

∂
∂x1

is A2+B2+2 ∂η
∂x2

, the coefficient of ∂
∂x2

is i(B2−A2)+2 ∂η
∂x1

,

and the coefficient of the zero order term is given by the right-
hand side of (12). By (7) we have that ∂η

∂ν
|Γ̃ = 0 and η|Γ̃ = C

where the function C(x) is equal to a constant on each con-

nected component of Γ̃. Let us show that the function η is
continuous. Our proof is by contradiction. Suppose that
η is discontinuous say along the curve Σj . Let the function
u2 ∈ H1(Ω) be a solution to the following boundary value
problem

L2(x, D)u2 = 0 in Ω, u2|Γ0 = 0. [13]

Assume in addition that u2 is not identically equal to zero
on Σj . Let Γ̃1 be one connected component of the set Γ̃ and

C|Γ̃1
= Ĉ. Without loss of generality, we may assume that

Ĉ = 0. Indeed if Ĉ 6= 0 we replace η by the function η − Ĉ.
Since the partial Cauchy data generated by the operators
L1(x, D) and L2(x, D) are the same, there exists a solution
u1 to the following boundary value problem

L1(x, D)u1 = 0 in Ω, u1 = u2 on ∂Ω,
∂u1

∂ν
=

∂u2

∂ν
on Γ̃.

[14]
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Then the function v = e−ηu2 verifies

L1(x, D)v = 0 in Ω0, v|Γ0 = 0.

Since η = ∂η
∂ν

= 0 on Γ̃1, we have that v ≡ u1. On the other

hand, u1 ∈ H1(Ω) and v are discontinuous along one part of
Σj , and we arrive at a contradiction.

Let us show that C ≡ 0. Suppose that there exists another
connected component of Γ̃2 of the set Γ̃ such that C|Γ̃2

6= 0.

Assume that u1, u2 satisfy (13), (14).
Then the function v = e−ηu2 verifies

L1(x, D)v = 0 in Ω, v|Γ0 = 0.

Moreover, since η = ∂η
∂ν

= 0 on Γ̃1, we have that

v = u1,
∂v

∂ν
=

∂u1

∂ν
on Γ̃1.

The uniqueness of the Cauchy problem for the second-order
elliptic equation yields v ≡ u1. In particular v = u1 on Γ̃2.
Since u1 = u2 on ∂Ω, this implies that e−η|Γ̃2

= 1. We arrived
at a contradiction. The proof of the corollary is completed.
˜

Next we apply Theorem 3 to several cases and state
new results on the unique identifiability, modulo the natu-
ral obstructions, of some important inverse boundary value
problems with partial Cauchy data arising in Mathematical
Physics .

2.3 The magnetic Schrödinger equation.We consider the
case of the magnetic Schrödinger operator.

Denote eA = ( eA1, eA2), where eAj are real-valued, eA =
eA1 − i eA2, rot eA = ∂ eA2

∂x1
− ∂ eA1

∂x2
. The magnetic Schrödinger

operator is defined by

L eA,eq(x, D) =

2X

k=1

(
1

i

∂

∂xk
+ eAk)2 + eq.

Let us define the following set of partial Cauchy data

eC eA,eq = {(u|eΓ,
∂u

∂ν
|eΓ); L eA,eq(x, D)u = 0 in Ω,

u|∂Ω\eΓ = 0, u ∈ H1(Ω)}.

Theorem 3 implies

Corollary 5. Let real-valued vector fields eA(1), eA(2) ∈ C5+α(Ω)

and complex-valued potentials eq(1), eq(2) ∈ C4+α(Ω) with some

α ∈ (0, 1), satisfy eC eA(1),eq(1) = eC eA(2),eq(2) . Then eq(1) = eq(2),

rot eA(1) = rot eA(2) and eA(1) = eA(2) on Γ̃.

We mention that this result is new even for the case of full
data. In this case, [12] proved a uniqueness result assuming
that both the electric and magnetic potentials are small. Still
in the case of full data, [9] proved a uniqueness result for a
special case of the magnetic Schrödinger equation, namely the
Pauli Hamiltonian.

2.4 Laplace equation with convection terms. Another appli-
cation of Theorem 3 is to the Laplace equation with convection
terms. For real-valued a, b, and complex valued q, we define
the following set of partial Cauchy data

eCa,b,q = {(u|eΓ,
∂u

∂ν
|eΓ); u|∂Ω\eΓ = 0, u ∈ H1(Ω),

∆u + a
∂u

∂x1
+ b

∂u

∂x2
+ qu = 0 in Ω}.

Then

Corollary 6. Let α ∈ (0, 1), q ∈ C4+α(Ω), and (a(j), b(j)) ∈
C5+α(Ω) × C5+α(Ω). If eCa(1),b(1),q = eCa(2),b(2),q, then

(a(1), b(1)) ≡ (a(2), b(2)).
This corollary generalizes the result of [6] where the

uniqueness was proved assuming that the measurements are
made on the whole boundary.

We also mention that Theorem 3 implies that partial

Cauchy data on arbitrary eΓ uniquely determine any two coef-
ficients of the triple (A, B, q). A particular case is:

Corollary 7. For j = 1, 2, let (Aj , Bj , qj) ∈ C5+α(Ω) ×
C5+α(Ω) × C4+α(Ω) for some α ∈ (0, 1) be complex-valued.
We assume either A1 = A2 or B1 = B2 in Ω. Then
CI,A1,B1,q1 = CI,A2,B2,q2 implies (A1, B1, q1) = (A2, B2, q2).

3 Sketch of Proof of Theorem 3

The key of the proof is the constructions of families of τ -
parameterized solutions u1 = u1(τ)(x) and v = v(τ)(x)
with τ ∈ R satisfying L1(x, D)u1 = 0, u1|Γ0 = 0 and
L2(x, D)∗v = 0, v|Γ0 = 0. Here L2(x, D)∗ is the adjoint to

L2(x, D) and Γ0 = ∂Ω \ eΓ. By u2 we denote the solution to
L2(x, D)u2 = 0 with u2|∂Ω = u1|∂Ω. Then the coincidence

of the partial Cauchy data yields ∇u1(τ) = ∇u2(τ) on eΓ.
Therefore integration by parts gives

0 =

Z

Ω

v̄L2(x, D)(u1 − u2)dx =

Z

Ω

(2(A1 −A2)
∂u1

∂z

+2(B1 −B2)
∂u1

∂z
+ (q1 − q2)u1)vdx. [15]

Then the proof relies on the constructions of suitable u1 and
v which are complex geometrical optics solutions.

Complex geometrical optics (CGO) solution. We
look for the geometrical optics solution u1 of the form:

u1(x) = aτ (z)eA1+τΦ +dτ (z)eB1+τΦ +u11e
τϕ +u12e

τϕ. [16]

The phase function. Let the holomorphic function
Φ = ϕ + iψ satisfy

ImΦ|Γ0 = 0, H ∩ ∂Ω ⊂ Γ0,
∂2Φ

∂z2
(z) 6= 0, ∀z ∈ H, [17]

where H =
˘
z ∈ Ω; ∂Φ

∂z
= 0
¯
. The critical points of the func-

tion Φ play important role in the proof. The proposition be-
low shows that the union of the sets of critical points of the
functions satisfying (17) is dense in Ω.

Proposition 8. Let ex be an arbitrary point in Ω. There exists
a sequence of functions {Φε}ε∈(0,1) satisfying (17) such that
there exists a sequence {exε}, ε ∈ (0, 1) and

exε ∈ Hε = {z ∈ Ω|∂Φε

∂z
(z) = 0}, exε → ex as ε → +0.

Moreover for any j from {1, . . . ,N} we have

Hε ∩ γj = ∅ if γj ∩ Γ̃ 6= ∅,

Hε ∩ γj ⊂ Γ0 if γj ∩ Γ̃ = ∅,
ImΦε(exε) /∈ {ImΦε(x)|x ∈ Hε \ { exε}} and ImΦε(exε) 6= 0.
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Let ~τ be a tangential vector field to ∂Ω. In order to prove (7),
we use the phase function Φ given by the following lemma.

Proposition 9. Let Γ∗ ⊂⊂ eΓ be an arc oriented clockwise with
left endpoint x− and right endpoint x+. For any bx ∈ Int Γ∗
there exists a function Φ(z) which satisfies (17), ImΦ|∂Ω\Γ∗ =
0 and

bx ∈ G = {x ∈ Γ∗ | ∂ImΦ

∂~τ
(x) = 0}, cardG < ∞,

all the critical points of Im Φ from the set G \ {x−, x+} are
nondegenerate, and the left or the right derivative of Im Φ of
order seven is not equal to zero at x±.

The functions A1,B1 ∈ C6+α(Ω) are defined by 2 ∂A1
∂z

=

−A1 in Ω, ImA1|Γ0 = 0, 2 ∂B1
∂z

= −B1 in Ω, ImB1|Γ0 =

0. The amplitudes are of the forms aτ (z) = a(z) + a1(z)
τ

+
a2,τ (z)

τ2 , dτ (z) = d(z̄) + d1(z)
τ

+
d2,τ (z)

τ2 , where a is a holo-
morphic function and d is an antiholomorpic function such
that a(z)eA1 + d(z̄)eB1 = 0 on Γ0. Here and henceforth, if
∂za(z) = 0, then we call a antiholomorphic.

Let x̃ be some fixed point from H \ ∂Ω. In addition the
functions a and d have the following properties

∂ka

∂zk
|H∩∂Ω = 0,

∂kd

∂z̄k
|H∩∂Ω = 0 ∀k ∈ {0, . . . , 5},

a|H\{x̃} = d|H\{x̃} = 0, a(x̃) 6= 0, d(x̃) 6= 0.

We introduce the following operators TBg = eB∂−1
z (e−Bg)

and PAg = eA∂−1
z (e−Ag) and the operators

Rτ,Ag =
1

2
eAeτ(Φ−Φ)∂−1

z (ge−Aeτ(Φ−Φ)),

eRτ,Bg =
1

2
eBeτ(Φ−Φ)∂−1

z (ge−Beτ(Φ−Φ)).

Here 2 ∂A
∂z

= −A, 2 ∂B
∂z

= −B, ImA|Γ0 = ImB|Γ0 = 0,

∂−1
z g = − 1

π

R
Ω

g(ξ1,ξ2)
ζ−z

dξ1dξ2, ∂−1
z g = ∂−1

z ḡ, ζ = ξ1 + iξ2.

Denote g1 = TB1((q1−2 ∂B1
∂z
−A1B1)deB1)−M2(z)eB1 , g2 =

PA1((q1−2 ∂A1
∂z
−A1B1)aeA1)−M1(z)eA1 , where M1(z) and

M2(z) are polynomials such that

∂kg1

∂z̄k
|H =

∂kg2

∂zk
|H = 0 ∀k ∈ {0, . . . , 5}.

Thanks to our assumptions on the regularity of A1, B1 and q
the functions g1, g2 belong to C6+α(Ω).

The function a1(z) is holomorphic in Ω and d1(z) is anti-
holomorphic in Ω and

a1(z)eA1 + d1(z)eB1 =
g1

2∂zΦ
+

g2

2∂zΦ
onΓ0.

Construction of the correction term u11. Let

ĝ1 = TB1((q1 − 2
∂B1

∂z
−A1B1)d1e

B1)− M̂2(z)eB1 ,

ĝ2 = PA1((q1 − 2
∂A1

∂z
−A1B1)a1e

A1)− M̂1(z)eA1 ,

where M̂1(z) and M̂2(z) are polynomials such that

∂kĝ1

∂z̄k
|H =

∂kĝ2

∂zk
|H = 0 ∀k ∈ {0, . . . , 3}.

Let e1(x), e2(x) be smooth functions such that e1 + e2 ≡ 1, e2

vanishes in some neighborhood of H \ Γ0 and e1 vanishes in
some neighborhood of ∂Ω.

The function u11 is given by

u11 = −e−iτψR−τ,A1 {e1(g1 + ĝ1/τ)} −

e−iτψ e2(g1 + ĝ1
τ

)

2τ∂zΦ
+

e−iτψ

4τ2∂zΦ
L1(x, D)

„
e2g1

∂zΦ

«

−eiτψ eRτ,B1 {e1(g2 + ĝ2/τ)}

−eiτψ e2(g2 + ĝ2
τ

)

2τ∂zΦ
+

eiτψ

4τ2∂zΦ
L1(x, D)

„
e2g2

∂zΦ

«
.

Construction of the correction terms a2,τ (z) and
d2,τ (z̄).

Observe that the following asymptotic formulae hold true
for any point on the boundary of Ω :

R−τ,A1 {e1g1} =
1

2τ2

e2iτψ−2iτψ(x̃)p+

|det ψ′′(x̃)| 12
+Wτ,1,

R̃τ,B1 {e1g2} =
1

2τ2

e−2iτψ+2iτψ(x̃)p−

|det ψ′′(x̃)| 12
+Wτ,2,

where σ1, σ̃1, m1, m̃1 are some smooth functions, p+(x) =

eA1
“

σ1(x̃)

(z−z̃)2
+ m1(x̃)

(z̃−z)

”
, p−(x) = eB1

“
σ̃1(x̃)

(z̄−z̃)2
+ m̃1(x̃)

(z̃−z̄)

”
, z̃ =

x̃1 + ix̃2 and Wτ,1,Wτ,2 satisfy

‖Wτ,1‖
H

1
2 (Γ0)

+ ‖Wτ,2‖
H

1
2 (Γ0)

= o(
1

τ2
) as |τ | → +∞.

We define the functions a2,±(z) ∈ C2(Ω) and d2,±(z) ∈
C2(Ω) satisfying

a2,±(z)eA1 + d2,±(z)eB1 = p± onΓ0.

Let

g5 =
PA1((q1 − 2 ∂A1

∂z
−A1B1)g1)−M5(z)eA1

2∂zΦ
,

g6 =
TB1((q1 − 2 ∂B1

∂z
−A1B1)g2)−M6(z)eB1

2∂zΦ
.

Here M5(z), M6(z) are polynomials such that g5|H = g6|H =
∇g5|H = ∇g6|H = 0. Let a holomorphic function a2,0 and an
antiholomorphic function d2,0 satisfy

a2,0(z)eA1 + d2,0(z)eB1 =
g5

2∂zΦ
+

g6

2∂zΦ
onΓ0.

Finally we set

d2,τ = d2,0 +
d2,+e2iτψ(x̃) + d2,−e−2iτψ(x̃)

2|det ψ′′(x̃)| 12
,

a2,τ = a2,0 +
a2,+e2iτψ(x̃) + a2,−e−2iτψ(x̃)

2|det ψ′′(x̃)| 12
.

Construction of the correction term u12. We look
for the function u12 in the form u12 = u−1 +u0. The function
u−1 is given by

u−1 =
eiτψ

τ
eRτ,B1{e1g5}+

e−iτψ

τ
R−τ,A1{e1g6}

+
e2g5e

iτψ

2τ2∂zΦ
+

e2g6e
−iτψ

2τ2∂zΦ
.

We set ϕ = ReΦ and Oε = {x ∈ Ω; dist (x, ∂Ω) ≤ ε}. For
the construction of u0, first we consider the following bound-
ary value problem

L(x, D)w = feτΦ in Ω, w|Γ0 = qeτϕ/τ [18]

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



Lemma 1. A) Let ε > 0 be small such that Oε ∩ (H \ Γ0) = ∅,
f ∈ Lp(Ω) with p > 2 and q ∈ H

1
2 (Γ0). There exists a solu-

tion of (18) satisfying

|τ |1/2‖we−τϕ‖L2(Ω) + |τ |−1/2‖(∇w)e−τϕ‖L2(Ω)

+ ‖(∇w)e−τϕ‖L2(Oε) + |τ |‖we−τϕ‖L2(Oε)

≤ C1(‖f‖Lp(Ω) + ‖q‖
H

1
2 (Γ0)

) ∀|τ | ≥ τ0.

B) Let f ∈ L2(Ω) and q = 0. There exists a solution of (18)
satisfying

|τ |1/2‖we−τϕ‖L2(Ω) + |τ |−1/2‖(∇w)e−τϕ‖L2(Ω)

≤ C1‖f‖L2(Ω) ∀|τ | ≥ τ0.

Here C1 > 0 does not depend on the choices of τ, f, q.

Let w̃ = aτ (z)eA1+τΦ + dτ (z)eB1+τΦ + (u11 + u−1)e
τϕ. Ob-

serve that the function e−τϕL1(x, D)w̃ can be represented as
a sum of mj(τ, ·) where

‖m1‖L2(Ω) = O(
1

τ2
) ‖m2‖L4(Ω) = o(

1

τ
)

and
dist (supp m2, ∂Ω) > C3 > 0.

Moreover ‖e−τϕw̃‖
H

1
2 (Γ0)

= o( 1
τ2 ). Then the correction term

u0 can be constructed using Lemma 1.
Carleman estimate. Lemma 1 is derived from the fol-

lowing Carleman estimate with a degenerate weight function.

Lemma 2. Suppose that Φ satisfies (17). Then there exist τ0

and C independent of u and τ such that

‖ueτϕ‖2H1(Ω) + ‖∂u

∂ν
eτϕ‖2L2(Γ0) + τ2‖∂Φ

∂z
ueτϕ‖2L2(Ω)

≤ C2(‖eτϕL(x, D)u‖2L2(Ω) + |τ |
Z
eΓ

˛̨
˛̨∂u

∂ν

˛̨
˛̨
2

e2τϕdσ) [19]

for all u ∈ H1
0 (Ω) and all |τ | > τ0.

CGO for the adjoint equation. The operator
L1(x, D)∗ has the form of the operator L1(x, D) with different
coefficients for the first and zero order terms. Similarly to u1,
we construct the complex geometrical optics solution

v(x) = bτ (z)eB2−τΦ + cτ (z)eA2−τΦ + v11e
−τϕ + v12e

−τϕ.

Here the functions A2,B2 ∈ C6+α(Ω) satisfy 2 ∂A2
∂z

=

A2, 2
∂B2
∂z

= B2 in Ω, ImA2|Γ0 = ImB2|Γ0 = 0, and

bτ (z) = b(z) + b1(z)
τ

+
b2,τ (z)

τ2 , cτ (z) = c(z) + c1(z)
τ

+
c2,τ (z)

τ2 .
The smooth holomorphic function b(z) and the antiholomor-
phic function c(z̄) have zeros of order five on H \ {x̃}, are
not equal to zero at x̃ and satisfy the boundary condition
b(z)eB2 + c(z)eA2 = 0 on Γ0.

Using the phase function Φ constructed in Proposition 9
we compute the right hand side of (15) up to the terms of
order 1√

τ
.

0 = O(
1

τ
) + τF1 + F0 +

X

x∈G\x±

((
2π

i ∂2ψ
∂~τ2 (x)

)
1
2 (cd(B1 −B2))(x)

e(B1+A2−2τiψ)(x)

√
τ

+(
2π

−i ∂2ψ
∂~τ2 (x)

)
1
2 (ab(A1 −A2))(x)

e(A1+B2+2τiψ)(x)

√
τ

).

Here F0 and F1 are independent of τ . This immediately im-
plies (7). Moreover the equation F1 = 0 implies that there

exist a holomorphic function Θ ∈ H
1
2 (Ω) and an antiholo-

morphic function Θ̃ ∈ H
1
2 (Ω) such that

Θ|Γ̃ = eA1+A2 , Θ̃|Γ̃ = eB1+B2 [20]

and
eB1+B2Θ− eA1+A2Θ̃ = 0 on Γ0. [21]

Computing the asymptotic formula of the right hand side of
(15) with an error up to the order o( 1

τ
) and using (20), (21)

we have

o(
1

τ
) =

3X

k=1

τ2−k eFk+ [22]

−π

τ

n
Q+abe(A1+B2+2τiψ) +Q−dc̄e(B1+A2−2iτψ)

o
(x̃)

− 2πe−2iτψ(x̃)

τ |det ψ′′(x̃)| 12
∂g4(x̃)

∂z
e−B2(x̃)(dΘ̃)(x̃)

+
2πe−2iτψ(x̃)

τ |det ψ′′(x̃)| 12
∂g1(x̃)

∂z
e−A1(x̃)(c̄Θ)(x̃)

− 2πe2iτψ(x̃)

τ |det ψ′′(x̃)| 12
∂g3(x̃)

∂z
e−A2(x̃)(aΘ)(x̃)

+
2πe2iτψ(x̃)

τ |det ψ′′(x̃)| 12
∂g2(x̃)

∂z
e−B1(x̃)(b̄Θ̃)(x̃),

where Q+ = −(B1 −B2)A1− (A1 −A2)B2 − 2 ∂
∂z

(A1 −A2) +

(q1 − q2), Q− = −(A1 − A2)B1 − (B1 − B2)A2 − 2 ∂
∂z

(B1 −
B2) + (q1 − q2) and eFk are some constants independent of τ.

Let η be a smooth function such that η is zero in some
neighborhood of ∂Ω and η(x̃) 6= 0. Observe that the par-
tial Cauchy data of the operator L2(x, D) and the operator
e−sηL1(x, D)esη are exactly the same. Therefore we have
the analog of (22) for these two operators with A1 and B1

replaced by A1 − sη and B1 − sη. The coefficients A1, B1

should be replaced by A1 + 2s ∂η
∂z̄

, B1 + 2s ∂η
∂z

. The functions
Q± will not change. The function q1 should be replaced by
q1 + s∆η + s2|∇η|2 + 2sA1

∂η
∂z

+ 2sB1
∂η
∂z̄

. This immediately

implies that (Q+ab)(ex) = (Q−dc̄)(ex) = 0. By Proposition 8
we construct the set of functions Φε satisfying (17) such that
the union of the sets of the critical points of these functions is
dense in Ω. This finishes the proof of (8) and (9). The proof
of the theorem is completed. ˜

4 Sketch of Proof of Theorem 1

For simplicity we restrict ourselves to the case that Ω is simply
connected. Suppose that the two operators

Lj(x, D) = ∆gj + 2Aj
∂

∂z
+ 2Bj

∂

∂z̄
+ qj

generate the same partial Cauchy data. Multiplying the met-
ric g2, if necessary, by some positive smooth function β̃, we
may assume that

∂`

∂ν`
(gjk

1 − gjk
2 )|Γ̃ = 0, ` ∈ {0, 1}. [23]

Observe that without loss of generality, we may assume that
there exists a smooth positive function µ2 such that g2 =

Footline Author PNAS Issue Date Volume Issue Number 5



µ2I. Indeed, using isothermal coordinates we make a change
of variables in the operator L2(x, D) such that g2 = µ2I.
Then we make the same changes of variables in the oper-
ator L1(x, D). The partial Cauchy data for both operators
obtained by this change of variables are the same.

Let ω be a subdomain in R2 such that Ω ∩ ω = ∅,
∂ω ∩ ∂Ω = Γ̃ and the boundary of the domain Ω̃ = Int(Ω∪ω)

is smooth. We extend µ2 in Ω̃ as a smooth positive function
and set g−1

1 = 1
µ2

I in ω. By (23) g1 ∈ C1(Ω̄).

There exists an isothermal mapping χ1 = (χ1,1, χ1,2) such
that the operator L1(x, D) is transformed to the following
form:

Q1(y, D) =
1

µ1
∆ + 2C1

∂

∂z
+ 2D1

∂

∂z̄
+ r1 y ∈ χ1(Ω̃), [24]

where µ1 is a smooth positive function in χ1(Ω̃) and C1, D1, r1

are some smooth complex valued functions. Consider a solu-
tion to the problem

Q1(y, D)w = 0 in χ1(Ω̃), w|χ1(Γ0) = 0

of the form (16) with the holomorphic weight function Φ1.
Then the function u1(x) = w(χ1(x)) satisfies

L1(x, D)u1 = 0 in Ω̃, u1|Γ0 = 0.

Since the partial Cauchy data for the operators L1(x, D) and
L2(x, D) are the same, there exists a function u2 such that

L2(x, D)u2 = 0 in Ω, u2|Γ0 = 0, (
∂u1

∂νg1

− ∂u2

∂νg2

)|Γ̃ = 0.

[25]

Using (23) and (25), we extend u2 on Ω̃ such that

u1|ω = u2|ω. [26]

Let ϕ2 be the harmonic function in Ω̃ such that

∂ϕ2

∂ν
|Γ0 = 0, ϕ2 = Re Φ1 ◦ χ1 in ∂Ω̃ \ Γ0.

We claim that
ϕ2 = ReΦ1 ◦ χ1 in ω. [27]

Thanks to the Carleman estimate (19) there exists τ0 =
τ0(ε) such that

‖e−τϕ2u2‖L2(Ω̃ε) ≤ C0|τeδε|τ || ∀|τ | ≥ τ0, [28]

where C0 = C0(ε) is independent of τ and δε → 0 as

ε → 0. On the other hand u1 = eτReΦ1◦χ1(aτeC1+iτImΦ1 +

bτeD1−iτImΦ1)◦χ1 +O( 1
τ
)). Here 2 ∂C1

∂z
= −C1, 2 ∂D1

∂z
= −D1,

Im C1|Γ0 = ImD1|Γ0 = 0. Then by (26) the following holds
true:

eτϕ2(e−τϕ2u2) = eτReΦ1◦χ1((aτeC1+iτImΦ1 [29]

+bτeD1−iτImΦ1) ◦ χ1 + O(
1

τ
)) ∀x ∈ ω.

This equality implies (27) immediately. Indeed, let for some
point x̂ from ω

ϕ2(x̂) 6= ReΦ1 ◦ χ1(x̂). [30]

Then there exists a ball B(x̂, δ′) ≡ {x ∈ R2; |x− x̂| < δ′} ⊂ ω
such that

|ϕ2(x)− ReΦ1 ◦ χ1(x)| > α′ > 0 ∀x ∈ B(x̂, δ′). [31]

Let us fix positive ε1 such that B(x̂, δ′) ⊂ Ωε1 and 2δε1 < α′.
Form (29) by (28) and (31) we have

C′e|τ |α
′
V ol(B(x̂, δ′))

1
2

≤ ‖eτ(ReΦ1◦χ1−ϕ2)(((aτeC1+iτImΦ1 + bτeD−iτImΦ1) ◦ χ1

+ O(
1

τ
))‖L2(B(x̂,δ′))

= ‖e−τϕ2u2‖L2(B(x̂,δ′)) ≤ C0|τ |eδε|τ |,

where τ > τ0 if ϕ2(x̂) < ReΦ1 ◦ χ1(x̂) and τ < −τ0 if
ϕ2(x̂) > ReΦ1 ◦χ1(x̂). The above inequality contradicts (30).

Let Ξ = χ1,1+iχ1,2. Using the Cauchy-Riemann equations
we construct a harmonic function ψ2 such that the function
Φ2 = ϕ2 + iψ2 is holomorphic in Ω̃. Moreover we take the
function Φ1 which may be holomorphically extended to some
domain O such that χ1(Ω̃) ⊂ O. Observe that Φ2 = Φ1 ◦Ξ in
ω. Then Ξ = Φ−1

1 ◦Φ2 in ω. The function Ξ may be extended

up to a single valued holomorphic function Ξ̃ in Ω̃ such that
Ξ̃ : Ω̃ → χ1(Ω̃) and Ξ̃(Ω̃) = χ1(Ω̃).

In Ω, consider the new infinitesimal coordinates for the
operator L1 given by the mapping Ξ̃−1 ◦ Ξ(x). In these coor-
dinates, the operator L1(x, D) has the form

Q̃(x, D) =
1

µ̃1
∆ + 2Ã1

∂

∂z
+ 2B̃1

∂

∂z̄
+ q̃1. [32]

Since Ξ̃−1 ◦ Ξ(x)|Γ̃ = Id, the partial Cauchy data for

the operators L2(x, D) and Q̃(x, D) are exactly the same.

The operators L2(x, D) and Q̃(x, D) are particular cases of
the operator (1). Since (µ2 − µ̃1)|Γ̃ = 0, the Cauchy data
Cµ2I,A2,B2,q2 and Cµ̃1I,Ã1,B̃1,q̃1

are equal. We multiply the op-

erator Q̃(x, D) by the function µ̃1/µ2 and denote the result-

ing operator as Q̂(x, D) = µ̃1
µ2

Q̃(x, D). Therefore by Corol-

lary 4 there exists a function η which satisfies (3) such that

L2(x, D) = e−ηQ̂(x, D)eη. The proof of the theorem is com-
pleted. ˜
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