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Abstract. We prove the unique continuation property for the isotropic elas-

ticity system with arbitrarily large residual stress. This work improves the
result obtained in [10] where the residual stress is assumed to be small.

1. Introduction. In this paper we prove the unique continuation property (UCP)
for the isotropic elasticity system with residual stress. Residual stresses are stresses
that remain after the original cause of the stresses has been removed. We consider
the case of large residual stresses. We formulate the mathematical problem and the
result more precisely below.

Let Ω be a connected open domain in Rn, we consider the following time-
harmonic elasticity system

∇ · σ + ρωu = 0 in Ω, (1.1)

where σ = (σij)ni,j=1 is the stress tensor field, ρ(x) is the density function, and ω ∈ C
is the frequency. The vector-valued function u(x) = (ui(x))ni=1 is the displacement
vector. Here we assume that the stress tensor σ is given by

σ(x) = T (x) + (∇u)T (x) + λ(x)(trE)I + 2µ(x)E, (1.2)

where E(x) = (∇u+∇ut)/2 is the infinitesimal strain and λ(x), µ(x) are the Lamé
parameters. The tensor T (x) = (tij(x))ni,j=1 represents the residual stress, which
satisfies

tij(x) = tji(x) ∀ 1 ≤ i, j ≤ n and x ∈ Ω
and

∇ · T = 0 ∀ x ∈ Ω.
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2 UHLMANN AND WANG

The expression (1.2) is a simple constitutive equation modelling the linear elasticity
with residual stress, which was considered in several inverse problems (see [4], [12]
and [13] for example). A more general constitutive equation in linear elasticity with
residual stress is given as

σ = T + (∇u)T + L(E),

where L(E) is the incremental elasticity tensor. Some explicit forms of L(E) were
derived in [5] and [8].

Here we are concerned with the UCP for (1.1), namely, if u ∈ H2
loc(Ω) is a

solution (1.1) and u(x) = 0 in a non-empty open subset of Ω, the u(x) ≡ 0 in Ω.
The UCP implies the Runge approximation property that has been widely used in
inverse problems starting with the work of [7] and [6]. It has been also used for
detection of elastic cracks and inclusions, see [9] for a review.

Under the assumption that the residual stress is sufficiently small, the UCP
for (1.1) has been proved in [10]. The purpose of this paper is to remove this
smallness assumption. We will prove the UCP for (1.1) assuming the usual strong
ellipticity condition which we proceed to define. If we define the elastic tensor
C = (Cijkl)ni,j,k,l=1 with

Cijkl = λδijδkl + µ(δikδjl + δjkδil) + tjlδik,

then (1.1) is equivalent to

∇ · (C∇u) + ρωu = 0.

The strong ellipticity condition is described as follows: there exists a constant γ > 0
such that for all vectors a = (aj)nj=1 and b = (bj)nj=1∑

ijkl

Cijklaibjakbl ≥ γ|a|2|b|2 ∀ x ∈ Ω,

which is equivalent to that

A1(x,D) :=
∑
jk

(µδjk + tjk)∂2
xjxk

and A2(x,D) :=
∑
jk

((λ+ 2µ)δjk + tjk)∂2
xjxk

are uniform elliptic operators. In other words, we assume that there exists θ > 0
such that for any vector ξ = (ξj)nj=1∑

jk

tjkξjξk + µ|ξ|2 ≥ θ|ξ|2 and
∑
jk

tjkξjξk + (λ+ 2µ)|ξ|2 ≥ θ|ξ|2 (1.3)

for all x ∈ Ω. The standard linear elasticity with Lamé coefficients λ, µ is uniformly
elliptic if

µ ≥ θ and λ+ 2µ ≥ θ. (1.4)

In view of (1.4), (1.3) holds for any semi-positive definite residual stress.
We will follow the lines in [10] to establish the UCP. The main difficulty is to

generalize two Carleman estimates derived in [10] to the case of large residual stress.
The details are carried out in Section 3. We refer the reader to [9] and references
therein for related literature on the UCP in elasticity.
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2. Proof of the UCP. In this section we will prove the UCP based on Carleman
estimates. In addition to (1.3), we assume that

λ(x), µ(x), tjk(x) (1 ≤ j, k ≤ n) ∈W 2,∞(Ω), and ρ(x) ∈W 1,∞(Ω).

Then we can rewrite (1.1) in the form

A1u+ (λ+ µ)∇(∇ · u) = P1(x,D)u for x ∈ Ω, (2.1)
where P1(x,D) is a first order differential operator with W 1,∞(Ω) coefficients. Now
we define a scalar function v(x) := ∇ · u and derive from (2.1) that

A1u = −(λ+ µ)∇v + P1(x,D)u for x ∈ Ω.

Applying the divergence on both sides of (2.1) yields

A2v = −2
∑
i

(∂xiµ)∆ui −
∑
ijk

(∂xitjk)∂2
xjxk

ui +Q1(x,D)(u, v) in Ω,

where Q1(x,D) is a first order differential operator acting on u and v with L∞(Ω)
coefficients. Therefore, to prove the UCP for (1.1), it suffices to prove the UCP for{

A1u = P̃1(x,D)(u, v)
A2v = Q2(x,D)u+Q1(x,D)(u, v),

(2.2)

where Q2(x,D) is a second order differential operator acting on u with W 1,∞(Ω) co-
efficients and P̃1(x,D) is a first order differential operator acting u, v with W 1,∞(Ω)
coefficients. Note that the system (2.2) does not have a decoupled principal part. It
should be pointed out that one can eliminate Q2u in (2.2), when there is no residual
stress (see [1] or [2]).

The proof of the UCP for (2.2) relies on two Carleman estimates. We state the
estimates here and will derive them in the following section. For simplicity, we set
A =

∑
jk ajk(x)∂2

xjxk
with ajk(x) = akj(x), aij ∈ W 1,∞

loc (Rn) for 1 ≤ i, j ≤ n, and
for any fixed compact set K ⊂ Rn∑

jk

ajk(x)ξjξk ≥ θ|ξ|2 ∀ ξ ∈ Rn, x ∈ K. (2.3)

Let r0 < 1 and Ur0 = {u ∈ C∞0 (Rn \ {0}) : supp(u) ⊂ Br0}, where Br0 is the ball
centered at the origin with radius r0. Denote r = |x|, ψ = exp(r−β) and s = s0 + c̃β
with s0, c̃ ∈ R.

Proposition 2.1. There exists a positive constant β0 such that for all β ≥ β0 and
u ∈ Ur0 with r0 sufficiently small, we have that∫

r−sψ2
∑
jk

|∂2
xjxk

u|2dx ≤ c
∫
r−sψ2(β2r−2β−2|∇u|2 + |Au|2)dx, (2.4)

where the constant c is independent of β and u.

Proposition 2.2. There exists a positive constant β0 such that for all β ≥ β0 and
u ∈ Ur0 with r0 small enough, we have

β2

∫
r−s−β−1ψ2(|∇u|2 + |u|2)dx ≤ c

∫
r−sψ2|Au|2dx. (2.5)

The constant c is independent of β and u

Assuming the estimates (2.4) and (2.5), we can now prove the UCP for (1.1).
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Theorem 2.3. Assume λ(x), µ(x), tjk (1 ≤ j, k ≤ n) ∈ W 2,∞(Ω) and ρ(x) ∈
W 1,∞(Ω). Let the strong ellipticity condition (1.3) hold, then for any H2

loc(Ω) so-
lution u of (1.1) satisfying u = 0 in a non-empty open subset of Ω, we have u ≡ 0
in Ω.

Proof. We will prove this theorem using similar arguments to [10] and [14]. To
make this paper self-contained, we include the proof here. Let (u, v) vanish in a
neighborhood of x0 ∈ Ω. Without loss of generality, we assume x0 = 0. We set
r̃ = min{r0, 1/2,dist(0, ∂Ω)}. Now let χ ∈ C∞0 (Rn) be a cut-off function satisfying
0 ≤ χ ≤ 1, χ|Br̃/2 = 1 and supp (χ) ⊂ Br̃. Denote w1 = χu and w2 = χv. From
(2.2) we have that

|A1w1| ≤ c(e(w1) + e(w2))1/2 + f1,
|A2w2| ≤ c[

∑
ij

|∂2
xixj

w1|+ (e(w1) + e(w2))1/2] + f2, (2.6)

where e(w) = |∇w|2 + |w|2 and fj is supported in Br̃ \Br̃/2 for j = 1, 2. It follows
from (2.6) that

I := γ
∫
r−βψ2|A1w1|2dx+

∫
rψ2|A2w2|2dx

≤ c(F +G+
∫
rψ2

∑
ij

|∂2
xixj

w1|2dx), (2.7)

where
F = γ

∫
r−βψ2f2

1 dx+
∫
rψ2f2

2 dx,
G =

∫
(r + γr−β)ψ2(e(w1) + e(w2))dx.

and γ is a large parameter which will be chosen later. Now we want to apply (2.4)
and (2.5) to A1w1 and A2w2. Taking s = −1 (i.e., s0 = −1, c̃ = 0) in the estimate
(2.4) for A1w1 and substituting it into (2.7) yield

I ≤ c(F +G+
∫
rψ2|A1w1|2dx+ β2

∫
r−2β−1ψ2|∇w1|2dx). (2.8)

Estimating the last term of (2.8) using (2.5) for A1w1 with s = β, we obtain that

I ≤ c(F +G+
∫
r−βψ2|A1w1|2dx). (2.9)

Now taking γ sufficiently large, we can absorb the last term of (2.9) by the same
term in I and get

I ≤ c(F +G). (2.10)

From now on we fix the parameter γ.
Next using s = β in (2.5) for A1w1 and s = −1 in (2.5) for A2w2 we obtain

H : = β2
∫
r−2β−1ψ2e(w1)dx+ β2

∫
r−βψ2e(w2)dx

≤ c(
∫
r−βψ2|A1w1|2dx+

∫
rψ2|A2w2|2dx). (2.11)

Combining (2.10) and (2.11) gives

H ≤ c(F +G) ≤ c(F +
∫

(r + γr−β)ψ2(e(w1) + e(w2))dx). (2.12)

Now observing that r < r−β < βr−β < βr−2β−1 when r ≤ r̃ and β > 1, we obtain
from (2.12) that

H ≤ c(F + β

∫
r−2β−1ψ2e(w1)dx+ β

∫
r−βψ2e(w2)dx). (2.13)
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Taking β sufficiently large in (2.13), we get that

H ≤ cF,

i.e.

β2

∫
r−2β−1ψ2e(w1)dx+ β2

∫
r−βψ2e(w2)dx ≤ c(

∫
r−βψ2f2

1 dx+
∫
rψ2f2

2 dx)

from which we immediately have

β2

∫
Br̃/2

r−βψ2(w2
1 + w2

2)dx ≤ c
∫
Br̃\Br̃/2

r−βψ2(f2
1 + f2

2 )dx. (2.14)

Since r−βψ2 is a strictly decreasing function, (2.14) implies that

β2

∫
Br̃/2

(w2
1 + w2

2)dx ≤ c
∫
Br̃\Br̃/2

(f2
1 + f2

2 )dx

and therefore (w1, w2) = 0 on Br̃/2 if we choose β sufficiently large. Clearly, (u, v)
must be zero throughout Ω. �

3. The Carleman estimates. This section is devoted to the proof of (2.4) and
(2.5). The use of weight function exp(r−β) in Carleman estimates dated back to
Protter [11], see also [3, Chapter 8.3].

Proof of Proposition 2.1. Let A0u =
∑
jk ajk(0)∂2

xjxk
u. In view of (2.3), the

symmetric matrix (ajk(0))njk=1 =: B is positive-definite. Therefore, there exists an
orthogonal matrix M such that

MBM t = diag(α1, · · · , αn),

where αn ≥ · · · ≥ α1 > 0. In the new coordinate system y = Mx, A0u becomes

Ã0w :=
∑
j

αj∂
2
yjyj

w,

where w(y) = u(M−1y). It is clear that u ∈ Ur0 if and only if w ∈ Ur0 . Now we
would like to prove (2.4) for Ã0. Note that r = |x| = |M−1y| = |y| and ψ(x) = ψ(y).
Let w ∈ Ur0 , we compute∫

r−sψ2|Ã0w|2dy
=
∫
r−sψ2

∑
jk αjαk∂

2
yjyj

w∂2
ykyk

wdy

= −
∫ ∑

jk αjαk∂yk
(r−sψ2)∂2

yjyj
w∂yk

wdy −
∫ ∑

jk αjαkr
−sψ2∂3

yjyjyk
w∂yk

wdy

=
∫ ∑

jk αjαk(sr−s−2 + 2βr−s−β−2)ykψ2∂2
yjyj

w∂yk
wdy

−
∫ ∑

jk αjαk(sr−s−2 + 2βr−s−β−2)yjψ2∂2
yjyk

w∂yk
wdy

+
∫ ∑

jk αjαkr
−sψ2|∂2

yjyk
w|2dy

≥ −ε
∫
r−sψ2

∑
jk |∂2

yjyk
w|2dy − c(ε)

∫
(s2r−s−2 + β2r−s−2β−2)ψ2|∇w|2dy

+α2
1

∫ ∑
jk r
−sψ2|∂2

yjyk
w|2dy,

(3.1)
where we have used the inequality

|ab| ≤ εa2 + c(ε)b2 for ε > 0.

Taking ε sufficiently small (α2
1 − ε > 0) and β large enough, we get from (3.1) that∫

r−sψ2
∑
jk

|∂2
yjyk

w|2dy ≤ c
∫
r−sψ2(β2r−2β−2|∇w|2 + |Ã0w|2)dy. (3.2)
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Now returning to the original coordinates x, we find that

Ã0w = A0u

and
∂2
xixj

u =
∑
kl

mkimlj∂
2
ykyl

w 1 ≤ i, j ≤ n,

where M = (mij)nij=1. Note that (
∑
ij |∂2

xixj
u|2)1/2 is the Frobenius norm of the

matrix (∂2
xixj

u)nij=1 and it is preserved by orthogonal transformations. Therefore,
(3.2) implies that∫

r−sψ2
∑
jk

|∂2
xjxk

u|2dx ≤ c
∫
r−sψ2(β2r−2β−2|∇u|2 + |A0u|2)dx. (3.3)

For the variable coefficients case, since ajk(x) ∈ W 1,∞
loc (Rn), ajk(x) is Lipschitz

in Br0 for any r0 > 0, 1 ≤ j, k ≤ n. In other words, we have that

|ajk(x)− ajk(0)| ≤ c0|x| ∀ x ∈ Br0 , (3.4)

where c0 > 0 is a constant. Combining (3.3) and (3.4), we obtain that∫
r−sψ2

∑
jk |∂2

xjxk
u|2dx

≤ c
∫
r−sψ2(β2r−2β−2|∇u|2 + |A0u|2)dx

≤ c
∫
r−sψ2(β2r−2β−2|∇u|2 + |(A−A0)u|2 + |Au|2)dx

≤ c
∫
r−sψ2(β2r−2β−2|∇u|2 + r20

∑
jk |∂2

xjxk
u|2 + |Au|2)dx.

(3.5)

So by choosing r0 small enough in (3.5), we get (2.4). �

Proof of Proposition 2.2. For simplicity, we denote ∂xj
= ∂j . Let φ = ψ−1

and u = rτ/2φz, then

r−s/2ψAu = r−s/2ψA(rτ/2φz)
= r−s/2ψ[rτ/2φAz + 2

∑
ij aij∂iz∂j(r

τ/2φ) + zA(rτ/2φ)].

By virtue of the inequality (a+ b+ c)2 ≥ 2ab+ 2bc, we have that∫
r−sψ2|Au|2dx ≥ 4

∫
r−sψ2

∑
ij aij∂iz∂j(r

τ/2φ)rτ/2φAzdx
+4
∫
r−sψ2

∑
ij aij∂iz∂j(r

τ/2φ)zA(rτ/2φ)dx.
(3.6)

With the choice of τ = s+ β + 2, we can compute

I :=
∫
r−sψ2

∑
ij aij∂iz∂j(r

τ/2φ)rτ/2φAzdx
= β

∫ ∑
ij aij∂izxjAzdx+ τ/2

∫
rβ
∑
ij aij∂izxjAzdx.

It is readily seen that the leading term (for large β) of I is β
∫ ∑

ij aij∂izxjAzdx
provided r0 is sufficiently small. Repeated integration by parts shows that

2
∫ ∑

ij aij∂izxjAzdx = 2
∫ ∑

ij aij∂izxj
∑
kl akl∂k∂lzdx

= −
∫ ∑

ijkl ∂iz∂l(aklaijxj)∂kzdx
+
∫ ∑

ijkl ∂kz∂i(aklaijxj)∂lzdx
−
∫ ∑

ijkl ∂lz∂k(aklaijxj)∂izdx.

(3.7)

Using (3.7) we obtain that

|I| ≤ cβ|
∫ ∑

ijkl ∂iz∂l(aklaijxj)∂kzdx|
≤ cβ‖∇z‖2
≤ cβ(‖∇(r−τ/2ψ)u‖2 + ‖r−τ/2ψ∇u‖2)
≤ c(β3

∫
r−s−3β−4ψ2|u|2dx+ β

∫
r−s−β−2ψ2|∇u|2dx).

(3.8)
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In view of ∂jrτ/2 = (τ/2)rτ/2−2xj and ∂jφ = βr−β−2xjφ, then we can compute

J :=
∫
r−sψ2

∑
ij aij∂iz∂j(r

τ/2φ)zA(rτ/2φ)dx
= β

∫
r−s+τ/2−β−2ψ

∑
ij aij∂izxjzA(rτ/2φ)dx

+τ/2
∫
r−s+τ/2−2ψ

∑
ij aij∂izxjzA(rτ/2φ)dx.

Straightforward calculations show that

∂i∂jφ = (β2xixjr
−2β−4 + βδijr

−β−2 − β(β + 2)xixjr−β−4)φ

and
∂i∂jr

τ/2 = (τ/2)(τ/2− 2)rτ/2−4xixj + (τ/2)rτ/2−2δij .

Hence, we can see that

A(rτ/2φ) =
∑
ij aij∂i∂j(r

τ/2φ)
=
∑
ij

(
aijφ∂i∂j(rτ/2) + 2aij(∂irτ/2∂jφ) + aijr

τ/2∂i∂jφ
)

=
∑
ij

(
aij [(τ/2)(τ/2− 2)rτ/2−4xixj + (τ/2)rτ/2−2δij ]φ+ τβaijr

τ/2−β−4xixjφ

+aij [β2xixjr
−2β+τ/2−4 + βδijr

−β+τ/2−2 − β(β + 2)xixjr−β+τ/2−4]φ
)
.

So the dominated term of J is

β3

∫
r−2β−4

∑
ijkl

aij∂izxjaklxkxlzdx

provided β is sufficiently large and r0 is sufficiently small. Note that we have chosen
τ = s+ β + 2. Integrating by parts and using the ellipticity condition (2.3), we can
see that

β3
∫
r−2β−4

∑
ijkl aij∂izxjaklxkxlzdx

= − 1
2β

3
∫
z
∑
ijkl ∂i(r

−2β−4aijxjaklxkxl)zdx
≥ (1− o(β))β4

∫
r−2β−6

∑
ijkl aijxixjaklxkxl|z|2dx

= (1− o(β))β4
∫
r−s−3β−8ψ2

∑
ijkl aijxixjaklxkxl|u|2dx,

where 0 ≤ o(β)→ 0 as β →∞. In other words, we have that

J ≥ (1− o(β))β4

∫
r−s−3β−8ψ2

∑
ijkl

aijxixjaklxkxl|u|2dx. (3.9)

Combining (3.6), (3.8) and (3.9) gives∫
r−sψ2|Au|2dx+ c(β3

∫
r−s−3β−4ψ2|u|2dx+ β

∫
r−s−β−2ψ2|∇u|2dx)

≥ 4(1− o(β))β4
∫
r−s−3β−8ψ2

∑
ijkl aijxixjaklxkxl|u|2dx

from which we can derive∫
r−sψ2|Au|2dx+ cβ

∫
r−s−β−2ψ2|∇u|2dx

≥ 3(1− o(β))β4
∫
r−s−3β−8ψ2

∑
ijkl aijxixjaklxkxl|u|2dx

(3.10)

using the ellipticity condition (2.3).
Again integrating by parts, we conclude∫

r−s−β−4ψ2
∑
ijkl aklxkxlaij∂iu∂judx

≤ |
∫
u∂i(r−s−β−4ψ2)

∑
ijkl aklxkxlaij∂judx|

+|
∫
r−s−β−4ψ2u

∑
ijkl ∂i(aklxkxlaij)∂judx|

+|
∫
r−s−β−4ψ2u

∑
ijkl aklxkxlaij∂i∂judx|

:= K1 +K2 +K3.

(3.11)
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We first handle the term K1. If we define the inner product 〈X,Y 〉 =
∑
ij aijXiYj

for vectors X and Y , the following Cauchy-Schwarz inequality obviously holds

|〈X,Y 〉| ≤ |〈X,X〉|1/2|〈Y, Y 〉|1/2. (3.12)

Note that

∂i(r−s−β−4ψ2) = (−s− β − 4)r−s−β−6xiψ
2 − 2βr−s−2β−6xiψ

2. (3.13)

Thus, using (3.12) and (3.13), we can estimate

K1 = |
∫
u∂i(r−s−β−4ψ2)

∑
ijkl aklxkxlaij∂judx|

≤
∫

(2 + o(β))βr−s−2β−6
∑
kl aklxkxlψ

2|u||
∑
ij aijxi∂ju|dx

≤
∫

(2 + o(β))βr−s−2β−6
∑
kl aklxkxlψ

2|u||
∑
ij aijxixj |1/2|

∑
ij aij∂iu∂ju|1/2dx

≤ (1/2)(2 + o(β))2β2
∫
r−s−3β−8

∑
ijkl aklxkxlaijxixjψ

2|u|2dx
+(1/2)

∫
r−s−β−4ψ2

∑
ijkl aklxkxlaij∂iu∂judx.

(3.14)
Here we have used the relation |ab| ≤ (a2 + b2)/2. For K2 and K3, straightforward
computations give that

K2 ≤ c(rβ0
∫
r−s−3β−4ψ2|u|2dx+ rβ+2

0

∫
r−s−β−2ψ2|∇u|2dx) (3.15)

and

K3 ≤ c(rβ0β2

∫
r−s−3β−4ψ2|u|2dx+ β−2

∫
r−sψ2|Au|2dx) (3.16)

provided r0 � 1, where the constant c only depends on the coefficients aij ’s. Plug-
ging (3.14), (3.15) and (3.16) into (3.11) and multiplying the new inequality by β2,
we obtain that

β2
∫
r−s−β−4ψ2

∑
ijkl aklxkxlaij∂iu∂judx

≤ (2 + o(β))β4
∫
r−s−3β−8

∑
ijkl aklxkxlaijxixjψ

2|u|2dx
+(1/2)β2

∫
r−s−β−4ψ2

∑
ijkl aklxkxlaij∂iu∂judx

+c(rβ0β
2
∫
r−s−3β−4ψ2|u|2dx+ rβ+2

0 β2
∫
r−s−β−2ψ2|∇u|2dx)

+c(rβ0β
4
∫
r−s−3β−4ψ2|u|2dx+

∫
r−sψ2|Au|2dx).

(3.17)

Adding (3.17) to (3.10) immediately yields

3(1− o(β))β4
∫
r−s−3β−8ψ2

∑
ijkl aijxixjaklxkxl|u|2dx

+β2
∫
r−s−β−4ψ2

∑
ijkl aklxkxlaij∂iu∂judx

≤ (2 + o(β))β4
∫
r−s−3β−8

∑
ijkl aklxkxlaijxixjψ

2|u|2dx
+(1/2)β2

∫
r−s−β−4ψ2

∑
ijkl aklxkxlaij∂iu∂judx+ cβ

∫
r−s−β−2ψ2|∇u|2dx

+c(rβ0β
2
∫
r−s−3β−4ψ2|u|2dx+ rβ+2

0 β2
∫
r−s−β−2ψ2|∇u|2dx)

+c(rβ0β
4
∫
r−s−3β−4ψ2|u|2dx+

∫
r−sψ2|Au|2dx).

(3.18)
Taking β sufficiently large in (3.18) and using the ellipticity condition (2.3), we now
conclude that

β4

∫
r−s−3β−4ψ2|u|2dx+ β2

∫
r−s−β−2ψ2|∇u|2dx ≤ c

∫
r−sψ2|Au|2dx

which immediately implies (2.5).
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