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ABSTRACT. We prove the unique continuation property for the isotropic elas-
ticity system with arbitrarily large residual stress. This work improves the
result obtained in [10] where the residual stress is assumed to be small.

1. Introduction. In this paper we prove the unique continuation property (UCP)
for the isotropic elasticity system with residual stress. Residual stresses are stresses
that remain after the original cause of the stresses has been removed. We consider
the case of large residual stresses. We formulate the mathematical problem and the
result more precisely below.

Let 2 be a connected open domain in R™, we consider the following time-
harmonic elasticity system

Vio+pwu=0 in €, (1.1)

where o = (05)};_ is the stress tensor field, p(x) is the density function, and w € C
is the frequency. The vector-valued function u(z) = (u;(x))", is the displacement

vector. Here we assume that the stress tensor o is given by
o(x) =T(z) + (Vu)T(z) + A(z)(trE)I + 2u(x)E, (1.2)

where F(z) = (Vu+ Vu')/2 is the infinitesimal strain and A(x), pu(x) are the Lamé
parameters. The tensor T'(z) = (t;;())};—; represents the residual stress, which
satisfies
tij(x) =tj(z) V1<i,j<nandzeQ
and
V-T=0 VzeQ.
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2 UHLMANN AND WANG

The expression (1.2) is a simple constitutive equation modelling the linear elasticity
with residual stress, which was considered in several inverse problems (see [4], [12]
and [13] for example). A more general constitutive equation in linear elasticity with
residual stress is given as

o=T+ (Vu)T + L(E),

where L(E) is the incremental elasticity tensor. Some explicit forms of L(E) were
derived in [5] and [8].

Here we are concerned with the UCP for (1.1), namely, if u € H? () is a
solution (1.1) and u(xz) = 0 in a non-empty open subset of €2, the u(z) = 0 in Q.
The UCP implies the Runge approximation property that has been widely used in
inverse problems starting with the work of [7] and [6]. It has been also used for
detection of elastic cracks and inclusions, see [9] for a review.

Under the assumption that the residual stress is sufficiently small, the UCP
for (1.1) has been proved in [10]. The purpose of this paper is to remove this
smallness assumption. We will prove the UCP for (1.1) assuming the usual strong
ellipticity condition which we proceed to define. If we define the elastic tensor
C = (Cijkt)j g 1=1 With

Cijkt = N0ijogs + p(0ikdi1 + 010) + 510k,
then (1.1) is equivalent to
V- (CVu) + pwu = 0.

The strong ellipticity condition is described as follows: there exists a constant v > 0

such that for all vectors a = (a;)7_; and b = (b;)}_4

ZC’ijklaibjakbl > ’y|a|2\b|2 Voe Q,
ikl

which is equivalent to that

Ai(z,D) := Z(M(Sjk + tjk)aijxk and As(z,D) := Z((/\ + 2/1)(5]‘;9 + tjk)c’)ijmk
jk Jk

are uniform elliptic operators. In other words, we assume that there exists 6 > 0
such that for any vector § = (§;)7_;

D bk +plel? = 01E and Y &g+ (A +2p)[E° > 0157 (1.3)
Jk ik
for all z € Q. The standard linear elasticity with Lamé coefficients A, u is uniformly
elliptic if
pw>6 and X+2p>6. (1.4)

In view of (1.4), (1.3) holds for any semi-positive definite residual stress.

We will follow the lines in [10] to establish the UCP. The main difficulty is to
generalize two Carleman estimates derived in [10] to the case of large residual stress.
The details are carried out in Section 3. We refer the reader to [9] and references
therein for related literature on the UCP in elasticity.
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2. Proof of the UCP. In this section we will prove the UCP based on Carleman
estimates. In addition to (1.3), we assume that

Mx), p(x), tir(z) (1 <4,k<n)e W2°°(Q), and p(z) € WH>(Q).

Then we can rewrite (1.1) in the form

Aju+ A+ p)V(V -u) = Pi(z,D)u  for x € Q, (2.1)
where Pj(z, D) is a first order differential operator with W°°(Q) coefficients. Now
we define a scalar function v(z) := V - u and derive from (2.1) that

Aru=—A+p)Vo+ Py(z,D)u for x € Q.
Applying the divergence on both sides of (2.1) yields

Aqv = =2 Z(@zi,u)Aui — Z((’?mtjk)aijmkui + Q1(z,D)(u,v) in Q,
i ijk

where Q1(x, D) is a first order differential operator acting on u and v with L>°(Q)

coefficients. Therefore, to prove the UCP for (1.1), it suffices to prove the UCP for

Ayu = Py(z, D)(u,v)
Asv = Qa(x, D)u + Q1(x, D) (u,v),

where Q2 (, D) is a second order differential operator acting on u with W1°°(£2) co-
efficients and Py (z, D) is a first order differential operator acting u, v with W12 (Q)
coefficients. Note that the system (2.2) does not have a decoupled principal part. It
should be pointed out that one can eliminate Qau in (2.2), when there is no residual
stress (see [1] or [2]).

The proof of the UCP for (2.2) relies on two Carleman estimates. We state the
estimates here and will derive them in the following section. For simplicity, we set
A=3" ajk(x)agm with aji(x) = ag;(x), aij € Wﬁ)coo(R") for 1 <14,5 < n, and

for any fixed compact set K C R™
> ajn(x)g8e > 01K VEER", 2 € K. (2.3)
ik

(2.2)

Let ro < 1 and Uy, = {u € C§°(R™ \ {0}) : supp(u) C By, }, where B,, is the ball
centered at the origin with radius 7. Denote r = |z, ¢ = exp(r=%) and s = sq +¢&3
with sg,¢ € R.

Proposition 2.1. There exists a positive constant By such that for all B > By and
u € Uy, with ro sufficiently small, we have that

/1"757,/12 Z |8§jmku|2dx < C/’/‘75¢2(627‘72572|VU|2 + |Au|?)dz, (2.4)
ik

where the constant c is independent of B and u.

Proposition 2.2. There exists a positive constant By such that for all B > By and
u € Uy, with ro small enough, we have

52/7’757’8711/)2(|VU|2 + Jul?)dz < 0/7’751/12|Au\2dx. (2.5)
The constant c is independent of 8 and u

Assuming the estimates (2.4) and (2.5), we can now prove the UCP for (1.1).
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Theorem 2.3. Assume \(z),u(z),tjx (1 < j,k < n) € W>(Q) and p(x) €
W1hoo(Q). Let the strong ellipticity condition (1.3) hold, then for any H? () so-
lution w of (1.1) satisfying u = 0 in a non-empty open subset of 1, we have u =0
in Q.

Proof. We will prove this theorem using similar arguments to [10] and [14]. To
make this paper self-contained, we include the proof here. Let (u,v) vanish in a
neighborhood of zy € 2. Without loss of generality, we assume zqg = 0. We set
7 = min{rg, 1/2,dist(0,00)}. Now let x € C§°(R") be a cut-off function satisfying
0<x <1 xl|g,;,, =1 and supp (x) C Bz Denote wy = yu and wp = xv. From
(2.2) we have that

|Aywy| < ele(wr) + e(w2))/? + f1,
[Aswa| < ¢[32107 5 wi| + (e(wr) + e(w2)) /2] + fo, (2.6)

i
where e(w) = [Vw|? + |w|? and f; is supported in B; \ Bz/s for j = 1,2. It follows
from (2.6) that

Ii= [r7 P2 Ayw; |2de + [ rip?|Agws|?da
Se(F+G+ [r?Y07,, wi|dr), (2.7)
i

where

F=n [r7P? fide + [ry? f3da,

G = [(r+yr )2 (e(wr) + e(ws))dz.
and v is a large parameter which will be chosen later. Now we want to apply (2.4)
and (2.5) to Ajwy and Asws. Taking s = —1 (i.e., so = —1,¢ = 0) in the estimate
(2.4) for Ajw; and substituting it into (2.7) yield

I< c(F+G+/r¢2|A1w1|2dﬁc+,32/7“_2f8_11/12|Vw1|2dx). (2.8)
Estimating the last term of (2.8) using (2.5) for A;w, with s = 3, we obtain that
I<c(F+G+ /r76w2|A1w1\2dz). (2.9)

Now taking v sufficiently large, we can absorb the last term of (2.9) by the same
term in I and get

I <c(F+G). (2.10)
From now on we fix the parameter .
Next using s = 3 in (2.5) for Ayw; and s = —1 in (2.5) for Asws we obtain

H: =2 [r 20" 22(wi)de + 2 [ r~ P4 e(ws)da

< ([ r Py?|Aywi|?de + [ rip?|Asws|*dx). (211)
Combining (2.10) and (2.11) gives
H<c(F+G)<c(F+ /(r + v )2 (e(wr) + e(wy))dz). (2.12)

Now observing that » < =8 < gr=F < Br=2#=1 when r < 7 and 3 > 1, we obtain
from (2.12) that

H< c(F+ﬁ/r‘25_11/)26(w1)dx+6/T‘Bw26(w2)dx). (2.13)
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Taking g sufficiently large in (2.13), we get that
H < cF,
ie.
52 /r*m*ldﬂe(wl)dx + 32 /riﬁwze(wg)daj < c(/ rPY? fidx + /r¢2f22dx)
from which we immediately have

& / O (w? + wd)dr < ¢ / r B3 (f7 4 f2)de. (2.14)
Bz /2 B

#\ B2

Since 7~#4? is a strictly decreasing function, (2.14) implies that
# [ wheaddse| (24 s
Bz /2 Bi\Bs /2

and therefore (w1, wz) = 0 on Bj/, if we choose 3 sufficiently large. Clearly, (u,v)
must be zero throughout €.

3. The Carleman estimates. This section is devoted to the proof of (2.4) and
(2.5). The use of weight function exp(r—?) in Carleman estimates dated back to
Protter [11], see also [3, Chapter 8.3].

Proof of Proposition 2.1. Let Agu=3_, ajk(())ﬁgjmku. In view of (2.3), the
symmetric matrix (a;,(0))7,_; =: B is positive-definite. Therefore, there exists an

orthogonal matrix M such that
MBM" = diag(ay, - -+, ap),

where o, > -+ > a1 > 0. In the new coordinate system y = Mx, Agu becomes
- 2
Aow := Zaﬂayjij’
J

where w(y) = u(M~1y). It is clear that u € U, if and only if w € U,,. Now we
would like to prove (2.4) for Ag. Note that r = |z| = |[M~ty| = |y| and ¢ (x) = ¥ (y).
Let w € U,,, we compute
[ rsy?| Agw|2dy
= [r=sy? >k ajakaijyj;”a%kykwdy -
= f Z]k ajakayk (T_S¢ )8y]‘ijaykwdy - f Z]k ajak/r_s’(/} ay]y]ykwaykwdy
=/ >k G 267"_5_5_2)%1/)285]%wﬁykwdy
— ijk ajog(sr—* 72 + 257”57ﬁ72)yj1/)28§jykwaykwdy
+fzjk ajakr_sw2|8§jykw|2dy
> *€2f rS? > ik L@izykw\Q;iy —c(e) [(s*r=572 4 B2r—s728-2)92|Vw|?dy
+a1fzjk 75 \8yjykw| dy,
(3.1)
where we have used the inequality

lab| < ea? + c(e)b*  for e > 0.

Taking ¢ sufficiently small (o — e > 0) and 3 large enough, we get from (3.1) that

/ Pty 10wy < c / PR (BP0 Vw4 [AgwP)dy. (3.2)
ik
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Now returning to the original coordinates x, we find that
Avow = Aou

and
2 2 .
04 u= E mkimljaykylw 1<i,j<n,

TiTj
kl

where M = (m;;)7;_,. Note that (3, |8§1wju|2)1/2 is the Frobenius norm of the
matrix (8%1,%_ u)ii_y

(3.2) implies that

/r*wﬂ > 102, ulPde < c/r*w?(ﬂ?r*mﬂvuﬁ + | Agu|?)dz. (3.3)
jk

and it is preserved by orthogonal transformations. Therefore,

For the variable coefficients case, since a;x(z) € VVllocOO (R™), ajk(x) is Lipschitz
in By, for any r9 > 0, 1 < j,k <n. In other words, we have that

laji(x) —ajr(0)] < colz] YV a € By, (3.4)
where ¢g > 0 is a constant. Combining (3.3) and (3.4), we obtain that
fr—s¢2 Z]k ‘6§J1ku|2d$

<c [rs?(B2r=272|Vul? + |Agul?)dz (3.5)
<c [rs?(B2r=272|Vul? + [(A — Ao)ul? + |Aul?)dx ‘
<c [r=sy?(B2r=2P=2|Vul® + 13 Sk 107 g ul? + |Aul?)da.

So by choosing rg small enough in (3.5), we get (2.4). g

Proof of Proposition 2.2. For simplicity, we denote 0., = 0;. Let ¢ = 1
and u = r7/2¢z, then
/2 Au =1 2P A(rT 2 ¢z)
==/ 2Y[rT 2P Az + 2 D i ij0;20;(r7/2¢) + zA(r7/2¢)].
By virtue of the inequality (a + b+ ¢)? > 2ab + 2bc, we have that
Jrog?|AulPde >4 [r=9? Y, ai;0,20;(r7/2¢)rT /2 ¢ Azda
+4 [r=sy? > ai;0;20;(r™/2)zA(r™/2¢)da.
With the choice of 7 = s+  + 2, we can compute
I:= [r=sy? Zij aijaizaj(rT/Qqﬁ)rT/QqﬁAzdx
=4/ >ij 0ijOizrjAzdr +7/2 [P >ij @ijOizrj Azdo.
It is readily seen that the leading term (for large 3) of T is ﬁfzij ;022 Azdz
provided 7 is sufficiently small. Repeated integration by parts shows that
2fZij a;;0izxjAzdr = ZfZij a;j0;2x5 Y 1, Ak OOy zdx
= — fZijkl 3izal(akla,;jzj)8kzdx

(3.6)

+ f Zijkl Ok20;(ama;jx;)0 zdx (3.7)
- f Zijkl 120k (apiajxj)0;zd.
Using (3.7) we obtain that
1| < B fzijkl 0;20)(akia;jx) O zdx|
< cB|Vz|? .

< BV (= 2p)ul? + |[r=/ 2pVul|?)
<c(3 fr7573ﬁ741/)2|u|2dx + ﬁfr’sfﬁ’2w2|Vu|2dx).
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In view of 9;77/2 = (7/2)r™/272x; and 0;¢ = Br~"~2z;¢, then we can compute
J = [rsy? > a;;0;20;(r™/2)zA(r™/%¢)dx
=B [rstT/2772y > aij0izx ;2 A(r™/?¢)da
+7/2 [ TR a0z 2 A(rT 2 )
Straightforward calculations show that
0:0;¢ = (Bmiz;r > + B0yr™ P72 = B(B + 2)wsmyr P )¢
and
0;0;77/% = (1/2)(1/2 = 2)r™* s + (7/2)r7/2725,.
Hence, we can see that
A(r29) = 32,5 ai;0,8;(r™?¢)
=2, (aij¢di0;(r™/?) + 2ai;(3ir™/20;) + ai;r7/20,0;¢)
=2 (aij[(7/2)(7/2 — 2)rT/ 2 gz + (7)2)r7/2726,5)¢ + TBar™/* P ¢
+a;; [ﬂzxiij_25+T/2_4 + 6(51']'7“_64_7—/2_2 — ﬁ(ﬁ + 2)$i$j7“_ﬂ+7—/2_4]¢)) .
So the dominated term of J is
63/7"_25_4 Zaijaizxjaklxkxlzdx
ijkl
provided (3 is sufficiently large and rq is sufficiently small. Note that we have chosen

T = s+ [+ 2. Integrating by parts and using the ellipticity condition (2.3), we can
see that

B3 [r284 > ijn @ijOizrjaprpm zde

—%ﬂ3fzzijkl 0;(r=2P~4a;xjapzpa)) 2de

(1= 0(B))B* [ 17207037, iy asjwizjamy| 2 *dx
(1—o(B))s* [r=o73078¢92 3" ) aijwixjapee|ul*de,

where 0 < o(8) — 0 as 8 — oo. In other words, we have that

J>(1- 0(6))54 /7"7573[3*81[)2 Zaijxixjakla:kxﬂuﬁdx. (3.9)

ijkl

v

Combining (3.6), (3.8) and (3.9) gives

[y AulPde + c(B3 [r=* 73042 |u|?de + B [ r~ 5P~ 2%|Vul?dx)
> 4(1—o(B))B* [ 3082 D ik Qi T % jap e u)*de
from which we can derive
[r=s¢?|Aul?dx + B [ r=57 P~ 22| Vu|?dx
> 3(1 —o(B))p* [r—s=388y?2 > ijkl ;T jag ez |u|’de

using the ellipticity condition (2.3).
Again integrating by parts, we conclude
[rmsm B2 > ijkl OR1TET1045Ojudjuda
< | Judi(r=* =P~ ?) 3 amrraiaiOjudz)
+| [rms =42y > i Oi(akizyma;;)Ojudz| (3.11)
+] [rms=F 2y > ikl WkITET10450;05udz|
= Kl + Kg + Kg.

(3.10)
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We first handle the term Kj. If we define the inner product (X,Y) =3_,. a;; X;Y;
for vectors X and Y, the following Cauchy-Schwarz inequality obviously holds

(X, Y)] < 1 X2y, Y2, (3.12)
Note that
Di(r=s P4 = (=5 — B — 4)r 5P Cgqp? — 2815728002, (3.13)
Thus, using (3.12) and (3.13), we can estimate

| [udi(r=5~ B 41,02)21 el aklxkxlama udzx|

J(2+o(B))Br—s-26-6 Zkl aprrrb?|ull Z” a;;0; u|dx

J(2+0(B)Br—s728-5 %" aparzp?|ul| > i aijrizy|'?| > ij @ij0iu0; u| /2 dx

(1/2)(2+ o(3))?B? [r—s736- 8ZUM AT T4 T > |u|2dx
+(1/2) fr’s 42 Zz_jkl Ak TE2104;07udjude.

Ky

<
<
<

(3.14)
Here we have used the relation |ab| < (a? +b?)/2. For K, and K3, straightforward
computations give that

K> < C(Tg/ 5304202 dx+rﬁ+2/riS*ﬁ*QwZ\VU\de) (3.15)

and
K; < c(rg52/r_s_3ﬁ_4w2|u\2dx +ﬁ_2/r_sw2|Au\2dx) (3.16)

provided 79 < 1, where the constant ¢ only depends on the coefficients a;;’s. Plug-
ging (3.14), (3.15) and (3.16) into (3.11) and multiplying the new inequality by (32,
we obtain that

ﬁer_g B=4y? > ijkt AT 0udjude
(2+ o(B)) ﬂ4f7“_5 36— SZ”M A TETa; 2 0% ul2de
1/2 ﬂQIT*s B4y Z”kl AR T L0 0udjude (3.17)
ﬁzfr—e 38— 4w2|u\2da:+rﬂ+252 f,,,—s B— 2¢2|Vu|2dx)
+c(r€ﬁ4fr_5_35_4w2|u\2d$ + [ r75¢?|Aul?dz).

Adding (3.17) to (3.10) immediately yields

3(1—o(B))B* [ 307892 37 asgriwjapakaul*de
+32 fr_g_ﬁ_‘le El o Okl 21035 0;u0; ud
(2+0(5 NBY [0 N ki v ul*de
+(1/2) 52fr75 B=dy? Zz]kl k1T 21045 0;u0; uderc,Bfr’S B=22|Vu|?dx
—l—c ﬂﬂz f,,,—s 38— 4w2|u|2dx+rﬁ+262fr_s B— 2w2|Vu|2dx)
+C(T€ﬁ4 [r=s730= 42 |u)?dx + [ r~5¢?|Aul?dz).
(3.18)
Taking f sufficiently large in (3.18) and using the ellipticity condition (2.3), we now
conclude that

B / PS8 A2 2 d + 32 / r TR VP dr < ¢ / roy? | Auf?dz

which immediately implies (2.5).
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