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Abstract

In this paper we consider several inverse boundary value problems
with partial data on an infinite slab. We prove the unique determi-
nation results of the coefficients for the Schrödinger equation and the
conductivity equation when the corresponding Dirichlet and Neumann
data are given either on the different boundary hyperplanes of the slab
or on the same single hyperplane.
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1 Introduction

Inverse boundary value problems arise when one tries to recover internal pa-
rameters of a medium from data obtained by boundary measurements. The
physical situation of many of these problems is modeled by partial differential
equations, and the goal is to determine the coefficients of the underlying equa-
tions from measurements of the solutions at the boundary. Since Calderón’s
pioneer contribution [3], a key method in inverse boundary problems has
been the construction of complex geometrical optics solutions with a large
parameter which was introduced by Sylvester and Uhlmann [22]. These so-
lutions were used in [22] to show, in three or higher dimensions, that the
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Dirichlet-to-Neumann (DN) map determines uniquely the conductivity co-
efficient in the conductivity equation and the potential in the Schrödinger
equation. This was the first breakthrough for the non-linear problem in
three or higher dimensions and led to several other developments (see, for
example, [23, 24, 25]).

In recent years, inverse problems with partial data, that is when the
measurements are made on part of the boundary, have received a lot of
attention. Bukhgeim and Uhlmann [2] proved uniqueness for the potential in
the Schrödinger equation in three or higher dimensions when the boundary
measurements are given by the Dirichlet data on the whole boundary but
the Neumann data only on (roughly speaking) half of the boundary. In [14]
the regularity assumption in [2] on the conductivity was improved. Stability
estimates in the [2] setting were proved in [6]. Kenig, Sjöstrand and Uhlmann
[13] improved significantly on the [2] result by showing unique identifiability
when the Dirichlet data is given on any (possible very small) open subset
of the boundary and the Neumann data is given on a slightly larger part
of its complement. A reconstruction method has been proposed in [18] for
the latter result. Isakov [12] proved a uniqueness result in dimension three
or higher when the DN map is given on an arbitrary part of the boundary
assuming that the remaining part is an open subset of a plane or a sphere. In
two dimensions it has been shown recently [10] that one can uniquely recover
the potential and conductivity if the the DN map is measured on any subset
of the boundary with Dirichlet data supported in the same set.

In this paper, we consider the inverse boundary value problem with par-
tial data in an infinite slab in three or higher dimensions. We prove the
unique determination result for the Schrödinger equation and the conductiv-
ity equation when the Dirichlet and Neumann data are given either on the
two different boundary hyperplanes or on the same single hyperplane. The
infinite slab is an important and interesting geometry. For example, it mod-
els important problems of wave propagation in marine acoustics. It is also a
simple geometrical setting in medical imaging. Inverse boundary value prob-
lems in a slab were investigated by several authors. The inverse coefficient
problems for wave guides were studies in [1, 8, 9, 4, 5] and the references cited
therein under various settings. The inverse conductivity problems of identify-
ing an embedded object were considered in [7, 20]. And the inverse problems
of optical tomography in the diffusion approximation were investigated in
[16, 17].

To deal with inverse boundary value problems with partial data we use
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not only complex geometrical optics solutions but also Carleman estimates.
If the data is given on the whole boundary, Green’s formula gives an identity
involving the unknown parameters and these solutions. In partial data in-
verse problems, Green’s formula gives an identity, which involves not only the
unknown parameters and the corresponding solutions but also the boundary
terms of the solutions. This is because one only has the knowledge of the
solutions on part of the boundary and the solutions on the remaining part of
the boundary are unknown. Thus one needs to show that the unknown infor-
mation can be neglected. A suitable Carleman estimate is needed to control
the unknown boundary terms. To fit the slab geometry and the boundary
information, we carefully construct the complex geometrical optics solutions,
especially the phase functions, to control the behavior of the solution when
the large parameter goes to infinity.

This paper is organized as follows. In Section 2, we will state the inverse
problems with partial data in an infinite slab and our main results. In Sec-
tion 3, we prove the unique determination of the potential in the Schrödinger
equation when the Dirichlet and Neumann data are given on the two differ-
ent boundary hyperplanes. In Section 4, we prove the unique determination
when the data are given on the same single hyperplane. The results for the
inverse conductivity problems will be proved in Section 5. In Appendix, we
will discuss the solvability of the direct problem.

2 Inverse problems in a slab

Suppose Ω ⊂ ℝ𝑛 (𝑛 ≥ 3) is an infinite slab between two parallel hyperplanes
Γ1 and Γ2. Without loss of generality, we assume

Ω = {𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ𝑛 : 𝑥′ = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1) ∈ ℝ𝑛−1, 0 < 𝑥𝑛 < 𝐿}

and
Γ1 = {𝑥 ∈ ℝ𝑛 : 𝑥𝑛 = 𝐿 > 0}, Γ2 = {𝑥 ∈ ℝ𝑛 : 𝑥𝑛 = 0}

Consider the following Dirichlet problem:

(−Δ+ 𝑞(𝑥)− 𝑘2)𝑢(𝑥) = 0 𝑖𝑛 Ω (2.1)

𝑢(𝑥) = 𝑓(𝑥) 𝑜𝑛 Γ1 (2.2)

𝑢(𝑥) = 0 𝑜𝑛 Γ2 (2.3)
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where 𝑘 > 0, the compactly supported potential 𝑞(𝑥) ∈ 𝐿∞(Ω), and 𝑓(𝑥) ∈
𝐻1/2(Γ1) with compact support in Γ1. We also require 𝑢 satisfies the partial
radiation condition introduced by Sveshnikov [21](

∂

∂𝜌
− 𝑖𝑘𝑚

)
𝑢𝑚(𝑥

′) = 𝑜(𝜌
1−𝑛
2 ) (2.4)

where 𝑢𝑚(𝑥
′) =

1

𝐿

∫ 𝐿

0

𝑢(𝑥) sin
𝑚𝜋𝑥𝑛
𝐿

𝑑𝑥𝑛, 𝜌 = ∣𝑥′∣, 𝑚 = 1, 2, ⋅ ⋅ ⋅ .
The existence of the weak solution 𝑢 ∈ 𝐻1(Ω) can be proved using Lax-

Phillips method (see [11]) together with the following assumptions.
Assumption 1: There is only zero solution to the homogeneous equations
(2.1)–(2.3) with 𝑓 = 0 satisfying the partial radiation condition (2.4).
Assumption 2: If 𝑛 = 3, we also require that 𝑘 ∕= 𝑚 𝜋

𝐿
, 𝑚 = 1, 2, ⋅ ⋅ ⋅ .

We give the proof in the Appendix.

After discussing the well-posedness of the direct problem, we then define
the boundary measurements. For an open set Γ′

2 on Γ2, we define the Cauchy
data for 𝑞(𝑥) by

𝐶𝐷
𝑞, Γ′

2
:= {(𝑢∣Γ1 ,

∂𝑢

∂𝜈
∣Γ′

2
) : u is a solution of (2.1)(2.2)(2.3)(2.4)}

where 𝜈 is the unit outer normal vector. Similarly, for an open set Γ′
1 on Γ1,

we define the Cauchy data

𝐶𝑆
𝑞, Γ′

1
:= {(𝑢∣Γ1 ,

∂𝑢

∂𝜈
∣Γ′

1
) : u is a solution of (2.1)(2.2)(2.3)(2.4)}

The superscripts 𝐷 and 𝑆 represent the data are given in the different hy-
perplanes and the same hyperplane, respectively. Both 𝐶𝐷

𝑞, Γ′
2
and 𝐶𝑆

𝑞, Γ′
1

contain only partial measurements on the boundary. The inverse boundary
value problems consist of the recovery of 𝑞(𝑥) from the knowledge of 𝐶𝐷

𝑞, Γ′
2

or 𝐶𝑆
𝑞, Γ′

1
.
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Now we state our main results.

Theorem 1. Let Ω ⊂ ℝ𝑛 (𝑛 ≥ 3) be a slab and 𝑞𝑗(𝑥) ∈ 𝐿∞(Ω), 𝑗 = 1, 2.
Suppose a compact set 𝐵 contains both supports of 𝑞1(𝑥) and 𝑞2(𝑥). For any
Γ′
2 such that 𝐵 ∩ Γ2 ⊂ Γ′

2, if 𝐶
𝐷
𝑞1, Γ′

2
= 𝐶𝐷

𝑞2, Γ′
2
, then 𝑞1(𝑥) = 𝑞2(𝑥) in Ω.

Theorem 2. Let Ω ⊂ ℝ𝑛 (𝑛 ≥ 3) be a slab and 𝑞𝑗(𝑥) ∈ 𝐿∞(Ω), 𝑗 = 1, 2.
Suppose a compact set 𝐵 contains both supports of 𝑞1(𝑥) and 𝑞2(𝑥). For any
Γ′
1 such that 𝐵 ∩ Γ1 ⊂ Γ′

1, if 𝐶
𝑆
𝑞1, Γ′

1
= 𝐶𝑆

𝑞2, Γ′
1
, then 𝑞1(𝑥) = 𝑞2(𝑥) in Ω.

Remark 3. If the support of the potential 𝑞(𝑥) is strictly contained in Ω,
then 𝐵 ∩ Γ1 = 𝐵 ∩ Γ2 = ∅. So Γ′

1 and Γ′
2 can be any arbitrary small open

sets on Γ1 and Γ2, respectively, in the above theorems.

Theorem 1 and Theorem 2 have immediate consequences in electrical
impedance tomography. Instead of (2.1), one considers the conductivity
equation

−div(𝛾∇𝑢)− 𝑘2𝛾𝑢 = 0 𝑖𝑛 Ω (2.5)

where 𝛾 ∈ 𝐶2(Ω̄), 𝛾 > 0 in Ω̄, and 𝛾 = 1 outside a compact set. If 𝑘 = 0,
the Lax-Milgram theorem guarantees the existence and uniqueness of the
solution to (2.5)(2.2)(2.3). If 𝑘 > 0, we also require the partial radiation
condition (2.4) and the assumptions as for the Schrödinger equations. The
well-posedness of the conductivity problem is then the same as that of the
Schrödinger equations. We define two sets of Cauchy data for 𝛾:

𝐶𝐷
𝛾, Γ′

2
:=

{
(𝑢∣Γ1 , 𝛾

∂𝑢

∂𝜈
∣Γ′

2
) :

u is a solution of (2.5)(2.2)(2.3)(2.4), if 𝑘 > 0
u is a solution of (2.5)(2.2)(2.3), if 𝑘 = 0

}
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and

𝐶𝑆
𝛾, Γ′

1
:=

{
(𝑢∣Γ1 , 𝛾

∂𝑢

∂𝜈
∣Γ′

1
) :

u is a solution of (2.5)(2.2)(2.3)(2.4), if 𝑘 > 0
u is a solution of (2.5)(2.2)(2.3), if 𝑘 = 0

}
where Γ′

𝑗 is any open set on Γ𝑗, 𝑗 = 1, 2, and 𝜈 is the unit outer normal
vector. We have the following results for electrical impedance tomography
problems.

Theorem 4. Let Ω ⊂ ℝ𝑛 (𝑛 ≥ 3) be a slab. Suppose 𝛾𝑗 ∈ 𝐶2(Ω̄), 𝛾𝑗 > 0 in
Ω̄, and 𝛾𝑗 = 1 outside a compact set. Denote 𝐵 the compact set containing
both supports of 𝛾𝑗 − 1, 𝑗 = 1, 2. For any Γ′

2 such that 𝐵 ∩ Γ2 ⊂ Γ′
2, if

𝐶𝐷
𝛾1, Γ′

2
= 𝐶𝐷

𝛾2, Γ′
2
and

𝛾1 = 𝛾2 𝑜𝑛 ∂Ω,
∂𝛾1
∂𝜈

=
∂𝛾2
∂𝜈

𝑜𝑛 Γ′
2, (2.6)

then 𝛾1(𝑥) = 𝛾2(𝑥) in Ω.

Theorem 5. Let Ω ⊂ ℝ𝑛 (𝑛 ≥ 3) be a slab. Suppose 𝛾𝑗 ∈ 𝐶2(Ω̄), 𝛾𝑗 > 0 in
Ω̄, and 𝛾𝑗 = 1 outside a compact set. Denote 𝐵 the compact set containing
both supports of 𝛾𝑗 − 1, 𝑗 = 1, 2. For any Γ′

1 such that 𝐵 ∩ Γ1 ⊂ Γ′
1, if

𝐶𝑆
𝛾1, Γ′

1
= 𝐶𝑆

𝛾2, Γ′
1
, then 𝛾1(𝑥) = 𝛾2(𝑥) in Ω.

Remark 6. We do not need any further restriction about the conductivity
on the boundary in Theorem 5. Kohn and Vogelius [15] showed that a 𝐶1

conductivity together with its first derivatives on Γ′
1 can be uniquely obtained

from the Cauchy data 𝐶𝑆
𝛾, Γ′

1
.

3 Determination of the potential from 𝐶𝐷
𝑞, Γ′2

In this section, we shall prove Theorem 1. Let 𝑞1(𝑥) and 𝑞2(𝑥) be two po-
tentials with the same Cauchy data 𝐶𝐷

𝑞1, Γ′
2
= 𝐶𝐷

𝑞2, Γ′
2
. We will derive an key

inequality involving these two potentials and the corresponding solutions.
Let 𝑢1(𝑥) ∈ 𝐻1(Ω) be a solution of

(−Δ+ 𝑞1(𝑥)− 𝑘2)𝑢1(𝑥) = 0 𝑖𝑛 Ω (3.1)

𝑢1(𝑥) = 0 𝑜𝑛 Γ2 (3.2)
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satisfying the partial radiation condition (2.4) together with 𝑢1∣Γ1 having
compact support in Γ1. Let 𝑣(𝑥) ∈ 𝐻1(Ω) be a solution of

(−Δ+ 𝑞2(𝑥)− 𝑘2)𝑣(𝑥) = 0 𝑖𝑛 Ω (3.3)

𝑣(𝑥) = 𝑢1(𝑥) 𝑜𝑛 Γ1 ∪ Γ2 (3.4)

satisfying the partial radiation condition (2.4).
Then we define 𝑤(𝑥) = 𝑣(𝑥)− 𝑢1(𝑥). Obviously, 𝑤(𝑥) satisfies the equation

(−Δ+ 𝑞2(𝑥)− 𝑘2)𝑤(𝑥) = (𝑞1(𝑥)− 𝑞2(𝑥))𝑢1(𝑥) 𝑖𝑛 Ω. (3.5)

Since 𝑣(𝑥) and 𝑢1(𝑥) have the same boundary value on Γ1 and both vanish
on Γ2, we conclude from 𝐶𝐷

𝑞1, Γ′
2
= 𝐶𝐷

𝑞2, Γ′
2
that

∂𝑣

∂𝜈
=
∂𝑢1
∂𝜈

𝑜𝑛 Γ′
2.

Therefore 𝑤(𝑥) satisfies the boundary conditions

𝑤(𝑥) = 0 𝑜𝑛 Γ1 ∪ Γ2,
∂𝑤(𝑥)

∂𝜈
= 0 𝑜𝑛 Γ′

2.

To get more information about 𝑤(𝑥), we consider the region Ω ∖ 𝐵. Denote
𝑙1 = 𝐵 ∩ Γ1, 𝑙2 = 𝐵 ∩ Γ2 and 𝑙3 = ∂𝐵 ∩ Ω. Since supp 𝑞2(𝑥) ⊂ 𝐵, we know
𝑤(𝑥) is a solution of

(−Δ− 𝑘2)𝑤(𝑥) = 0 𝑖𝑛 Ω ∖𝐵, 𝑤(𝑥) =
∂𝑤(𝑥)

∂𝜈
= 0 𝑜𝑛 Γ′

2 ∖ 𝑙2.

By unique continuation, 𝑤(𝑥) = 0 in Ω ∖ 𝐵. Particularly, 𝑤(𝑥) = ∂𝑤(𝑥)
∂𝜈

= 0
on 𝑙3.

Let 𝑢2(𝑥) ∈ 𝐻1(Ω ∩𝐵) be a solution of

(−Δ+ 𝑞2(𝑥)− 𝑘2)𝑢2(𝑥) = 0 𝑖𝑛 Ω ∩𝐵 (3.6)

Note that 𝑢2(𝑥) does not need to satisfy the equation on the whole domain
Ω and we do not impose any boundary condition for 𝑢2. We shall take this
advantage later. In view of (3.5)(3.6) and supp (𝑞1(𝑥)− 𝑞2(𝑥)) ⊂ 𝐵 we get∫

Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥 =

∫
Ω∩𝐵

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥

=

∫
Ω∩𝐵

(−Δ+ 𝑞2(𝑥)− 𝑘2)𝑤𝑢2𝑑𝑥

=

∫
Ω∩𝐵

𝑤(−Δ+ 𝑞2(𝑥)− 𝑘2)𝑢2𝑑𝑥−
∫
∂(Ω∩𝐵)

∂𝑤

∂𝜈
𝑢2𝑑𝑠+

∫
∂(Ω∩𝐵)

𝑤
∂𝑢2
∂𝜈

𝑑𝑠
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where we use Green’s formula in the last step. We know ∂(Ω∩𝐵) = 𝑙1∪𝑙2∪𝑙3.
But we already proved that

𝑤(𝑥) = 0 𝑜𝑛 𝑙1 ∪ 𝑙2 ∪ 𝑙3, ∂𝑤(𝑥)

∂𝜈
= 0 𝑜𝑛 𝑙2 ∪ 𝑙3.

Together with (3.6), we obtain the following lemma.

Lemma 7. Under the above notations, we have the identity∫
Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥 = −
∫
𝑙1

∂𝑤

∂𝜈
𝑢2𝑑𝑠. (3.7)

In order to control the boundary term, we need a Carleman estimate.
We recall the Carleman estimate derived in [2] (Corollary 2.3) for a bounded
domain 𝑄.

Lemma 8. For 𝑞 ∈ 𝐿∞(𝑄), there exists 𝜏0 > 0 and 𝐶 > 0 such that for all
𝑢 ∈ 𝐶2(�̄�) with 𝑢 = 0 on ∂𝑄, and 𝜏 ≥ 𝜏0 we have the estimate

𝐶𝜏 2
∫
𝑄

∣𝑒−𝜏𝑥⋅𝜂𝑢∣2𝑑𝑥+𝜏
∫
∂𝑄

(𝜂⋅𝜈) ∣𝑒−𝜏𝑥⋅𝜂 ∂𝑢
∂𝜈

∣2𝑑𝑠 ≤
∫
𝑄

∣𝑒−𝜏𝑥⋅𝜂(−Δ+𝑞−𝑘2)𝑢∣2𝑑𝑥

The above inequality holds obviously for all 𝐻2(𝑄) functions. We apply
this estimate to our case with 𝑄 = Ω ∩ 𝐵. In view of (3.5) and standard
elliptic theory, 𝑤 ∈ 𝐻2(Ω ∩𝐵). Since ∂𝑤

∂𝜈
= 0 on 𝑙2 ∪ 𝑙3, we get

𝜏

∫
𝑙1

(𝜂 ⋅ 𝜈) ∣𝑒−𝜏𝑥⋅𝜂 ∂𝑤
∂𝜈

∣2𝑑𝑠 ≤
∫
Ω∩𝐵

∣𝑒−𝜏𝑥⋅𝜂(−Δ+ 𝑞2 − 𝑘2)𝑤∣2𝑑𝑥 (3.8)

In order to make use of this estimate, we must choose 𝜂 such that 𝜂 ⋅𝜈 > 0 on
𝑙1, otherwise, the left hand side will be a non-positive number. We also note
that the unit outer normal vector 𝜈 is invariant on 𝑙1 since Γ1 is a hyperplane.
Thus 𝜂 ⋅ 𝜈 can be moved out the integration, and using (3.5) we obtain∫

𝑙1

∣𝑒−𝜏𝑥⋅𝜂 ∂𝑤
∂𝜈

∣2𝑑𝑠 ≤ 1

𝜏(𝜂 ⋅ 𝜈)
∫
Ω∩𝐵

∣𝑒−𝜏𝑥⋅𝜂(𝑞1 − 𝑞2)𝑢1∣2𝑑𝑥 (3.9)
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Then, from (3.7)(3.9), we get∣∣∣∣∫
Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥

∣∣∣∣ = ∣∣∣∣∫
𝑙1

∂𝑤

∂𝜈
𝑢2𝑑𝑠

∣∣∣∣
=

∣∣∣∣∫
𝑙1

𝑒−𝜏𝑥⋅𝜂 ∂𝑤
∂𝜈

𝑒𝜏𝑥⋅𝜂𝑢2𝑑𝑠

∣∣∣∣ ≤ ∫
𝑙1

∣∣∣𝑒−𝜏𝑥⋅𝜂 ∂𝑤
∂𝜈

𝑒𝜏𝑥⋅𝜂𝑢2
∣∣∣𝑑𝑠

≤
(∫

𝑙1

∣∣∣𝑒−𝜏𝑥⋅𝜂 ∂𝑤
∂𝜈

∣∣∣2𝑑𝑠) 1
2
(∫

𝑙1

∣∣𝑒𝜏𝑥⋅𝜂𝑢2∣∣2𝑑𝑠) 1
2

≤
(

1

𝜏(𝜂 ⋅ 𝜈)
) 1

2
(∫

Ω∩𝐵
∣𝑒−𝜏𝑥⋅𝜂(𝑞1 − 𝑞2)𝑢1∣2𝑑𝑥

) 1
2
(∫

𝑙1

∣∣𝑒𝜏𝑥⋅𝜂𝑢2∣∣2𝑑𝑠) 1
2

(3.10)

We shall get the relationship between 𝑞1 and 𝑞2 from (3.10) by choosing
suitable 𝜂 and constructing complex geometrical optics solutions to (3.1)(3.2)
and (3.6).

For 𝑗 = 1, 2, we define

𝒱𝑗(Ω ∩𝐵) := {𝑢 ∈ 𝐻1(Ω ∩𝐵) : (−Δ+ 𝑞𝑗(𝑥)− 𝑘2)𝑢(𝑥) = 0 𝑖𝑛 Ω ∩𝐵},

𝒲𝑗(Ω) := {𝑢 ∈ 𝐻1(Ω) : (−Δ+ 𝑞𝑗(𝑥)− 𝑘2)𝑢(𝑥) = 0 𝑖𝑛 Ω, 𝑢 = 0 𝑜𝑛 Γ2},
𝒲𝑗(Ω∩𝐵) := {𝑢 ∈ 𝐻1(Ω∩𝐵) : (−Δ+𝑞𝑗(𝑥)−𝑘2)𝑢(𝑥) = 0 𝑖𝑛 Ω∩𝐵, 𝑢 = 0 𝑜𝑛 Γ2}.
So (3.10) holds for any 𝑢1 ∈ 𝒲1(Ω) and any 𝑢2 ∈ 𝒱2(Ω∩𝐵). The solution we
will construct later for 𝑢1 grows exponentially at infinity. We need a Runge
type approximation.

Lemma 9. 𝒲𝑗(Ω) is dense in 𝒲𝑗(Ω ∩ 𝐵) with respect to 𝐿2(Ω ∩ 𝐵) norm,
for 𝑗 = 1, 2.

Proof: We only need to show that 𝒲1(Ω) is dense in 𝒲1(Ω∩𝐵) with respect
to 𝐿2(Ω∩𝐵) norm. If not, then by Hahn-Banach theorem there is 𝑔 in 𝐿2(Ω),
𝑔 = 0 in Ω ∖𝐵, such that∫

Ω

𝑔𝑢𝑑𝑥 = 0 for any 𝑢 ∈ 𝒲1(Ω),

but ∫
Ω

𝑔𝑢0𝑑𝑥 = 0 for some 𝑢0 ∈ 𝒲1(Ω ∩𝐵). (3.11)
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Let 𝑈 be the solution to the problem

(−Δ+ 𝑞1(𝑥)− 𝑘2)𝑈(𝑥) = 𝑔 𝑖𝑛 Ω,

𝑈(𝑥) = 0 𝑜𝑛 ∂Ω = Γ1 ∪ Γ2.

Using the Green’s formula and boundary conditions, we get

0 =

∫
Ω

𝑔𝑢𝑑𝑥 =

∫
Ω

[(−Δ+ 𝑞1(𝑥)− 𝑘2)𝑈 ]𝑢𝑑𝑥

=

∫
Ω

𝑈(−Δ+ 𝑞1(𝑥)− 𝑘2)𝑢𝑑𝑥−
∫
∂Ω

∂𝑈

∂𝜈
𝑢𝑑𝑠+

∫
∂Ω

𝑈
∂𝑢

∂𝜈
𝑑𝑠

= −
∫
∂Ω

∂𝑈

∂𝜈
𝑢𝑑𝑠 = −

∫
Γ1

∂𝑈

∂𝜈
𝑢𝑑𝑠, for any 𝑢 ∈ 𝒲1(Ω).

Then we know ∂𝑈
∂𝜈

= 0 on Γ1 since 𝑢 can be arbitrary smooth function on Γ1.
Hence 𝑈 is a solution to

(−Δ− 𝑘2)𝑈(𝑥) = 0 𝑖𝑛 Ω ∖𝐵, 𝑈(𝑥) =
∂𝑈

∂𝜈
= 0 𝑜𝑛 Γ1.

By the unique continuation, we conclude that 𝑈 = 0 in Ω ∖𝐵. Then for any
𝑢0 ∈ 𝒲1(Ω ∩𝐵), using the Green’s formula again, we have∫

Ω

𝑔𝑢0𝑑𝑥 =

∫
Ω∩𝐵

𝑔𝑢0𝑑𝑥 =

∫
Ω∩𝐵

[(−Δ+ 𝑞1(𝑥)− 𝑘2)𝑈 ]𝑢0𝑑𝑥

=

∫
Ω∩𝐵

𝑈(−Δ+ 𝑞1(𝑥)− 𝑘2)𝑢0𝑑𝑥−
∫
∂(Ω∩𝐵)

∂𝑈

∂𝜈
𝑢0𝑑𝑠+

∫
∂(Ω∩𝐵)

𝑈
∂𝑢0
∂𝜈

𝑑𝑠

= 0.

This contradicts to (3.11), and the proof is complete.

Summary up, we obtain the following important inequality.

Lemma 10. For any 𝜂 ∈ ℝ𝑛 such that 𝜂 ⋅ 𝜈 > 0 where 𝜈 is the unit outer
normal of Γ1, and for any 𝜏 >> 0, if 𝐶𝐷

𝑞1, Γ′
2
= 𝐶𝐷

𝑞2, Γ′
2
, then∣∣∣∣∫

Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥

∣∣∣∣
≤

(
1

𝜏(𝜂 ⋅ 𝜈)
) 1

2
(∫

Ω∩𝐵
∣𝑒−𝜏𝑥⋅𝜂(𝑞1 − 𝑞2)𝑢1∣2𝑑𝑥

) 1
2
(∫

𝑙1

∣∣𝑒𝜏𝑥⋅𝜂𝑢2∣∣2𝑑𝑠) 1
2

(3.12)

for all 𝑢1 ∈ 𝒲1(Ω ∩𝐵) and all 𝑢2 ∈ 𝒱2(Ω ∩𝐵).
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Next we construct complex geometrical optics solutions. We only study
the case 𝑛 = 3. The proof in the case 𝑛 > 3 is similar.

Denote 𝑥∗ = (𝑥1, 𝑥2,−𝑥3) for any 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, and Ω∗ = {𝑥∗ :
𝑥 ∈ Ω}. For any function 𝑓 , denote 𝑓 ∗(𝑥) = 𝑓(𝑥∗) = 𝑓(𝑥1, 𝑥2,−𝑥3).

For any 𝜉 = (𝜉1, 𝜉2, 𝜉3) ∈ ℝ3 with 𝜉1𝑒 =
√
𝜉21 + 𝜉22 > 0, we introduce

𝑒(1) =
1

𝜉1𝑒
(𝜉1, 𝜉2, 0), 𝑒(3) = (0, 0, 1)

and 𝑒(2) such that 𝑒(1), 𝑒(2) and 𝑒(3) form a orthogonal normal basis in ℝ3.
We also denote the coordinate of 𝑥 ∈ ℝ3 in this basis by (𝑥1𝑒, 𝑥2𝑒, 𝑥3𝑒)𝑒. A
similar choice was done in [12]. We have,

𝜉 = (𝜉1𝑒, 0, 𝜉3)𝑒

For 𝜏 >> 0, we choose

𝜌1 = (
𝑖

2
𝜉1𝑒 − 𝜏𝜉3, 𝑖∣𝜉∣

√
𝜏 2 − 1

4
,
𝑖

2
𝜉3 + 𝜏𝜉1𝑒)𝑒

𝜌2 = (
𝑖

2
𝜉1𝑒 + 𝜏𝜉3,−𝑖∣𝜉∣

√
𝜏 2 − 1

4
,
𝑖

2
𝜉3 − 𝜏𝜉1𝑒)𝑒

A direct computation gives that

𝜌1 ⋅ 𝜌1 = 𝜌2 ⋅ 𝜌2 = 0, 𝜌1 + 𝜌2 = (𝑖𝜉1𝑒, 0, 𝑖𝜉3)𝑒 = 𝑖𝜉. (3.13)

We look for 𝑢2 in the form

𝑢2(𝑥) = 𝑒𝑥⋅𝜌2(1 + 𝜓2(𝑥, 𝜌2))

By [22],

∥𝜓2(𝑥, 𝜌2)∥𝐻𝑠(Ω∩𝐵) ≤ 𝐶

𝜏 1−𝑠
, 0 ≤ 𝑠 ≤ 2. (3.14)

For 𝑢1(𝑥), one needs to consider the boundary restriction 𝑢1(𝑥) = 0 on Γ2.
We do an even extension about 𝑥3 for 𝑞1(𝑥). By [22] there is a complex
geometrical optics solution

𝑒𝑥⋅𝜌1(1 + 𝜓1(𝑥, 𝜌1))

satisfying the estimate

∥𝜓1(𝑥, 𝜌1)∥𝐻𝑠((Ω∩𝐵)∪(Ω∗∩𝐵∗)) ≤ 𝐶

𝜏 1−𝑠
, 0 ≤ 𝑠 ≤ 2.
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We look for 𝑢1(𝑥) in the form

𝑢1(𝑥) = 𝑒𝑥⋅𝜌1(1 + 𝜓1(𝑥, 𝜌1))− 𝑒𝑥
∗⋅𝜌1(1 + 𝜓∗

1(𝑥, 𝜌1))

Then we have that 𝑢1(𝑥) = 0 on Γ2 satisfying the estimates

∥𝜓1(𝑥, 𝜌1)∥𝐻𝑠(Ω∩𝐵) ≤ 𝐶

𝜏 1−𝑠
, 0 ≤ 𝑠 ≤ 2. (3.15)

∥𝜓∗
1(𝑥, 𝜌1)∥𝐻𝑠(Ω∩𝐵) ≤ 𝐶

𝜏 1−𝑠
, 0 ≤ 𝑠 ≤ 2. (3.16)

It is obvious that 𝑢1 ∈ 𝒲1(Ω ∩𝐵) and 𝑢2 ∈ 𝒱2(Ω ∩𝐵).
The choice of the phases 𝜌1 and 𝜌2 are quite different from those in [12].

Here we need a large negative parameter in the third component of the real
part of 𝑥 ⋅ 𝜌2 in order to use the inequality (3.12) in Lemma 10 (essentially,
to use the Carleman estimate (3.8)). It plays an important role that 𝑢2 does
not need to vanish on Γ2. Thus we do not need the reflection of 𝜌2 as a
phase function in the construction of the special solutions 𝑢2, which in turn
to guarantee the property we need. On the other hand, we also need to study
the product of the phases corresponding to 𝑢1 and 𝑢2. By our construction
of these phases, it is easy to show that

Re (𝑥∗ ⋅ 𝜌1 + 𝑥 ⋅ 𝜌2) = −2𝜏𝑥3𝜉1𝑒.

We know 𝑥3 > 0 for any 𝑥 ∈ Ω. Using that 𝜉1𝑒 > 0, as 𝜏 → +∞, we get
∣𝑒𝑥∗⋅𝜌1+𝑥⋅𝜌2 ∣ = 𝑒−2𝜏𝑥3𝜉1𝑒 → 0 which is essential in our proof.

Next we will apply the special solutions we constructed above to the
inequality (3.12) in Lemma 10. Denote 𝜉⊥ = (−𝜉3, 0, 𝜉1𝑒)𝑒. Note that the
third component of 𝜉⊥ is positive. Then 𝜂 = 𝜉⊥ satisfies the condition in
Lemma 10. We first show the right hand side goes to 0 as 𝜏 goes to infinity.
For computational convenience we separate the real part and imaginary part
of 𝜌1 and 𝜌2,

𝜌1 = 𝑖
(1
2
𝜉 + ∣𝜉∣

√
𝜏 2 − 1

4
𝑒(2)

)
+ 𝜏𝜉⊥, 𝜌2 = 𝑖

(1
2
𝜉 − ∣𝜉∣

√
𝜏 2 − 1

4
𝑒(2)

)− 𝜏𝜉⊥.
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We compute (∫
𝑙1

∣∣𝑒𝜏𝑥⋅𝜂𝑢2∣∣2𝑑𝑠) 1
2

=

(∫
𝑙1

∣∣𝑒𝜏𝑥⋅𝜉⊥𝑒𝑥⋅𝜌2(1 + 𝜓2)
∣∣2𝑑𝑠) 1

2

=

(∫
𝑙1

∣∣(1 + 𝜓2)
∣∣2𝑑𝑠) 1

2

≤ 𝐶
(
[𝑎𝑟𝑒𝑎(𝑙1)]

1
2 + ∥𝜓2∥𝐿2(𝑙1)

)
≤ 𝐶

(
[𝑎𝑟𝑒𝑎(𝑙1)]

1
2 + ∥𝜓2∥𝐻1(Ω∩𝐵)

)
≤ 𝐶

and (∫
Ω∩𝐵

∣∣∣𝑒−𝜏𝑥⋅𝜂(𝑞1 − 𝑞2)𝑢1

∣∣∣2𝑑𝑥) 1
2

=

(∫
Ω∩𝐵

∣∣∣𝑒−𝜏𝑥⋅𝜉⊥(𝑞1 − 𝑞2)[𝑒
𝑥⋅𝜌1(1 + 𝜓1(𝑥, 𝜌1))− 𝑒𝑥

∗⋅𝜌1(1 + 𝜓∗
1(𝑥, 𝜌1))]

∣∣∣2𝑑𝑥) 1
2

≤
(∫

Ω∩𝐵

∣∣𝑞1 − 𝑞2
∣∣2[(1 + ∣𝜓1(𝑥, 𝜌1)∣) + 𝑒−2𝜏𝑥3𝜉1𝑒(1 + ∣𝜓∗

1(𝑥, 𝜌1)∣)
]2
𝑑𝑥

) 1
2

≤ 𝐶(∥𝑞1∥𝐿∞ + ∥𝑞1∥𝐿∞) ⋅[(∫
Ω∩𝐵

(1 + ∣𝜓1(𝑥, 𝜌1)∣2)𝑑𝑥
) 1

2

+

(∫
Ω∩𝐵

𝑒−4𝜏𝑥3𝜉1𝑒(1 + ∣𝜓∗
1(𝑥, 𝜌1)∣2)𝑑𝑥

) 1
2

]

Since 𝑥3 > 0 in Ω and 𝜉1𝑒 > 0, as 𝜏 → +∞, we know 𝑒−4𝜏𝑥3𝜉1𝑒 → 0. Then by
the Lebesgue’s dominated convergence theorem we obtain, as 𝜏 → +∞,∫

Ω∩𝐵
𝑒−4𝜏𝑥3𝜉1𝑒(1 + ∣𝜓∗

1(𝑥, 𝜌1)∣2)𝑑𝑥→ 0.

Together with (3.15), we get(∫
Ω∩𝐵

∣∣∣𝑒−𝜏𝑥⋅𝜂(𝑞1 − 𝑞2)𝑢1

∣∣∣2𝑑𝑥) 1
2

≤ 𝐶

We also know 𝜂 ⋅ 𝜈 = 𝜉1𝑒 > 0, therefore as 𝜏 → +∞(
1

𝜏(𝜂 ⋅ 𝜈)
) 1

2
(∫

Ω∩𝐵
∣𝑒−𝜏𝑥⋅𝜂(𝑞1 − 𝑞2)𝑢1∣2𝑑𝑥

) 1
2
(∫

𝑙1

∣∣𝑒𝜏𝑥⋅𝜂𝑢2∣∣2𝑑𝑠) 1
2

→ 0.
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We then compute the left hand side∣∣∣∣∫
Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥

∣∣∣∣
=

∣∣∣∣∫
Ω

(𝑞1 − 𝑞2)𝑒
𝑖𝑥⋅𝜉(1 + 𝜓1)(1 + 𝜓2)𝑑𝑥−∫

Ω

(𝑞1 − 𝑞2)𝑒
𝑖𝑥1𝑒⋅𝜉1𝑒𝑒−2𝜏𝑥3𝜉1𝑒(1 + 𝜓∗

1)(1 + 𝜓2)𝑑𝑥

∣∣∣∣
Since 𝑥3 > 0 in Ω and 𝜉1𝑒 > 0, as before, the second term goes to 0 as
𝜏 → +∞. In view of (3.14)(3.15), we know∣∣∣∣∫

Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥

∣∣∣∣ → ∣∣∣∣∫
Ω

𝑒𝑖𝑥⋅𝜉(𝑞1 − 𝑞2)𝑑𝑥

∣∣∣∣ , 𝑎𝑠 𝜏 → +∞.

We eventually obtain ∣∣∣∣∫
Ω

𝑒𝑖𝑥⋅𝜉(𝑞1 − 𝑞2)𝑑𝑥

∣∣∣∣ = 0

or equivalently, ∫
Ω

𝑒𝑖𝑥⋅𝜉(𝑞1 − 𝑞2)𝑑𝑥 = 0

for all 𝜉 with 𝜉1𝑒 > 0. Since 𝜉1𝑒 is always non-negative, then using continuity,
we have ∫

Ω

𝑒𝑖𝑥⋅𝜉(𝑞1 − 𝑞2)𝑑𝑥 = 0

for any 𝜉. Therefore
𝑞1(𝑥)− 𝑞2(𝑥) = 0 𝑖𝑛 Ω.

4 Determination of the potential from 𝐶𝑆
𝑞, Γ′1

In this section, we shall prove Theorem 2. We only prove the case 𝑛 = 3 since
the proof in the case 𝑛 > 3 is similar. Let 𝑞1(𝑥) and 𝑞2(𝑥) be two potentials
with the same Cauchy data 𝐶𝑆

𝑞1, Γ′
1
= 𝐶𝑆

𝑞2, Γ′
1
. Similarly as the proof in last

section, we can obtain the identity∫
Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥 = −
∫
𝑙2

∂𝑤

∂𝜈
𝑢2𝑑𝑠,
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where 𝑢1(𝑥) is a solution of (3.1)(3.2), 𝑢2(𝑥) is a solution of (3.6), and 𝑤(𝑥) =
𝑣(𝑥)− 𝑢1(𝑥) with 𝑣(𝑥) being a solution of (3.3)(3.4). If we also require that
𝑢2(𝑥) = 0 on Γ2, then we have the orthogonality relation∫

Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥 = 0. (4.1)

In this case, we do not need to use Carleman estimates, but we have to
construct solutions of 𝑢1 and 𝑢2 both vanishing on Γ2. From Lemma 9, (4.1)
holds for any 𝑢1 ∈ 𝒲1(Ω ∩ 𝐵) and any 𝑢2 ∈ 𝒲2(Ω ∩ 𝐵). We use the same
argument as in [12]. For any 𝜉 = (𝜉1, 𝜉2, 𝜉3) ∈ ℝ3 with 𝜉1𝑒 =

√
𝜉21 + 𝜉22 > 0,

define

𝜌1 = (
𝑖

2
𝜉1𝑒 − 𝑖𝜏𝜉3,−∣𝜉∣

√
𝜏 2 +

1

4
,
𝑖

2
𝜉3 + 𝑖𝜏𝜉1𝑒)𝑒

𝜌2 = (
𝑖

2
𝜉1𝑒 + 𝑖𝜏𝜉3, ∣𝜉∣

√
𝜏 2 +

1

4
,
𝑖

2
𝜉3 − 𝑖𝜏𝜉1𝑒)𝑒

We do an even extension about 𝑥3 for 𝑞1(𝑥) and 𝑞2(𝑥). By [22] there are
complex geometrical optics solutions

𝑒𝑥⋅𝜌𝑗(1 + 𝜓𝑗(𝑥, 𝜌𝑗))

to the equation
(−Δ+ 𝑞𝑗(𝑥)− 𝑘2)𝑢(𝑥) = 0

satisfying the estimate

∥𝜓𝑗(𝑥, 𝜌𝑗)∥𝐻𝑠((Ω∩𝐵)∪(Ω∗∩𝐵∗)) ≤ 𝐶

𝜏 1−𝑠
, 0 ≤ 𝑠 ≤ 2.

for 𝑗 = 1, 2. We look for 𝑢𝑗(𝑥) in the form

𝑢𝑗(𝑥) = 𝑒𝑥⋅𝜌𝑗(1 + 𝜓𝑗(𝑥, 𝜌𝑗))− 𝑒𝑥
∗⋅𝜌𝑗(1 + 𝜓∗

𝑗 (𝑥, 𝜌𝑗))

Then 𝑢𝑗(𝑥) = 0 (𝑗 = 1, 2) on Γ2 is automatically satisfied and we have the
estimates

∥𝜓𝑗(𝑥, 𝜌𝑗)∥𝐻𝑠(Ω∩𝐵) ≤ 𝐶

𝜏 1−𝑠
, ∥𝜓∗

𝑗 (𝑥, 𝜌𝑗)∥𝐻𝑠(Ω∩𝐵) ≤ 𝐶

𝜏 1−𝑠
, 0 ≤ 𝑠 ≤ 2. (4.2)
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We get

0 =

∫
Ω

(𝑞1 − 𝑞2)𝑢1𝑢2𝑑𝑥

=

∫
Ω

(𝑞1 − 𝑞2)𝑒
𝑖𝑥⋅𝜉(1 + 𝜓1)(1 + 𝜓2)𝑑𝑥−∫

Ω

(𝑞1 − 𝑞2)𝑒
𝑖𝑥1𝑒⋅𝜉1𝑒𝑒−2𝑖𝜏𝑥3𝜉1𝑒(1 + 𝜓∗

1)(1 + 𝜓2)𝑑𝑥−∫
Ω

(𝑞1 − 𝑞2)𝑒
𝑖𝑥1𝑒⋅𝜉1𝑒𝑒2𝑖𝜏𝑥3𝜉1𝑒(1 + 𝜓1)(1 + 𝜓∗

2)𝑑𝑥+∫
Ω

(𝑞1 − 𝑞2)𝑒
𝑖𝑥∗⋅𝜉(1 + 𝜓1)(1 + 𝜓2)𝑑𝑥

Since 𝑥3 > 0 in Ω and 𝜉1𝑒 > 0, by the Riemann-Lebesgue lemma, the middle
two terms converge to zero as 𝜏 → +∞. Using the even extension of 𝑞1 and
𝑞2, we get ∫

Ω∪Ω∗
(𝑞1 − 𝑞2)𝑒

𝑖𝑥⋅𝜉𝑑𝑥 = 0.

for all 𝜉 with 𝜉1𝑒 > 0. Since 𝜉1𝑒 is always non-negative, using continuity, we
obtain ∫

Ω∪Ω∗
𝑒𝑖𝑥⋅𝜉(𝑞1 − 𝑞2)𝑑𝑥 = 0

for any 𝜉. Therefore
𝑞1(𝑥)− 𝑞2(𝑥) = 0 𝑖𝑛 Ω.

5 Determination of the conductivity

In this section, we prove Theorem 4 and Theorem 5. We will transform
the conductivity equation to the Schrödinger equation by the well known
transformation

𝜔 = 𝛾1/2𝑢. (5.1)

We consider the case 𝑘 > 0 first. If 𝑢 solves the conductivity equation
(2.5), then 𝜔 solves the Schrödinger equation (2.1) with

𝑞(𝑥) = 𝛾−1/2Δ𝛾1/2. (5.2)
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We prove Theorem 4 for 𝑘 > 0. From (2.6)(5.1), we know that if 𝐶𝐷
𝛾1, Γ′

2
=

𝐶𝐷
𝛾2, Γ′

2
then 𝐶𝐷

𝑞1, Γ′
2
= 𝐶𝐷

𝑞2, Γ′
2
. So 𝑞1(𝑥) = 𝑞2(𝑥) in Ω from Theorem 1. We

rewrite (5.2) as
−Δ𝛾1/2 + 𝑞(𝑥)𝛾1/2 = 0. (5.3)

The condition (2.6) implies that 𝛾
1/2
1 = 𝛾

1/2
2 on Γ′

2 and
∂𝛾

1/2
1

∂𝜈
=

∂𝛾
1/2
2

∂𝜈
on Γ′

2,
then we conclude 𝛾1 = 𝛾2 from the unique continuation for (5.3).

The proof of Theorem 5 for 𝑘 > 0 is similar. By [15], if 𝐶𝑆
𝛾1, Γ′

1
= 𝐶𝑆

𝛾2, Γ′
1

then 𝛾1 = 𝛾2 on Γ′
1 and ∂𝛾1

∂𝜈
= ∂𝛾2

∂𝜈
on Γ′

1. Since 𝛾1 = 𝛾2 = 1 on Γ1 ∖ 𝑙1, we
know 𝛾1 = 𝛾2 on Γ1. Together with (5.1), we have 𝐶𝑆

𝑞1, Γ′
1
= 𝐶𝑆

𝑞2, Γ′
1
. The rest

of the proof is the same as the proof of Theorem 4.
Now we consider the case 𝑘 = 0. The difference of the proof between

𝑘 = 0 and 𝑘 > 0 is only the solvability of the direct problem. When 𝑘 = 0,
if 𝑢 solves (2.5), then 𝜔, defined by (5.1), solves (2.1) with 𝑞 as in (5.2) and
𝑘 = 0. The solvability of (2.1) for such 𝑞 and 𝑘 = 0 is based on the solvability
of (2.5) for 𝑘 = 0, which is guaranteed by the Lax-Milgram theorem. Once
we have the solvability for the Schrödinger equation (2.1) with 𝑘 = 0, all the
arguments in the proofs of Theorem 1 (Section 3) and Theorem 2 (Section 4)
hold for 𝑘 = 0. Then the rest of the proofs of Theorem 4 and Theorem 5 for
𝑘 = 0 is the same as that for 𝑘 > 0 by using the results for the corresponding
Schrödinger equation (the discussion at the beginning of this section). The
proofs are complete.

A The solvability of the Schrödinger equa-

tion in an infinite slab

In this appendix we will use the Lax-Phillips method (see [11]) to prove the
existence of the 𝐻1(Ω) solution to the Dirichlet problem (2.1)(2.2)(2.3) sat-
isfying the partial radiation condition (2.4), Assumption 1, and Assumption
2 (if 𝑛 = 3). By the trace formula, it is enough to study the equation

(−Δ+ 𝑞(𝑥)− 𝑘2)𝑣(𝑥) = 𝐹 𝑖𝑛 Ω,

𝑣(𝑥) = 0 𝑜𝑛 ∂Ω.

where 𝐹 ∈ 𝐻−1(Ω) has compact support in ℝ𝑛.
Let the compact set 𝐵 contains the support of 𝑞(𝑥). We choose an open

set 𝐵0 containing 𝐵 such that 𝑘2 is not a Dirichlet eigenvalue for both −Δ
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and −Δ + 𝑞(𝑥) in 𝐵0 ∩ Ω. We also choose an open set 𝐵1 such that 𝐵 ⊂
𝐵1 ⊂ 𝐵1 ⊂ 𝐵0. Let 𝜑 be a cutoff 𝒞∞ function that is 1 in 𝐵 and 0 outside
𝐵1. We look for a solution of the form

𝑣 = 𝜔 − 𝜑(𝑤 − 𝑉 )

where 𝑤 is a solution of

(−Δ− 𝑘2)𝑤(𝑥) = 𝐹1 𝑖𝑛 Ω, 𝑤 = 0 𝑜𝑛 ∂Ω (A.1)

satisfying the partial radiation condition (2.4), and 𝑉 is a solution of

(−Δ+ 𝑞(𝑥)− 𝑘2)𝑉 (𝑥) = 𝐹1 𝑖𝑛 𝐵0 ∩ Ω, 𝑉 = 𝑤 𝑜𝑛 ∂(𝐵0 ∩ Ω). (A.2)

The function 𝐹1 ∈ 𝐻−1(Ω) with compact support in ℝ𝑛 will be determined
later.

We first discuss the solvability of 𝑤 ∈ 𝐻1(Ω) to (A.1). The uniqueness
was proved in [21, 19]. The Assumption 2 is needed if 𝑛 = 3. The Green’s
function for −Δ−𝑘2 in the slab Ω with vanishing condition on the boundary
is

𝐺(𝑥, 𝑦) =
∞∑

𝑚=1

−𝑖
2𝐿

(
𝑘𝑚

2𝜋∣𝑥′ − 𝑦′∣
)𝑛−3

2

sin(
𝑚𝜋𝑥𝑛
𝐿

) sin(
𝑚𝜋𝑦𝑛
𝐿

)𝐻1
𝑛−3
2

(𝑘𝑚∣𝑥′ − 𝑦′∣)

where 𝑘𝑚 = 𝑘(1 − 𝑚2𝜋2

𝑘2𝐿2 )
1
2 and 𝐻1

𝑛−3
2

(⋅) is the Hankel function of first kind.

We then have

𝑤(𝑥) =

∫
Ω

𝐺(𝑥, 𝑦)𝐹1(𝑦)𝑑𝑦.

The existence of 𝑉 ∈ 𝐻1(𝐵0 ∩ Ω) is from the uniqueness of the solution
to (A.2) by Fredholm alternative. The uniqueness is based on our choice of
𝐵0 such that 𝑘2 is not a Dirichlet eigenvalue for −Δ+ 𝑞(𝑥) in 𝐵0 ∩ Ω.

Obviously, 𝑣 = 0 on ∂Ω. Next we study 𝐹1. We have 𝑣 = 𝑉 in 𝐵 ∩Ω, so
(−Δ+ 𝑞(𝑥)− 𝑘2)𝑉 (𝑥) = 𝑓 there. In 𝐵𝑐 ∩ Ω, we have 𝑞(𝑥) = 0, and

(−Δ+ 𝑞(𝑥)− 𝑘2)𝑣(𝑥) = (−Δ− 𝑘2)𝑣(𝑥)

= (−Δ− 𝑘2)𝑤 + (Δ𝜑)(𝑤 − 𝑉 ) + 2∇𝜑 ⋅ ∇(𝑤 − 𝑉 )

+𝜑[(Δ + 𝑘2)𝑤 − (Δ + 𝑘2)𝑉 ]

= 𝐹1 +𝐾𝐹1 + 𝜑(𝐹1 − 𝐹1) = 𝐹1 +𝐾𝐹1
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where we define 𝐾𝐹1 = (Δ𝜑)(𝑤−𝑉 )+2∇𝜑 ⋅∇(𝑤−𝑉 ). We also define 𝐾𝐹1

as zero in 𝐵 ∩Ω. We conclude that 𝑣 solves the original equation if and only
of 𝐹1 solves the following equation

𝐹 = 𝐹1 +𝐾𝐹1 (A.3)

We claim that the operator𝐾 is compact on 𝐻−1(𝐵0∩Ω). The elliptic theory
shows that (−Δ + 𝑞(𝑥) − 𝑘2)−1 is a continuous operator from 𝐻−1(𝐵0 ∩ Ω)
to 𝐻1(𝐵0 ∩ Ω). Since 𝐾 involves only the first-order derivative, 𝐾 is then a
continuous operator from 𝐻−1(𝐵0∩Ω) to 𝐿2(𝐵0∩Ω), and therefore compact
on 𝐻−1(𝐵0 ∩ Ω) by the compact embedding theory. So equation (A.3) is
Fredholm and its solvability follows from the uniqueness of its solution.

We show the uniqueness. Let 𝐹 = 0. Then 𝑣 is a solution to the homoge-
neous equation. From Assumption 1, we know that 𝑣 = 0 in Ω. In 𝐵∩Ω, we
have 𝐹1 = 𝐹 −𝐾𝐹1 = 𝐹 = 0 and 𝑉 = 𝑣 = 0. In 𝐵𝑐 ∩ Ω, we have 𝑞(𝑥) = 0.
Thus from the equations for 𝜔 and 𝑉 , we know that

(−Δ− 𝑘2)(𝑤 − 𝑉 ) = 0 𝑖𝑛 𝐵0 ∩ Ω, 𝑤 − 𝑉 = 0 𝑜𝑛 ∂(𝐵0 ∩ Ω)

Since we choose 𝐵0 such that 𝑘2 is not a Dirichlet eigenvalue for −Δ in
𝐵0 ∩Ω, we get 𝑤 = 𝑉 in 𝐵0 ∩Ω. From the definition of 𝐾𝐹1, we know that
𝐾𝐹1 = 0 in Ω, and hence 𝐹1 = 𝐹 − 𝐾𝐹1 = 0 − 0 = 0 in Ω. This proves
the uniqueness of the solution. And then from the Fredholm alternative, we
know the existence of the solution.
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Brasileira de Mathemática, Rio de Janeiro, 1980, pp. 65–73.

[4] S. Dediu and J. McLaughlin, Recovering inhomogeneities in a wave guide
using eigensystem decomposition, Inverse Problems, 22 (2006), 1227–
1246.

19



[5] G. Eskin, J. Ralston and M. Yamamoto, Inverse scattering for gratings
and wave guides, Inverse Problems, 24 (2008), 025008 (12 pp).

[6] H. Heck and J.-N. Wang, Stability estimates for the inverse boundary
value problem by partial Cauchy data, Inverse Problems, 22 (2006),
1787–1796.

[7] M. Ikehata, Inverse conductivity problem in the infinite slab, Inverse
Problems, 17 (2001), 437–454.

[8] M. Ikehata, G. N. Makrakis and G. Nakamura, Inverse boundary value
problem for ocean acoustics, Math. Methods Appl. Sci., 24 (2001), 1–8.

[9] M. Ikehata, G. N. Makrakis and G. Nakamura, Inverse boundary value
problem for ocean acoustics using point sources, Math. Methods Appl.
Sci., 27 (2004), 1367–1384.

[10] O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem
with partial data in two dimensions, J. Amer. Math. Soc. (to appear).

[11] V. Isakov, “Inverse Problems for Partial Differential Equations,” Second
Edition, Springer-Verlag, New York, 2006.

[12] V. Isakov, On uniqueness in the inverse conductivity problem with local
data, Inverse Problems and Imaging, 1 (2007), 95–105.
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