THERMOACOUSTIC TOMOGRAPHY WITH VARIABLE SOUND SPEED

PLAMEN STEFANOV AND GUNTHER UHLMANN

ABSTRACT. We study the mathematical model of thermoacoustic tomography in media with a variable speed
for a fixed time interval0, 7'] so that all signals issued from the domain leave it after tifneln case of
measurements on the whole boundary, we give an explicit solution in terms of a Neumann series expansion.
We give almost necessary and sufficient conditions for uniqueness and stability when the measurements are
taken on a part of the boundary.

1. INTRODUCTION

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient’s body. The tissue
reacts and emits an ultrasound wave from any point, that is measured away from the body. Then one tries
to reconstruct the internal structure of a patient’s body form those measurements, see e.g, [5, 6, 10, 11, 22].

For more detail, an extensive list of references, and the recent progress in the mathematical understanding

of this problem, we refer to [1, 4, 8, 9, 12, 14]. Both constant and non-constant sound speeds have been
studied and naturally, the results are more complete in the constant speed case.

The purpose of this work is to study this problem under the assumption of a variable speed. We wiill
actually formulate the problem in anisotropic media. kédie a Riemannian metric iR”, leta be a vector
field, and letc > 0, ¢ > 0 be functions, all smooth and real valued. Assume for conveniencey tisat
Euclidean outside a large compact, and 1 = ¢ = a = 0 there (since we work with in a fixed interval,
by the finite speed of propagation, this assumption is not essentialP hetthe differential operator

l 1 a 57 1 8
— 2 -2 | ol - ;
Q) P_cm(i8i+al)g detg(iaj—i-a,)—l—q.

Let u solve the problem

@*+Pu = 0 in(0,T)xR",
(2) ul=0 = f,
drul=o = 0,

whereT > 0 is fixed. .
Assume thatf" is supported in2, wheref2 C R” is some smooth bounded domain. The measurements
are modeled by the operator

(3) Af = uljo,T1x05-
The problem is to reconstruct the unknowin

The presence of the magnetic figld } is perhaps of no interest for applications but it does not cause any
additional difficulties.

If T = oo, then one can solve a problem with Cauchy datd: = oo (as a limit), and boundary data
h = Af. The zero Cauchy data are justified by local energy decay that holds for non-trapping geometry, for
example (actually, it is always true but much weaker and not uniform in general). Then solving the resulting
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2 P. STEFANOV AND G. UHLMANN

problem backwards recoveys. Now, based on that, one can show that for a fi¥edne can still do the

same thing with an errar(T') — 0, asT — oo. This is known as the time reversal method. In the non-
trapping case; odd, the error is uniform and(7) = O(e~7/€). There is no good control ove&r though.

Error estimates based on local energy decay can be found in [8], see also Corollary 1. Other reconstruction
methods have been used as well, see, e.g., [9] for a discussion, and they all use measuremernits ttoe all
variable coefficients case, i.4., = oco; and they are only approximate f@r < oo with an error depending

on the local energy decay rate. Of course;, i$ odd andP = —A, any finiteT > diam(§2) suffices by the
Huygens’ principle.

We refer to Section 3 for a discussion of uniqueness results.

In this paper, we want to study what happens wiiera oo is fixed, greater than the length of the longest
geodesic in? (thus the metric —2g is assumed to be non-trapping). In case of measurements on the whole
boundary, our main result is that the problem is Fredholm, uniquely solvable, and can be solved explicitly
with a Neumann series expansion. In case of partial data, in Section 3 we give an almost necessary and
sufficient condition for uniqueness, and another almost necessary and sufficient condition for stability. In
Proposition 3 we characterizeas a sum of two Fourier Integral Operators with canonical relations of graph

type.

2. COMPLETE DATA

Notice first thatP is formally self-adjoint w.r.t. the measute2d Vol, where d Vo(x) = ./detg dx.
Given a domairtU, and a function(z, x), define the energy

Ey(t,u) = /U (|Du|2 + e 2g|ul? +c—2|u,|2)de|,

whereD; = —id/dx/ + aj, D = (D1, ..., Dy), | Dul? = " (Dju)(D;u), and dVolx) = (detg)'/2dx.
In particular, we define the spaéép (U) to be the completion of 7°(U) under the Dirichlet norm

112 _ 2 -2 2
@ 171, = [ (19U + < 2qlul?) dvol.

It is easy to see thaklp(U) ¢ H'(U), if U is bounded with smooth boundary, therefofép (U) is
topologically equivalent t(H(}(U). If U = R", this is true fom > 3 only, if ¢ = 0. By the finite speed of
propagation, the solution with compactly supported Cauchy data always stBysdéwen whem = 2. The
energy norm for the Cauchy datd, v), that we denote by - || is then defined by

1), = /U (IDF12 + 21 f 12 + e 2lyl?) d Vol
This defines the energy space
H(U) = Hp(U) & L*(U).
Here and below.?(U) = L*(U; ¢~2d Vol). Note also that

5) 1/ N2, = (PS. )2
The wave equation then can be written down as the system

0 I
(6) u; = Pu, Pz(P 0),

whereu = (u,u;) belongs to the energy spaé¢é The operatolP then extends naturally to a skew-
selfadjoint operator ofi(. In this paper, we will deal with eithdy = R” or U = £2. In the latter case, the
definition of Hp (U) reflects Dirichlet boundary conditions.
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One method to get an approximate solution of the thermoacoustic problem is the following time reversal
method, that is actually used in a modified form, see the comments below. &iletv, solve

0>+ Py = 0 in(0,T)x £,
volfo,r1x02 = N,
7 5
Q) Vol;=r = 0,
dtvoli=7 = 0.

Then we define the following “approximate inverse”
Aoh = v0(0,-) in L.

ThenAyAf is viewed as an approximation 6. As we mentioned above, that is actually true asymptoti-
cally asT — oo, with the modified version of the time reversal method described below, (see [8]) isut
fixed in our analysis.

In this form, the time reversal method has the following downsitlenay not vanish o{T} x 0452,
therefore the mixed problem above has boundary data with a possible jump type of singul@ri}y<ais?
(the compatibility conditions might be violated). That singularity will propagate baek+o0 and will
affectvg, and thervg may not be in the energy space. The operatgrt may fail to be Fredholm or even
bounded then, and in particulaip A f might be more singular thaji. For this reasor; is usually cut off
smoothly near = T, i.e.,h is replaced by (¢)4(¢, x), wherey € C*°(R), x =0fort = T,andy = 1in
a neighborhood of—oc0, T(£2)), see e.g., [8, Section 2.2].

We will modify this approach in a way that would make the problem Fredholm, and will make the error
operator a contraction. To this end, we proceed as follows. Givihat eventually will be replaced by
Af), solve

@?*+Ppwv = 0 in(0,7T)x £,

= h

8 v[[0,T]x382 ,
( ) v|t=T = ¢’
0 v|=7 = 0,

whereg¢ solves the elliptic boundary value problem
9) Py =0, ¢lag =n(T,).
Since P is a positive operatol) is not a Dirichlet eigenvalue oP in £2, and therefore (9) is uniquely

solvable. Note that the initial data at= T satisfy compatibility conditions of first order (no jump at
{T} x d£2). Then we define the following pseudo-inverse

(10) Ah:=v(0,") in£.

The operatord maps continuously the closed subspacedf([0, T'] x d£2) consisting of functions that
vanish atr = T (compatibility condition) toH ! (£2), see [13]. It also sends the rangesto H(} (2) =
Hp(£2), as the proof below indicates.

In the next theorem and everywhere bel@Ws?) is the supremum of the lengths of all geodesics of the
metricc~2g in £2. Also, dis{(x, y) denotes the distance function in that metric. We then @llc—2g)
non-trapping, if"(£2) < oo.

Theorem 1. Let(£2, c~2g) be non-trapping, and IF > T'(£2). ThendA = ld—K, whereK is compactin
Hp($2), and| K || g, (2) < 1. In particular, Id— K is invertible onHp (£2), and the inverse thermoacoustic
problem has an explicit solution of the form

(11) f=Y_K"Ah, h:= Af.

m=0
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Proof. Let w solve

2+ Pw = 0 in (0, 7) x £2,
wljo,rx92 = 0,
12 ’
(12) W= = ul=T — 9,
wt|t=T = Ut|t=T,

whereu solves (2) with a givery’ € Hp. Letv be the solution of (8) witth = A f. Thenv + w solves the
same initial boundary value problem[in 7'] x §2 thatu does (with initial conditions at = T), therefore
u = v + w. Restrict this to = 0 to get

f=AAf +w(0,").
Therefore,
Kf =w(0,).
In what follows, (-, ) i, (2 is the inner product inffp(§2), see (4), applied to functions that belong to

H'(£2) but maybe not td4p (£2) (because they may not vanish &®). Setu” := u(T,-). By (5) and the
fact thatu” = ¢ on 92, we get

W’ —¢. ) E,2) = 0.
Then

||”T _¢”%]D(,Q) = ”uT”%ID(_Q) - ||¢||%1D(_Q) = ||“T||§-1D(9)-
Therefore, the energy of the initial conditions in (12) satisfies the inequality

(13) Eqw,T) = l[u” = ¢l @) + 4] I720q) < E@,T).
Since the Dirichlet boundary condition is energy preserving, we get that
Eqw,0) = Eqw,T) < Eq.T) < Ern(u,T) = Eq(u,0) = || /I3, )

In particular,

(14) 1K1, 2 < Eow.0) < 1 /12, @)
We show next that actually the inequality above is strict, i.e.,
(15) IKf mp2) < 1/ lap2),  f #0.

Assume the opposite. Then for sonie# 0, all inequalities leading to (14) are equalities. In particular,
E_Q(w, T) = ERn(u, T) Then

u(T,x) =0, forx ¢ $2.
By the finite domain of dependence then

(16) u(t,x) =0 whendistx, 2) > |T —¢|.

One the other hand, we also have

@7 u(t,x) =0 whendistx, £2) > |t].
Therefore,

(18) u(t,x) =0 whendistx,d02) > T/2, —-T/2 <t <3T/2.

Sinceu extends to an even function ofhat is still a solution of the wave equation, we get that (18) actually
holds for|¢| < 3T /2. Then one concludes by Tataru’s theorem, see Theorem 4y thab on [0, T'] x 2,
therefore,f = 0. We refer to [4] for a similar argument. Note that the time interval here is actually larger
than what we need for the uniqueness argument, see also Theorem 2 and Corollary 2 below.
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We will show now thatK is compact. Sincd” > T(£2), all singularities starting fronf2 leave 2 at
t = T. Thereforeu(T,-) andu,(T,-), restricted ta2, areC'*. Moreover, considered as linear operators
of f, they are operators (FIOs, actually) with smooth Schwartz kernels. Thengs®ée (9), by elliptic
regularity. Therefore, the malHp(£2) > f — u(T,-) — ¢ € Hp(£2) is compact because it is an operator
with smooth kernel or2. Next, the mapHp(2) > f +— u,(T,-) € Hp(£2) is compact as well. Since
the solution operator of (12) from= T to¢ = 0 is unitary in Hp(£2) & L?(£2), we get that the map
Hp(2) > f = w(0,-) € Hp(£2) is compact, too, as a composition of a compact and a bounded one.

Now, one has

(19) IKflap2) = VAl flEp2).  f#0,
whereA is the largest eigenvalue & * K. Theni; < 1 by (15). O

Remarkl. Although we proved thak is compact, we did not show tha& is smoothing ofl degree.
Actually, we showed thaK is a composition of a smoothing operator and a bounded one. To iKiake
smoothing, we need to modify the initial condition fex (7', -) in (12), as we did it forw(T7,-), so that

it would satisfy the compatibility af7'} x 052 (no jump there, i.ew,(T,-) € HO1 (£2)). That will put
(w(T,-),w:(T,-)) in the domain of the generator of the solution group, in other wofds, Pw(T,-))
would be in the energy space. Then the same would be truBdap,-) = —PKf, henceK f € H?(R).
Then we get a Fredholm problem again but the nornKahay not be less thah(that still might be true in

a suitable norm). In any case,4dK will be invertible. One can also modify the initial datarat 7 in (12)

to satisfy even higher order compatibility condition, and that will increase the smoothing propetkies of

Remark2. The smoothness requirements on the coefficien#? o&n be relaxed to require smoothness of a
finite degree. All we need, besides a well posed problem in the energy space, is a propagation of singularities
result with a gain of smoothness oa= T' enough to guarantee compactnes&ofind Tataru’s uniqueness
theorem in that case. We will not pursue this for the sake of simplicity of the exposition.

The proof of Theorem 1 provides an estimate of the error in the reconstruction if we use the first term
in (11) only that is4A. It is in the spirit of [8] and relates the error to the local energy decay, as can be
expected.

Corollary 1.

Eow,T)

1

2
_ , VfeH , 0,
Eg(u,O)) I/ 1y (2) f D), | #

I = A4S i =
whereu is the solution of (2).

Note that thef — AAf = KJf, and the corollary actually provides an upper bound|f&tf||. The
estimate above also can be used to estimate the rate of convergence of the Neumann series (11) when we
have a good control over the uniform local energy decay from ties€) to timer = T'. The estimate holds
even without the non-trapping condition and for &y 0 but Eq (u, T)/ E (1, 0), that is always less or
equal tol, can be guaranteed to have a uniform upper bound lesd floamll / only whenT > T'(£2); then
the operator norm oK is less thari, as well. IfT(£2)/2 < T < T(£2), we can only say thatK || < || |l
for any f', see Corollary 2, below but that does not necessarily imply|that < 1. If T < T(£2)/2, then
there is alwaysf so that that quantity equalsby a trivial domain of dependence argument.

3. INCOMPLETE DATA

The case of partial measurements has been discussed in the literature as well, see e.g.,[12, 23, 24]. One
of the motivations is that in breast imaging, for example, measurements are possible only on part of the
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boundary. For simplicity, we assume in this section that —A outsides?; in particularc = 1 andg is
Euclidean outside?:

(20) c(x)=1, gij(x) =20, forx¢$.

All geodesics below are related to the metridg.
Let I C 052 be a relatively open subset &f2. Set

(21) Gg:={(t.x); xel,0<t<s(x)},

wheres is a fixed continuous function ofi. This corresponds to measurements taken at gaehl” for
the time intervald < ¢ < s(x). The special case studied so farsisc) = T, for someT > 0; then
G=1[0,T]xT.

We assume now that the observations are madg amly, i.e., we assume we are given

(22) Aflg,

where, with some abuse of notation, we denotedbthe operator in (3), witltf’ = oo (that actually can
be replaced by any upper bound of the functipnThen we want to know under what conditions one can
recover /', and when that recovery is stable.

Uniqueness and reconstruction results in the constant coefficients case based on spherical means were
known for a while, see e.g., the review paper [12].PIif= —c?(x)A, andG = [0, T] x 452, Finch and
Rakesh [4] have proved thatf recoversf uniquely as long a% > T'(£2). A uniqueness result whefi is
a part ofd$2 in the constant coefficients case is given in [3], and we follow the ideas of that proof below. The
Holmgren’s uniqueness theorem for constant coefficients and its analogue for variable ones, see Theorem 4
below, play a central role in the proofs that suggests possible instability without further assumptions, see also
the remark following Theorem 3 below. Stability of the reconstruction whAea —A andT = oc follows
from the known reconstruction formulas, see e.g., [12]. In the variable coefficients case, stability estimates
asT — oo based on local energy decay have been established recently in [8]. Wisefixed, there is
the general feeling that if one can recover “stably” all singularities, and if there is uniqueness, there must be
stability (although this has been viewed from the point of view of integral geometry, see also Section 4). We
prove this to be the case in Theorem 3, and we use analysis in [16], as well.

We present some heuristic arguments for our main assumption below. We will r¢gshédbw to a class
of functions with support in some fixed comp#ctC £2. Intuitively, to be able to recover aff supported in
K, we want for anyx € I, at least one signal from to reachg, i.e., we want to have a signal that reaches
somez € I" fort < s(z). In other words, we should at least require that

(23) Vx € K,3z € I" so that disty, z) < s(2),

(one may want to have a non-strict equality above but we will not pursue this). In Theorem 4 below, we
show that this necessary condition, up to replacingttsign by the< one, is sufficient, as well.

If we want that recovery to be stable, we need to be able to recover all singularifie$oé stable way.”
By the zero initial velocity condition, each singularity, £) splits into two parts, see Proposition 3 below:
one that starts propagating in the directigrand another one propagates in the directign Moreover,
neither one of those singularities vanishes ai 0 (and therefore never vanishes), they actually start with
equal amplitudes. For a stable recovery, we need to be able to detect at least one of them, in the spirit of
[16], i.e., at least one of them should reagh This in particular allows us to redud@ by half in the full
boundary data case, i.e., whén= (0, T') x 952, one can choose

(24) T >T(£2)/2,
and still hope that a stable recovery is possible. In the general case, define) by the condition
+(x,8) = maX(‘L’ > 0; yxe(Er) € S_Z)
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Based on the arguments above, for stable recovery we should assugisdhiafies the following condition
(25) V(x,&) € S*K, (to(x. &), ¥x.£ (1o (x. §)) € G for eithero = + oro = — (or both).

Compared to condition (23), this means that for each /C and each unit directio§, at least one of the
signals from(x, &) and(x, —£) reaches;. This condition becomes necessary, if we replédsy its closure
above, see Remark 4. In Theorem 3 below, we show that it is also sufficient.

3.1. Uniqueness.We have the following uniqueness result, that in particular generalizes the result in [3] to
the variable coefficients case.

Remark3. Note that we do not need the geodesic flow to be non-trapping in this theorem since (23) is a
condition on a subset of the geodesics only.

Theorem 2. Let P = —A outsides$?, and letd$2 be strictly convex. Then under the assumption (23), if
Af =0ongfor f € Hp($2) withsuppf C K, then f = 0.

Proof. We follow the proof in [3], wherez is Euclidean everywhere, arfd = oo (actually, it is easy to see

there thatl" can be any number larger thdi($2)). We preserve the notation of [3] as much as possible.
Recall that distx, y) is the distance in the metric2g. Letd(x, y) be the (Euclidean) distanceRf \ 22

defined as the infimum of the Euclidean length of all smooth curvB$ ins2 joining x andy. The function

d is Lipschitz continuous, see [3]. Lé, (x) be the ball with center and radius: > 0 in that metric. Then

in [3, Proposition 2], Finch et al. proved the following domain of dependence results for solutions vanishing

on a part ofo$2.

Proposition 1 ([3]). Let£2 be an open bounded connected subs&ofvith a smooth boundary. Suppose
u is a smooth solution of the exterior problem

u; —Au=0, teR; xeR"\ L2,
u=h OnRx0L2.
Choosep & 2, andzy < ;. If u(ty,-) = u(to,) = 00N E; 4 (p), and/ is zero on
{(t,x); x €082, to <t <t;, d(x,p) <t; —t},
thenu(z, p) = u,(t, p) = 0forall ¢ € [ty, 11].

Let Af = 0ong, with f as in the theorem, and letbe the corresponding solution of (2). Fix a point
xo € K. We will show thatf = 0 nearx,y. By (23), there isp € 952 so that distxg, p) < s(p); then
(s(p),p) € G. Let0 < p <« 1 be such thaf0, s(p) — p] x (E,(p) N 0£2) C G, and distxg, g) < s(g) — p,

VYq € E,(p) N ds2. We can therefore assume that

(26) G =[0,T]x I''wherel" = E,(p) N 352,
and
(27) dis(xg,q) <T VgeTl.
The first step of the proof if to show that
(28) S =0 1inBy(p).

where B, (p) is the ball in the metrig with centerp and radiusp. The proof of (28) is the same as in [3]
with taking extra care about the range of theariable. Indeed, notice first thatsolves the wave equation

in R™ \ £2 with zero Cauchy data there, and boundary data u|r, x5 vVanishing ong, see (26). Fix a
small neighborhood of p outsides2. By (27) and the finite domain of dependence result in Proposition 1,
wegetu =00on(—p +¢,p—¢) x U, whered < ¢ — 0, when the size ot/ tends ta0.
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FIGURE 1. lllustrates Lemma 1. One can also show that 952 N dB,(p).

Next, u solves the wave equation in the whole space, and can be extended (as a solution) as an even

function ofz. Therefore, by the unique continuation principle, see Theorem 4, we get (28).
The next step is to iterate this argument and to prove that 0 nearxy. This would follow from the
following property that we prove next: For somie> 0 independent op, we have

(29) S =0 InBr(p).rzp = [=0 inBninfpts1}(P)
The reason we did not just replace the minimum above vt is that we apply (29) consecutively several
times; at each step we gain and we would like to make the radius equalfto The last step needed for
that might be smaller tham though, and (26), (27) pose a restriction on how far we can go.

Relation (29) follows from the following.

Lemma 1. Assume thasuppf C K = 22\ B, (p) with somer > p. Lets = dist(E,(p), K). Thenf = 0
iN Brinp+5,73(P)-

We prove Lemma 1 below. Let be the supremum of the distance (isty), ¢ € I". Sinceds2 is strictly
convex,a < p. Indeed is actually the maximum of those distances, if we replBcey the compact”.
Thena = dist(p, ¢o) for somey, € I". Because of the strict convexity the latter is the length of the shortest
geodesic ord§2 connectingp andgg. If we assume that = p, then that geodesic will be a minimizing
curve forc=2g as well, therefore it will be a geodesic for that metric. That is impossible becauseot,
there is unique minimizing geodesic connectmgndgg, and that geodesic cannot be @.

The following lemma generalizes [3, Propositon 5] to the current setting. We refer to Fig. 1 that is similar
to Fig. 2.5 there for better understanding of the lemma and its proof.

Lemma 2. dist(K, Ep(p)) is the length of some geodesic segment joining a pdirk K and a point
Bel.

The proof is provided below, and we continue with the proof of Theorem 2. By Lemins 2he length
of the geodesic segment connectit@nd B, as in the lemma. Then
p+ 8= p+dist(4, B) = dist(4, B) + dist(B, p) + (p — dist(B, p))
> dist(p, A) + (p — dist(B, p)) > r + (p — ).
Note thato := p—a > 0 is independent of. This proves the property (29), and therefore, the theordm.

(30)

It remains to prove the two lemmas above.
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Proof of Lemma 2We will provide a proof that is different and shorter than that in [3]. Since{EﬁsEp(p))

is the distance between two compact sets, ther¢ is K and B € Ep(p) so that distX, Ep(p)) =
dist(4, B). By the Hopf-Rynow theorem, there is a geodegiconnecting4, B so that dist4, B) is

the length ofy. Clearly, B belongs todE,(p) that consists of two parts: the first one that we denote by
8E§Xt(p), that is outside; and the second one B8, see (26) We will show first thaB must belong to
the second one. Assume the opposite. Thémntersects)$2 once (because of the strict convexity) at some
pointC ¢ I' because ilC € I', then we would hav€” = B. Then the segment B of y is a straight line
segment outsid& ,(p), see Figure 2.

FIGURE 2

Let ¢ be the minimizing curve for the metri€, lying outsides?, that connect®? and p. It is easy to see
(see [3]) that exists and consists of a straight line segmgnt& BD betweenC and someD € 0E,(p),
and a geodesie, on 452, possibly reduced to a point, so thatandc, are tangent to each other andt@
at their common point that we denote By Note thataESXt(p) is an open surface, therefoBe£ D. Then
the curveCB U BD locally minimizes the lengths of all curves connectitigand D with the property that
they consist of a curve outsidg,(p) U §2 connectingC and someB’ € angt(p) close toB; and then
another curve, outsid® but insideE,(p), connectingB’ to D. ThenCB U BD must be a straight line
segment; otherwise we can make it shorter by an arbitrary small perturbation, and that would contradict the
minimizing property above. That segment is tangenis By the strict convexity of2, it cannot have
two common points” and D with d£2. This contradiction shows tha < I", and this proves the second
statement of the lemma. O

Proof of Lemma 1Roughly speaking, the idea of the proof is that we can apply the arguments at the begin-
ning of the proof of the theorem by shifting the initial moment fares 0 toz = §.
First, by the definition o6 and the standard domain of dependence argument,

(32) u=u; =0 on[=68,68]x Ey(p).

LetU be a small enough neighborhoodmin E,(p). If §4+p < T, by the domain of dependence argument
for the exterior problem [3, Proposition 2], in view of (26), (2#)= 0 on[§,5 + p — o(1)] x U, where by
o(1) we denote terms tending Govhen the size ot/ tends td). If §+p > T, then we can prove that only in
the time interval$, T —o(1)]. Therefore, in both cases, the time intervdbismin{é + p, 7'} —o(1)]. Sinceu
extends as an even solution in theariable, we get that = 0 for || < min{§ + p, T} —o(1), x € U. Then
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from the unique continuation result in Theoremu},—, and thereforef’ vanishes inByings 1+, 73—0(1) (2)-
Letting U tend top, we get thatf = 0in Byings+p,73(P)-

It is probably worth mentioning that we actually proved the following result about partial recovery given
insufficient information.

Proposition 2. Let P = —A outsides2, and letd£2 be strictly convex. Assume thalf = 0 onG for some
f € Hp($2) withsuppf C £2 with G as in (20) that may not satisfy (23). Th¢n= 0 in W, where
W :={x € £; 3z € I" so that distx, z) < s(2)}.

Moreover, no information about on £2 \ W is contained inA f|g.
3.2. Stability. In this section, we use tools from microlocal analysis. We refer, for example, to [20] for an
introduction to the theory of pseudo-differential operata¥®(s) and to [21, 2] for the theory of Fourier
Integral Operators (FIOs).

We now consider the situation whergf is given on a seff satisfying (25). SincéC is compact and; is
closed, one can always choagee G that still satisfies (25). Fix € C3°([0, T'] x d£2) so that suppy C G
andy = 1 ongG’. The measurements are then modeled dy/', which depends ort /" on G only.

We start with a description of the operatbthat is of independent interest as well. In the next proposition,
we formally choosd™ = ~c.

Proposition 3. A = A4 + A_, whereAy : C§°(82) — C*°((0,00) x 0£2) are elliptic Fourier Integral
Operators of zeroth order with canonical relations given by the graphs of the maps

(32) (0.8 > (12006 1y 46 (T2 (. ) [l 7)1 (c2 (0. )))

where|¢| is the norm in the metric=2g, and the prime iny’ stands for the tangential projection gfon
Ta4S2.

Proof. This statement is well known and follows directly from [2], for example. We will give more details
that are needed just for the proof of this proposition in order to be able to compute the principal symbol in
Theorem 3.

We start with a standard geometric optics construction.xixe §2. In a neighborhood o0, x(), the
solution to (8) is given by

(33) u(t,x)=Qn)™" Y f By (x,£.1) f(£) &,
o=+

modulo smooth terms, where the phase functippsare positively homogeneous of ordem & and solve
the eikonal equations

(34) Forp+ = [dxpx], @+lr=0 = x-&,
while a4 are classical amplitudes of ord@isolving the corresponding transport equations, see [2, p. 128]
or [21, egn. (VI.1.50)]. In particulat+ satisfy

a+ +a—=1 fort=0.
Sinced;pL = F& fort = 0, andu; = 0 for ¢+ = 0, we also see that
ay =a— fort=0.
Thereforeay+ = a— = 1/2 att = 0. Note thatifP = A, then¢gL = x-& F¢|§],anday =a_ = 1/2.
The principal termzi)) ofay ~ ijo a(i_j) satisfies the homogeneous transport equation

(35) (9 — 2" (Oxs$£)ds + Cx)az =0, daxlimo = 1/2,
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whereC; depend on the coefficients &f and ong, see [21, eqn. (VI.1.49)].

By the stationary phase method, singularities starting féen§) € WF( /) propagate along geodesics
in the phase space issued fram &), for o = +. i.e., they stay on the curv@, £(7), yx £(¢)); and from
(x,—§), foro = —, i.e., they stay on the curvg/, _¢(?). yx,—¢()). This is consistent with the general
propagation of singularities theory for the wave equation because the principal symbol of the wave operator
12 — ¢?|£|g has two rootgs = £cl|é|,.

The construction is valid as long as the eikonal equations are solvable, i.e., along geodesics issued from
(x, £&) that do not have conjugate points. Assume that(YWHs supported in a small neighborhood of
(x0,&0) with some&, # 0. Assume first that the geodesic frofmyg, &) with endpoint ond$2 has no
conjugate points. We will study the = + term in (33) first. Letpy, ap be the restrictions op4, a4,
respectively, ok x d£2. Then, modulo smooth terms,

(36) Asf = w6 0)lrp = (27)" / SPETD (v E.1) f(E) .

whereu . is theo = + term in (33). Sety = 74+(x0,£0), Yo = Vxo,6 (10): M0 = Vxo.& (f0); in other
words, (yg, no) is the exit point and direction of the geodesic issued flag &) when it reacheds2. Let

x = (x’, x™) be boundary normal coordinates negr Writing f in (36) as an integral, we see that (36) is
an oscillating integral with phase functidn = ¢4 (¢, x’,0,&) — y - £. Then (see [21], for example), the set
X = {® = 0} is given by the equation

y = 8§¢+(I’ x/1 0, é)

It is well known, see e.g., Example 2.1 in [21, VI.2], that this equation implies(ttab) is the endpoint of
the geodesic issued froty, £) until it reaches the boundary, and= 74 (y, §), i.e.,t is the time it takes to
reachds2. In particular,X is a manifold of dimensio@n, parametrized byy, £). Next, the map

(37) Zo (. X8 (1. 0.3 —£. 0:p4., 0x 1)

is smooth of rank#n at any point. This shows tha& is a non-degenerate phase, see [21, VIII.1], and that
f — A4 fis an FIO associated with the Lagrangian given by the r.h.s. of (37). The canonical relation is
then given by
C:=(.&1.x.0104.0x¢4), (.1.x'.§) € X.

Then (32) follows from the way-- is constructed by the Hamilton-Jacobi theory. The proof indthe —
case is the same.

The proof above was done under the assumption that there are no conjugate poipig,@n, 0 <
t < 14+(yo,&9). To prove the theorem in the general casetlet (0, t+ (o, &p)) be such that there are
no conjugate points on that geodesic fpr< ¢ < 1 (yg,&). Then each of the terms in (33) extends to a
global elliptic FIO mapping initial data at= 0 to a solution at = ¢, see e.g., [2]. Its canonical relation
is the graph of the geodesic flow between those two moments of time (for+, and with obvious sign
changes when = —). We can compose this with the local FIO constructed above, and the result is a well
defined elliptic FIO of orde6 with canonical relation (32). O

Choose and fiX" > supr s, see (21). Let4 be the “back-projection” operator defined in (8) and (10).
Note that4 is always applied to A below, therefored = 0 in this case.

Theorem 3. Ax A is a zero order classicalDO in some neighborhood & with principal symbol

1
3 (X g (T4 (x.6))) + X (¥ £ (1-(x.8)))) -

If G satisfies (25), then
(@) AxAis elliptic,
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(b) Ax A is a Fredholm operator o p (K), and
(c) there exists a constant > 0 so that

(38) I/ a0 = CIHAS I E1 ()

Remark4. By [16, Proposition 3], condition (25), witf replaced by its closure, is a necessary condition
for stability in any pair of Sobolev spaces. In particular?g has to be non-trapping for stability. Indeed,
then the proof below shows thdty A will be a smoothing operator on some non-empty open conic subset
of T*KC\ 0.

Remarks. Note thatA : Hp(K) — H'([0, T] x d£2) is bounded. This follows for example from Proposi-
tion 3.

Proof. We will use the geometric optics construction in the proof of Proposition 3, using the notation there.
To construct a parametrix fadx A f, we apply a geometric optic construction again, using the two
characteristic roots=c|£|g. The boundary data ; /* have a wave front set in a small conic neighborhood
of ((t. yg). (1. 15)). Note thatyy # 0 because geodesics issued friincannot be tangent @x?2. Then for
the solutiorw of (8) with 7 = A4 f, we can apply the geometric optics construction above, but now with
initial condition onR x 952, to get two types of singularities starting from that one. The first one propagates
along the geodesics closejtg, ¢, in the opposite direction. The second one propagates along the geodesic
close to the one issued frot, yo). (7', —1")), that is transversal t852. This ray is in fact a reflected
Yx0.60- BY the propagation of singularities results, those singularities stay on those geodesics until they
reachds2 again, then reflect by law of geometric optics, etc., i.e., they propagate along the broken geodesics
issued from a neighborhood of that point. Neae T however, the solution to (8), whege = 0, is zero
because we have zero Cauchy data, fand xAf = 0 for ¢ close toT". This shows that the second types
of singularities do not exist; and in our parametrix construction, we need to work with the first one only.
We look for a parametrix of the solution of the wave equation (8) with zero Cauchy data &t and
boundary datg A+ f in the form

o(t.x) = (2m) " / MPCXD (v £.1) (&) de.

The arguments above show th}at: ¢+. Next, forx € 052, we haveb = ya. We need to find at

t = 0. The amplitude satisfies the same transport equation as in the proof of Proposition 3 but with initial
condition atR x d£2. In particular, it is a classical amplitude of orderLet by be its principal part. Then

bg satisfies (35), also satisfied b;(,/?), that is a linear homogeneous ODE along the bicharacteristic close
10 (Vxo.£0+ Vxo.60)- Thereforepg is a linear function of its initial condition & x 952. If we assume for a

moment thaty = 1, then we would geby = a(f), thereforepy = 1/2 for ¢t = 0. Therefore, we get that
bo(x.,&)|;=0 is given by the value of/2 at the exit point ofy, ¢ on 352 because that value is the initial
condition of the transport equation on that bicharacteristic.

The arguments above reveal the geometry of the singularities but some of them are not needed for the
formal proof. One can defineas above, localized near the bicharacteristic issued @ty ), and letu
be the solution of (8) witlp = 0 ands = y A4 f. Then one easily checks that:= u — v solves the
wave equation modulo smooth terms, with smooth boundary condition, and teab nearr = T'; and is
therefore smooth.

In the same way one treats the= — term. This proves the theorem assuming no conjugate poiis in

In the general case, we can apply those arguments step by step, in ini@mdlshen|z, #;], etc., short
enough so that there are no conjugate points on the corresponding geodesic segments. After the first step,
we get(u, u;) att = t;. Then we construct a parametrix frane= ¢; to+ = ¢, using a new phase function.
Note that now, when = +, for exampley,|;=,, does not vanish anymore. On the other handu,)|;=;,
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is Cauchy data of a solution which singularities do not travel in two opposite directions, and we will still
get one term only, that is an analogue of the= + one in (33). Then we reach the boundary and apply
the result above. Next, step by step, we go back to the hyperplan®. An alternative way is to apply
the Egorov’'s theorem from= 0 to ¢ = 7, instead of the partition of the time interval, wheris such that
there are no conjugate points on the bicharacteristic issued(ftgngy) from 7 to 7 (xg, &); and on that
segment, we use the arguments above.

This proves the first statement of the theorem.

Parts (a), (b) follows immediately from the ellipticity dafy A that is guaranteed by (25).

To prove part (c), note first that the ellipticity dfy A and the mapping property of, see [13], imply the
estimate

I/ lap ey = C UxAS g + 111 L2) -

By Theorem 2, and (25) A is injective onHp (K). By [19, Proposition V.3.1], one gets estimate (38) with
a constantC > 0 possibly different than the one above. O

Corollary 2. Letg be Euclidean outsid€, and letds2 be strictly convex. Then A/ = 0 on[0, T] x 952
for somef € Hp(£2), withT > T(£2)/2,thenf = 0.

4., THERMOACOUSTIC TOMOGRAPHY AND INTEGRAL GEOMETRY

If P = —A, and ifr is odd, the solution of the wave equation can be expressed in terms of spherical
means, as it is well known. Then the problem can be formulated as an integral geometry problem — recover
f from integrals over spheres centered&t, with radii in [0, 7'], and this point of view has been exploited
alotin the literature. One may attempt to apply the same approach in the variable coefficients case; then one
has to integrate over geodesic spheres. This has two drawbacks. First, those integrals represent the leading
order terms of the solution operator only, not the whole solution. That would still be enough for constructing
a parametrix however but not the Neumann series solution in Theorem 1. The second problem is that the
geodesic spheres become degenerate in presence of caustics. The wave equation viewpoint that we use in
this paper is not sensitive to caustics. We still have to require that the metric be non-trapping in some of our
theorems. By the remark following Theorem 3 however, this is a necessary condition for stability. On the
other hand, it is not needed for the uniqueness result as long as (23) is satisfied.
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APPENDIXA. UNIQUE CONTINUATION FOR THE WAVE EQUATION

We recall here a Holmgren’s type of theorem for the wave equébipr- P)u = 0 due mainly to Tataru.
While this theorem is well known and used, and follows directly from the results cited below, we did not
find it clearly formulated in the literature.

Theorem 4. Let P be the differential operator iR” as in the Introduction. Assume thate H,_ satisfies

@+ Pu=0
in a neighborhood of—7, T'] x {xq}, with somel" > 0, xo € R". Then
u(t,x) =0 for |t] 4+ dist(xg,x) <T.
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Proof. If P has analytic coefficients, this is Holmgren’s theorem. In the non-analytic coefficients case, a
version of this theorem was proved by Robbiano [15] witteplaced byKp with an unspecified constant

K > 0. Itis derived there from a local unique continuation theorem across a surface that is “not too close
to being characteristic”. In [7], Brmander showed that one can cho@se= ,/27/23, in both the local
theorem [7, Thm 1] and the global theorem [7, Corollary 7]. Moreover, he showedthiatthe global

one can be chosen to be the same askhin the local one. Finally, Tataru [17, 18] proved a unique
continuation result that implies unique continuation across any non-characteristic surface. This shows that
actually X = 1 in Hérmander’s work, and the theorem above then follows from [7, Corollary 7]. [
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