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CCSS, Rigid Motions, Dilations, etc.

• The topic of transformations in geometry 
has fascinated some of us for a long time, 
but it has become a subject of wide interest 
right now because of the Common Core.

• But transformations have been at the 
center of how mathematicians think about 
geometry for a long time.



Quick History
• The principle of superposition (picking up a 

figure and laying it on another) was implicit 
in geometry since ancient times, but it was 
not an official axiom or principle in Euclid.

• Then in the 19th Century, mathematicians 
discovered new geometries; and the 
concept of symmetries and permutations 
led to breakthroughs in algebra.



Felix Klein
• In 1872, Klein – at the University of Erlangen –

proposed a new perspective on Geometry in a 
paper known since as the Erlangen Program.



Klein’s Idea
• A geometry is a set of objects with the 

rules determined by its symmetries, i.e., its 
transformations.  Two geometries may have 
the same objects but different 
transformations.

• The properties of the geometry are 
properties that are not changed by the 
transformations.



4 Kinds of Transformations: 
4Geometries of the Plane
• Rigid motions:  Plane geometry of congruent 

figures that we know and love

• Similarity transformations:  The familiar geometry 
with similar figures, ratios, etc.

• Affine (matrix) transformations:  Geometry of 
computer animation.  Rectangles and 
parallelograms the same, ditto circles and ellipses

• Continuous (topological) transformations:  Any 
loop is a circle.  Any path is a segment. 



Back to K12 Geometry 
• We won’t pursue the theoretical thread any 

further.  But it is important to keep in mind that 
transformations are central to the math of the last 
150 years, so this is not some new-fangled notion 
in the CCSS.

• So a committee of leading mathematicians and 
educators recommended that US schools follow 
international models and base geometry on rigid 
motions.

• – in 1923! (National Committee on Math 
Requirements)



From 1923 to 2013: 
Common Core Samples

• Grade 8:  Verify experimentally the properties of 
rotations, reflections, and translations

• Grade 8:  Understand that a two-dimensional figure is 
congruent to another if the second can be obtained 
from the first by a sequence of rotations, reflections, and 
translations; given two congruent figures, describe a 
sequence that exhibits the congruence between them.

• High School: Explain how the criteria for triangle 
congruence (ASA, SAS, and SSS) follow from the 
definition of congruence in terms of rigid motions.



 SAS from Rigid Motions
• SAS:  Given two triangles ABC and DEF so that angle 

ABC and angle DEF have equal measure, length AB = 
length DE, and length CB = length FE, then triangle ABC 
is congruent to triangle DEF.

• How do we prove this with rigid motions?  Find a 
sequence of rigid motions that will take one triangle to 
the other given these assumptions.

• There is a choice of ways to do this.  Start with a 
translation that takes B to E ... or start with a line 
reflection that takes B to E, or one could move A to B by 
a rotation.  We will chose to use line reflections only. to 
keep our story simple.



Executive Summary of the Proof of SAS

• Assume angle ABC = angle DEF;  AB = DE; CB = FE. 

• Here are the steps in a proof, but they are not a proof, since we need 
reasons why the steps work.

• The reasons will be explored on the next slide.
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Step 1:  Reflect A to D.  
ABC is reflected to 
A’B’C’, with A’ = D.

Step 2:  Reflect B’ to E in 
a line through D.  A’B’C’ 
is reflected to A’’B’’C’’, 
with A’’ = D and B’’ = E. 

If C’’ = F, stop.

Step 3:  Reflect C’’ to F 
in line DE.  A’’B’’C’’ is 
reflected to A’’’B’’’C’’’, 

with A’’’ = D, B’’’ = E, and 
C’’’ = E



First steps (i) 
• We must assume a few properties of line reflections to have anything to work 

with.  But we must not assume what we are proving.  As a first step, we prove this. 
(But this needs to be based on axioms not spelled out here!)

• Proposition: If a point A is line reflected to point B, the line of reflection is the 
perpendicular bisector of segment AB.  

• Proof.  Let M be the intersection of AB with the mirror line.  The reflection of M 
is M, so segment AM is reflected to BM, so these two segments are congruent and 
M is the midpoint of AB.  Also, for any other point C on the reflection line, angle 
AMC is reflected to angle BMC, so these angles are congruent but also are 
supplementary, adding up to a straight angle, so the angles are right angles.  QED?!

• Corollary:  For any point C on the reflection line, the segment CA is reflected 
to CB, so the segments are congruent and the triangle ACB is isosceles.
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• Proposition: If a segment FE is congruent to FG, then the angle 
bisector reflects point E to point G.  

• Proof.  Since line reflection preserves angle measure, the reflection in 
the bisector of the ray FE is ray FG.  Let E’ be the reflection of point E. 
Since the segments FE’ and FG are congruent and lie on the same ray, 
the point E’ and point G are the same.QED?!

• Corollary. In this figure, since E is reflected to G, the triangle EFG is 
isosceles and the angle bisector of angle EFG is the perpendicular 
bisector of EG.

First steps (ii) 

N

G
F

E



Switch to Sketchpad



Observation:  Technology

• Considering this example, do you feel, as I do, that dynamic 
geometry software adds a lot to working with 
transformations? 

• It may be that one reason transformations did not take hold 
earlier in high school is that transformations are much 
harder to draw and visualize with traditional tools.  So the 
time is ripe now, with iPads and phones and laptops.

• In addition to being a great tool for studying 
transformations, the application of transformations in 
technology is also important.  Geometry is not done on 
computers for designing airplanes or creating animated 
movies.  And transformations are built in.



Observation: Some Open-endedness

• Multiple Solutions:  This proof can be carried out in many ways, 
which makes it more interesting as something to think about.  Try 
the same problem starting with a translation or even a rotation.

• Noticing:  In looking at the example, one may notice that each 
time a triangle is reflected twice, it the second image is a rotation 
of the original triangle.  This suggests a theorem that can be 
experimented with and ultimately proved:  a sequence of two 
reflections in intersecting lines is a rotation with center at the 
point of intersection.

• Other questions:  Given two congruent shapes that are not 
triangles, can one still move one to the other by three or fewer 
line reflections.  If one starts with a translation, what happens 
next?  Can one more rigid motion finish the job?



What’s to Like?

• A solid definition of congruence

• A coherent development of geometry

• Experience with important math ideas

• More and better geometric intuition

• Connections with technology 

• Connections with algebra



• The rigid motion definition is a clear, unambiguous concept.  This 
gives meaning to congruence of any shapes, from polygons to ellipses 
and parabolas, to fractals with an easy extension to digital photos.

• This contrasts with the “definition” of congruence in many secondary 
texts:  lots of intuition about cutting out and moving and “same size 
same shape” but no well-defined general concept, just tests for 
triangles and then ad hoc definitions for other shapes.

• Note that a rigid motion is not the same as superimposition of 
figures (cut out and move); rigid motions are defined for the whole 
plane, not just for points in the figure.  The whole plane moves and 
nothing is cut out.  This is sound mathematics that lays groundwork 
for more advanced math.

Solid Definition of Congruence



Worries and Concerns
• Transformations, as in the past, may be added superficially but 

not treated as fundamental

• Belief that every proof must involve transformations.  CCSS 
does not require “transformational geometry”.

• Temptations to assume that anything about transformations 
that looks correct is correct, without making logical reasoning.

• The CCSS prescription for geometry is a new sequence of 
ideas.  As yet there are few sources or textbooks that follow 
this train of logic.  Most books about transformations assume 
a traditional geometry theorems (such as SAS) as a 
prerequisite.



“Transformational Geometry”

• CCSS proposes basing geometry on 
transformations, but this does not mean that 
every proof has to involve transformations.  
Once basic theorems are proved (such as 
SAS, etc.) all of the standard theorems can be 
proved.  Some may be easier with 
transformations, but others are clearer with 
the proofs found in a traditional development.  
So it is not necessary to go overboard.



A Traditional Example

• To prove that for any triangle, there is a circle passing 
through all 3 vertices, the proof based on intersecting 
perpendicular bisectors of the sides is just fine.



• Given a circle with center O and a point A outside the circle, a 
challenging construction problem is to construct tangents to the circle 
through A.  There is a pretty, but somewhat sophisticated construction 
that uses the circle with diameter O.

• But thinking about transformations, there is another proof.  Draw the 
circle with center O through A.  Construct any tangent to the circle and 
intersect it with the new circle at a points B and C.  Rotate point B to A 
with center O.  This will also rotate the tangent to to a tangent through 
A.  Rotate C to A to get the other tangent. 

A Rotational Wrinkle
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The math in symmetry
• Symmetric patterns can be approached just as art 

projects, but there is a lot of math that can be mined.  
For example, in this figure, what rigid motion will move a 
red quadrilateral to a blue one?  What rigid motion will 
move one gray quadrilateral to the other?

• Also, notice that there is a theorem here:  Any 
quadrilateral will tessellate the plane.



The Coordinate Plane 
• Besides technology, one way to experiment with transformations is on 

the coordinate plane.  This connects the transformations to formulas in 
the coordinate plane.

• Even rather simple questions provide a challenge and (hopefully) insight.

• Examples: In the left figure, rotate the shape by 90 degrees with the 
center point shown.  In the right figure, find the center and angle of 
rotation that takes one shape to the other.



Dilations and Similarity

• I have given short shrift to using dilations - 
combined with rigid motions– to define 
similarity.  This is the companion piece to 
the congruence story, and has many of the 
same features.

• But similarity deserves its own long talk, for 
which there is no time today.  

• But here are some things to think about.



Two Triangles with Parallel Sides
• Draw any triangle ABC.  The draw 3 lines parallel to the 

sides of ABC, forming a new triangle DEF.  Draw 3 lines, one 
through a vertex of ABC and the other through the 
corresponding vertex of the new triangle. The three lines 
will concur at a point P, which is the center of a dilation that 
takes ABC to DEF (and thus the triangles are similar).
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Two circles
• Here’s a question:  In a standard geometry course, how 

do you prove that any two circles are similar?  (In other 
words, is the definition of similar powerful enough to 
apply to this case, or is it simple swept under the rug?)

• Here is a figure that shows how two circles of different 
radius are always related by a dilation.

Show Points

P



Fun with a triangle
• The vertices of the red triangle are the incenters 

of the corner midpoint triangles.  Find dilations in 
the figure that show the red triangle is congruent 
to the midpoint triangle of the large triangle.



A Few Resources
• Illustrative Math Project (on the web, in development)

• Richard Brown, Transformational Geometry, Dale Seymour (out of print)

• H. H. Wu, “Teaching Geometry According to the Common Core Standards”, 
http://math.berkeley.edu/~wu/Progressions_Geometry.pdf

• My website (eventually, for this presentation and others)
http://www.math.washington.edu/~king

• NCTM publications

• William Barker and Roger Howe, Continuous Symmetry from Euclid to Klein, 
American Mathematics Society (this is a college-level geometry text focused 
on transformations)
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