In this worksheet we will study vector functions and their derivatives.

1. You are given two surfaces in \mathbf{R}^{3} that intersect in two distinct curves. Your job is to describe these curves.
(a) Describe, intuitively, the two curves in the intersection of the ellipsoid $\frac{9}{4} x^{2}+\frac{9}{4} y^{2}+z^{2}=9$ and the cylinder $x^{2}+y^{2}=1$.
(b) Give parametric equations for the two curves.
(c) Now consider the curve $\mathbf{r}(t)=\langle\sin t, \cos t, \sin t\rangle$. Show that it lies on the intersection of the two cylinders $x^{2}+y^{2}=1$ and $y^{2}+z^{2}=1$. Is it the complete intersection?
2. Consider the curve in \mathbf{R}^{2} given by $\mathbf{r}(t)=$ $\langle t,-\ln (\cos t)\rangle$ on the interval $-\frac{\pi}{2}<t<\frac{\pi}{2}$.
(a) Compute $\mathbf{r}^{\prime}(t)$. Sketch the tangent vectors at $t=-\frac{\pi}{3}, t=-\frac{\pi}{6}, t=0, t=\frac{\pi}{6}$ and $t=\frac{\pi}{3}$.

(b) For each value of t above, what is the length of the tangent vector. What can you say about the speed of a particle moving along this curve?
(c) For each value of t above, what angle does the tangent vector make with the x-axis?
