Mildly Impressive Mathematical Card Tricks
Dr. Jonah Ostroff
Monthly Math Hour
April 12,2015
The Trick

- Audience member gives me five cards.
- I lay 4 of them out on a table.
- Kolya guesses the fifth.

How Is This Possible?
Number of remaining cards: 48
Number of permutations: 4! $=24$

$$
(4 \times 3 \times 2 \times 1)
$$

The Five-Card Trick Solution
Idea: In any 5-card hand.... two cards are the same suit!

How far apart can two cards be?

$$
\begin{aligned}
& 12 ? \\
& \underbrace{A 23455678910 \mathrm{JQK}}_{12 \text { apart }} \\
& \text { or: } \begin{array}{ccc}
Q^{K(A)} & 2_{3} & 6 \text { apart! } \\
J & 0_{9} & 4 \\
10_{4} & 5
\end{array}
\end{aligned}
$$

The Five -Card Trick Solution (hwlimea Firn (heres 1950)

The Arranger:

- Two of the cards share a suit, right??
- Awesome. Hide the one that is 1-6 higher than the other, using the cyclic ordering. - Put the "lower" card first. Arrange the others so to convey how much higher the hidden card is.

The Guesser:

- Look at the order of
the second, third, and fourth cards to get a number from 1 to 6.
- Add that to the first card (wrapping $K \rightarrow A \rightarrow 2$ if necessary)
to get the answer in the sam to get
suit.

The Four-Card Trick Solution
Too many suits! Let's split up the spades, merging them with the other suits:

The Four-Card Trick Solution

How Many Cards Can We Have in the Deck?
Say we have n cards
Number of 5-card hands \leq Number of 4-card messages $\frac{n(n-1)(n-2)(n-3)(n-4)}{120}$

$$
n(n-1)(n-2)(n-3)
$$

$$
\begin{gathered}
\frac{x(n-1)(n-2)(n-3)(n-4)}{120} \leq x(n-1)(n-2)(n-3) \\
n-4 \leq 120 \\
n \leq 124
\end{gathered}
$$

Is the 124-Card Deck Trick Possible?

Need a matching between hands and messages.
Not every matching works!
Hand: $\{1,37,46,90,112\}$

Message: $\left.\begin{array}{rlr}90 & 37 & 68 \\ & & \\ & & 68\end{array}\right)$
We need a matching on a bipartite graph:

Hands

Halls Matching Theorem (Philip Hall, 1935)
A bipartite graph has a perfect matching if and only if every set of n points has at least n neighbors.
Ex:

Corollary to Halls Matching Theorem
If every point in a bipartite graph has the same number of neighbors, then the graph has a perfect matching.
Proof: | Well show that if every point has k neighbors, then every set of n points has at least n neighbors. (So Halts matching theorem applies, and we're done.)
By contradiction, suppose some group of n points has m neighbors, and $m<n$:

Back to cards:

- How many messages could you make from one 5 -card hand? $5 \times 4 \times 3 \times 2$

$$
=120
$$

- How many 5-card hands could form each message?

A Modular Idea
"mod $5^{\prime \prime}$ arithmetic:

- Look at the sum of the 5 numbers, mod 5 .
- If it's: $\bigcirc \rightarrow$ hide the lowest number
$1 \rightarrow$ hide the second-lowest number
$2 \rightarrow$ hide the third-lowest number

$$
\begin{aligned}
3+4 & \equiv 2(\bmod 5) \\
2+3 & \equiv 0(\bmod 5) \\
6+1 & \equiv 2(\bmod 5) \\
18+26 & \equiv 4(\bmod 5) \\
107+55 & \equiv 2(\bmod 5)
\end{aligned}
$$

$3 \rightarrow$ hide the fourth-lowest number
$4 \rightarrow$ hide the largest number
Result: Suppose you're the guesser and you see these four numbers: sum is 4 (mod 5)

Possible answers: $1,6,11 \quad 17,22,27,32 \quad 38,43, \ldots, 63 \quad 6974, \ldots, 94 \quad 100,105, \ldots, 120$

24 permutations

$$
\begin{array}{llll|llll|llll|llll}
1 & 2 & 3 & 4: 1 & 2 & 1 & 3 & 4: 7 & 3 & 1 & 2 & 4: 1 & 4 & 1 & 2 & 3: 19 \\
1 & 2 & 4 & 3: 2 & 2 & 1 & 4 & 3: 8 & 3 & 1 & 4 & 2: 4 & 4 & 1 & 3 & 2: 20 \\
1 & 3 & 2 & 4: 3 & 2 & 3 & 1 & 4: 9 & 3 & 2 & 1 & 4: 15 & 4 & 2 & 1 & 3: 21 \\
1 & 3 & 4 & 2: 4 & 2 & 3 & 4 & 1: 0 & 3 & 2 & 4 & 1: 6 & 4 & 2 & 3 & 1: 22 \\
1 & 4 & 2 & 3: 5 & 2 & 4 & 1 & 3: 11 & 3 & 4 & 1 & 2: 17 & 4 & 3 & 1 & 2: 23 \\
1 & 4 & 3 & 2: 6 & 2 & 4 & 3 & 1: 12 & 3 & 4 & 2 & 1: 18 & 4 & 3 & 2 & 1: 24
\end{array}
$$

Five-Number Trick Solution
The Arranger:
The Guesser:

- Compute the mod 5 sum of the numbers. - Interpret the permutation as a number from 1
- If it's $0,1,2,3,04$, then hide the lowest, second-lovest..., or greatest number.
- Multiply by 5 .
- Take the hidden number, and subtract - Subtract the mod 5 sum of the four numbers. one for each non-hidden number thai's
smaller than it.
- Add 1 for each given number less than your result.
- Divide by S, rounding up. Youll get
a result between 1 and 24 .
- Arrange the 4 non-hidden numbers to express that result.

