The changing x :
 Multiplication algorithms, new and old

Ricky Liu
University of Washington Math Hour

May 22, 2022

Addition is easy.

$$
\begin{array}{r}
11111 \\
2384762451 \\
+\quad 8421793627 \\
\hline 10806556078
\end{array}
$$

Multiplication is hard.

$$
\begin{aligned}
& 2384762451 \\
& \begin{array}{r}
8421793627 \\
\hline 1669333757
\end{array} \\
& 4769524902 \\
& 14308574706 \\
& 7154287353 \\
& 21462862059 \\
& 16693337157 \\
& 2384762451 \\
& 4769524902 \\
& 9539049804 \\
& \begin{array}{l}
19078099608 \\
\hline 20083977211740699777
\end{array}
\end{aligned}
$$

Question

What is the fastest way to multiply?

The Standard Algorithm

$$
\begin{array}{r}
123 \\
\times 456 \\
\hline 738 \\
615 \\
492 \\
\hline 56088
\end{array}
$$

Requires:

- multiplying every digit in the first number by every digit in the second number;
- knowledge of a 10×10 multiplication table.

The lattice or grid method:

$$
123 \times 456=56088
$$

The underlying process is the same as the standard algorithm (the same multiplications and additions are done but in a slightly different order).

The lattice method was used in various historical computing devices.
Napier's bones (1617) Genaille-Lucas rulers (1891)

Peasant multiplication

What if you don't have a multiplication table memorized? Enter Russian peasant multiplication, based on doubling and halving.

Requires:

- Knowledge of addition and halving;
- More steps than the standard algorithm, but the steps are simpler.

A similar method involving only doubling was used by the ancient Egyptians.

$$
\begin{aligned}
41 \times 23 & =(32+8+1) \times 23 \\
& \begin{array}{rr}
1 & 23 \\
2 & 46 \\
4 & 92 \\
8 & 184 \\
& -16 \\
32 & 368 \\
32 & 736 \\
\hline 41 & 943
\end{array}
\end{aligned}
$$

Actually, this is essentially the standard algorithm in binary!

Table-based methods

Instead of a multiplication table, some methods used other tables.

1	0	6	9	11	30	16	64	156	6084
2	1	7	12	12	36	17	72	157	6162
3	2	8	16	13	42	18	81	158	6241
4	4	9	20	14	49	19	90	159	6320
5	6	10	25	15	56	20	100	160	6400

To multiply 83×74 :

$$
\begin{array}{llr}
83+74=157 & \rightarrow & 6162 \\
83-74=9 & \rightarrow & \frac{20}{6142}
\end{array}
$$

This is the Babylonian quarter-square method. It uses the identity

$$
\frac{(x+y)^{2}}{4}-\frac{(x-y)^{2}}{4}=x y
$$

To multiply numbers up to n, you need $2 n$ quarter-squares (as opposed to n^{2} entries in a multiplication table).

- TABLE
 QUARTER-SQUARES

of all whole numbers from 1 to 200000
simplifying multiplication, squaring, and extraction of the square-root, and to render the results

> of these operations more certain,

Galculated and published

Joseph Blater.
mor

000 a .

A different table-based method was introduced by John Napier in 1614.

It was turned into a computing device by William Oughtred in 1622.

A simple slide rule:

What number should go here?

$$
\sqrt{32}=2^{2.5} \approx 5.657
$$

In general, the number located d units from the left is 2^{d}.

If $x=2^{d}$, then $d=\log _{2} x$ is the (base-2) logarithm of x.
With a table of logarithms, you can do multiplication with just addition and a few lookups.

x	$\log _{10} x$
1.0	.00000
1.1	.04139
1.2	.07918
1.3	.11394
1.4	.14613
1.5	.17609
1.6	.20412
1.7	.23045
1.8	.25527
1.9	.27875
2.0	.30103

13	$=1.3 \times 10^{1} \rightarrow$	
14	$=1.4 \times 10^{1} \rightarrow+11394$	
$\times \quad 1.14613$		
≈ 180	$=1.8 \times 10^{2} \leftarrow$	2.26007

It can be a bit imprecise...

Computational complexity

Question

What is the fastest way to multiply?

Question

How do we judge the speed of an algorithm?
A: Count the number of operations required with n digit numbers as inputs.
For example, adding two n digit numbers requires n one-digit additions and potentially n carries, for a total of $2 n$ operations.

What about multiplication?
For the standard method:

- n^{2} one-digit multiplications,
- $\approx n^{2} 2$-digit additions (equivalent to $\approx 2 n^{2}$ one-digit additions) for a total of about $3 n^{2}$ operations.

For peasant multiplication:

- There are $\approx 3.3 n$ rows.
- For each row, we may have to do an $\approx n$-digit halving, doubling, and addition ($\approx 3 n$ operations),
for a total of about $10 n^{2}$ operations.
We say that both algorithms run in $O\left(n^{2}\right)$ operations.

Big O notation

O is 'Big O' notation meaning roughly, "on the order of" or "up to a constant factor." Thus $O(n)$ could mean $2 n$ or $999 n+7$.

Why don't we care about constant factors?
For really really big n, the constant is not important: any $O(n)$ algorithm will be faster than any $O\left(n^{2}\right)$ algorithm for $n \gg 0$, even if it is slower for small n due to more "overhead."

For instance, $999 n<n^{2}$ when $n>999$.

Kolmogorov's conjecture

In 1960, Russian mathematician Andrey Kolmogorov made the following conjecture at a conference.

Conjecture

Any algorithm to multiply two n-digit numbers requires at least $O\left(n^{2}\right)$ steps.

This conjecture intrigued 23-year-old student Anatoly Karatsuba.

Within a week, Karatsuba had disproved the conjecture by finding a way to multiply two n-digit numbers using $O\left(n^{1.58}\right)$ operations!
Kolmogorov was so pleased by the result that he wrote it up and had it published on Karatsuba's behalf.

Karatsuba multiplication

Consider multiplying two-digit numbers using the standard method (before performing carries).

	a	b
\times	c	d
	$a \times d$	$b \times d$
$a \times c$	$b \times c$	
$a \times c$	$(a \times d)+(b \times c)$	$b \times d$

To multiply $a b \times c d$, we need to find:

- $X=a \times c$
- $Y=b \times d$
- $Z=(a \times d)+(b \times c)$

It seems like we need to do 4 multiplications.
But there is another way: note that

$$
\begin{aligned}
(a+b) \times(c+d) & =(a \times c)+(a \times d)+(b \times c)+(b \times d) \\
& =X+Z+Y
\end{aligned}
$$

Thus

$$
Z=(a+b) \times(c+d)-X-Y
$$

Then we can find X, Y, and Z using only 3 multiplications instead of 4 at the expense of more additions/subtractions.

$$
\begin{aligned}
X & =5 \times 2=10 \\
Y & =3 \times 7=21 \\
Z & =(5+3) \times(2+7)-X-Y \\
& =8 \times 9-10-21=41
\end{aligned}
$$

We traded a multiplication for a bunch of additions. Is this really faster? Not for two-digit numbers...

But we can also use this idea for numbers with more digits!

		3825	4926
\times		2937	6328
		3117	1728
	$? ? ? ?$	$? ? ? ?$	
1123	4025		

$$
\begin{gathered}
(\text { standard }) \\
Z=3825 \times 6328+4926 \times 2937 \\
(\text { Karatsuba }) \\
Z=(3825+4926) \times(2937+6328) \\
-31171728-11234025
\end{gathered}
$$

We're replacing a hard multiplication with easy additions/subtractions, which are much faster!

We can divide and conquer to get more savings by using Karatsuba's algorithm for the smaller multiplications.

To multiply two 16 -digit numbers, Karatsuba would do:

- 1 16-digit multiplication $\rightarrow 3$-digit multiplications
- 3 8-digit multiplications $\rightarrow 9$ 4-digit multiplications
- 9 4-digit multiplications $\rightarrow 27$ 2-digit multiplications
- 27 2-digit multiplications $\rightarrow 81$ 1-digit multiplications

Compare with $16^{2}=256$ 1-digit multiplications for the standard algorithm.
For 1000-digit numbers, the standard algorithm needs 1000000 1-digit multiplications while Karatsuba needs only 60000.

In general, Karatsuba's algorithm uses only

$$
O\left(n^{\log _{2} 3}\right) \approx O\left(n^{1.58}\right)
$$

operations.

Can we do better?

- Karatsuba (1960) $O\left(n^{1.58}\right)$
- Can multiply 2 -digit numbers with 3 multiplications instead of 4
- Toom-Cook (1963) $O\left(n^{1.46}\right)$
- Can multiply 3 -digit numbers with 5 multiplications instead of 9
- Can make 1.46 close to 1 with more pieces but a lot of overhead
- Schönhage and Strassen (1971) $O(n \cdot \log n \cdot \log \log n)$
- Based on Fast Fourier Transform
- Faster for numbers > 10000 digits
- Fürer (2007) $O\left(n \cdot \log n \cdot 2^{O\left(\log ^{*} n\right)}\right)$
- Slower for practical applications due to large overhead
- Harvey and van der Hoeven (2021) $O(n \cdot \log n)$

Open question

Is there an algorithm for multiplying n-digit numbers that is faster than $O(n \cdot \log n)$?

