The changing ×: Multiplication algorithms, new and old

Ricky Liu

University of Washington Math Hour

May 22, 2022

Addition is easy.

Multiplication is hard.

Question

What is the fastest way to multiply?

Ricky Liu (UW)

 $\begin{array}{r}
1 & 2 & 3 \\
\times & 4 & 5 & 6 \\
\hline
7 & 3 & 8 \\
6 & 1 & 5 \\
4 & 9 & 2 \\
\hline
5 & 6 & 0 & 8 & 8
\end{array}$

Requires:

- multiplying every digit in the first number by every digit in the second number;
- knowledge of a 10×10 multiplication table.

The lattice or grid method:

 $123 \times 456 = 56088$

The underlying process is the same as the standard algorithm (the same multiplications and additions are done but in a slightly different order).

The lattice method was used in various historical computing devices.

Napier's bones (1617) Genaille-Lucas rulers (1891)

Peasant multiplication

What if you don't have a multiplication table memorized? Enter Russian peasant multiplication, based on doubling and halving.

Requires:

- Knowledge of addition and halving;
- More steps than the standard algorithm, but the steps are simpler.

A similar method involving only doubling was used by the ancient Egyptians.

41 × 23 =	= (32	+8+	$1) \times 23$
	1	23	
	-2-	-46-	
	-4-	-92-	
	8	184	
	-16-	-368	
	32	736	
	41	943	

Actually, this is essentially the standard algorithm in binary!

					1	0	1	1	1		23
×				1	0	1	0	0	1	×	41
					1	0	1	1	1		23
		1	0	1	1	1					184
1	0	1	1	1							736
1	1	1	0	1	0	1	1	1	1		943

Table-based methods

Instead of a multiplication table, some methods used other tables.

1	0	6	9	11	30		16	64		156	6084
2	1	7	12	12	36	-	17	72		157	6162
3	2	8	16	13	42	-	18	81	•••	158	6241
4	4	9	20	14	49	-	19	90		159	6320
5	6	10	25	15	56	-	20	100		160	6400

To multiply 83×74 :

$$83 + 74 = 157 \rightarrow 6162$$
$$83 - 74 = 9 \rightarrow 20$$
$$6142$$

This is the Babylonian quarter-square method. It uses the identity

$$\frac{(x+y)^2}{4} - \frac{(x-y)^2}{4} = xy.$$

To multiply numbers up to n, you need 2n quarter-squares (as opposed to n^2 entries in a multiplication table).

A different table-based method was introduced by John Napier in 1614.

It was turned into a computing device by William Oughtred in 1622.

A simple slide rule:

What number should go here?

 $\sqrt{32} = 2^{2.5} \approx 5.657$

In general, the number located d units from the left is 2^d .

If $x = 2^d$, then $d = \log_2 x$ is the (base-2) logarithm of x.

With a table of logarithms, you can do multiplication with just addition and a few lookups.

x	$\log_{10} x$						
1.0	.00000						
1.1	.04139						
1.2	.07918						
1.3	.11394		13	$= 1.3 \times 10^{1}$	_		1 .11394
1.4	.14613			$= 1.3 \times 10$ = 1.4×10^{1}		+	1.11394 1.14613
1.5	.17609	X				+	
1.6	.20412		≈ 180	$= 1.8 \times 10^2$	\leftarrow		2.26007
1.7	.23045						
1.8	.25527						
1.9	.27875						
2.0	.30103						

It can be a bit imprecise...

Question

What is the fastest way to multiply?

Question

How do we judge the speed of an algorithm?

A: Count the number of operations required with n digit numbers as inputs.

For example, adding two n digit numbers requires n one-digit additions and potentially n carries, for a total of 2n operations.

What about multiplication?

For the standard method:

- n^2 one-digit multiplications,
- ullet $lpha pprox n^2$ 2-digit additions (equivalent to $pprox 2n^2$ one-digit additions)

for a total of about $3n^2$ operations.

For peasant multiplication:

- There are pprox 3.3n rows.
- For each row, we may have to do an $\approx n$ -digit halving, doubling, and addition ($\approx 3n$ operations),

for a total of about $10n^2$ operations.

We say that both algorithms run in $O(n^2)$ operations.

O is 'Big O' notation meaning roughly, "on the order of" or "up to a constant factor." Thus O(n) could mean 2n or 999n + 7.

Why don't we care about constant factors?

For really really big n, the constant is not important: any O(n) algorithm will be faster than any $O(n^2)$ algorithm for $n \gg 0$, even if it is slower for small n due to more "overhead."

For instance, $999n < n^2$ when n > 999.

Kolmogorov's conjecture

In 1960, Russian mathematician Andrey Kolmogorov made the following conjecture at a conference.

Conjecture

Any algorithm to multiply two *n*-digit numbers requires at least $O(n^2)$ steps.

This conjecture intrigued 23-year-old student Anatoly Karatsuba.

Within a week, Karatsuba had disproved the conjecture by finding a way to multiply two *n*-digit numbers using $O(n^{1.58})$ operations!

Kolmogorov was so pleased by the result that he wrote it up and had it published on Karatsuba's behalf. Consider multiplying two-digit numbers using the standard method (before performing carries).

	a	b
\times	c	d
	$a \times d$	$b \times d$
$a \times c$	b imes c	
$a \times c$	$(a \times d) + (b \times c)$	$b \times d$

To multiply $ab \times cd$, we need to find:

- $X = a \times c$
- $Y = b \times d$
- $Z = (a \times d) + (b \times c)$

It seems like we need to do 4 multiplications.

But there is another way: note that

$$(a+b) \times (c+d) = (a \times c) + (a \times d) + (b \times c) + (b \times d)$$
$$= X + Z + Y$$

Thus

$$Z = (a+b) \times (c+d) - X - Y.$$

Then we can find X, Y, and Z using only 3 multiplications instead of 4 at the expense of more additions/subtractions.

			5	3	
	\times		2	7	$X = 5 \times 2 = 10$
_			2	1	$Y = 3 \times 7 = 21$
		4	1		$Z = (5+3) \times (2+7) - X - Y$
	1	0			$= 8 \times 9 - 10 - 21 = 41$
_	1	4	3	1	

We traded a multiplication for a bunch of additions. Is this really faster? Not for two-digit numbers...

But we can also use this idea for numbers with more digits!

		3825	4926	(standard)
×		2937	6328	$Z = 3825 \times 6328 + 4926 \times 2937$
		3117	1728	(Karatsuba)
	????	????		$Z = (3825 + 4926) \times (2937 + 6328)$
1123	4025			-31171728 - 11234025

We're replacing a hard multiplication with easy additions/subtractions, which are much faster!

We can divide and conquer to get more savings by using Karatsuba's algorithm for the smaller multiplications.

To multiply two 16-digit numbers, Karatsuba would do:

- 1 16-digit multiplication ightarrow 3 8-digit multiplications
- 3 8-digit multiplications ightarrow 9 4-digit multiplications
- 9 4-digit multiplications \rightarrow 27 2-digit multiplications
- 27 2-digit multiplications \rightarrow 81 1-digit multiplications

Compare with $16^2 = 256$ 1-digit multiplications for the standard algorithm.

For 1000-digit numbers, the standard algorithm needs 1000000 1-digit multiplications while Karatsuba needs only 60000.

In general, Karatsuba's algorithm uses only

$$O(n^{\log_2 3}) \approx O(n^{1.58})$$

operations.

Can we do better?

- Karatsuba (1960) $O(n^{1.58})$
 - Can multiply 2-digit numbers with 3 multiplications instead of 4
- Toom-Cook (1963) ${\cal O}(n^{1.46})$
 - Can multiply 3-digit numbers with 5 multiplications instead of 9
 - $\bullet\,$ Can make 1.46 close to 1 with more pieces but a lot of overhead
- Schönhage and Strassen (1971) $O(n \cdot \log n \cdot \log \log n)$
 - Based on Fast Fourier Transform
 - Faster for numbers > 10000 digits
- Fürer (2007) $O(n \cdot \log n \cdot 2^{O(\log^* n)})$
 - Slower for practical applications due to large overhead
- Harvey and van der Hoeven (2021) $O(n \cdot \log n)$

Open question

Is there an algorithm for multiplying n-digit numbers that is faster than $O(n \cdot \log n)$?