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Addition is easy.

+

1 1 1 1

2 3 8 4 7 6 2 4 5 1
8 4 2 1 7 9 3 6 2 7

1 0 8 0 6 5 5 6 0 7 8

Multiplication is hard.

2 3 8 4 7 6 2 4 5 1
8 4 2 1 7 9 3 6 2 7

1 6 6 9 3 3 3 7 1 5 7
4 7 6 9 5 2 4 9 0 2

1 4 3 0 8 5 7 4 7 0 6
7 1 5 4 2 8 7 3 5 3

2 1 4 6 2 8 6 2 0 5 9
1 6 6 9 3 3 3 7 1 5 7
2 3 8 4 7 6 2 4 5 1

4 7 6 9 5 2 4 9 0 2
9 5 3 9 0 4 9 8 0 4

1 9 0 7 8 0 9 9 6 0 8
2 0 0 8 3 9 7 7 2 1 1 7 4 0 6 9 9 7 7 7

×

Question

What is the fastest way to multiply?
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The Standard Algorithm

1 2 3
4 5 6
7 3 8

6 1 5
4 9 2
5 6 0 8 8

×

Requires:

multiplying every digit in the �rst number by every digit in the second
number;

knowledge of a 10× 10 multiplication table.
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The lattice or grid method:

1 2 3

4

5

6

0

4

0

8

1

2

0

5

1

0

1

5

0

6

1

2

1

8

880

6

5

0

11

123× 456 = 56088

The underlying process is the same as the standard algorithm (the same
multiplications and additions are done but in a slightly di�erent order).
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The lattice method was used in various historical computing devices.

Napier's bones (1617) Genaille-Lucas rulers (1891)
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Peasant multiplication

What if you don't have a multiplication table memorized?
Enter Russian peasant multiplication, based on doubling and halving.

41

20

10

5

2

1

× 23

46

92

184

368

736

943

odd

Requires:

Knowledge of addition and halving;

More steps than the standard algorithm, but the steps are simpler.
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A similar method involving only doubling was used by the ancient
Egyptians.

41× 23 = (32 + 8 + 1)× 23

1

2

4

8

16

32

41

23

46

92

184

368

736

943
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Actually, this is essentially the standard algorithm in binary!

1 0 1 1 1
× 1 0 1 0 0 1

1 0 1 1 1
1 0 1 1 1

1 0 1 1 1

1 1 1 0 1 0 1 1 1 1

23
× 41

23
184
736

943
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Table-based methods

Instead of a multiplication table, some methods used other tables.

1 0

2 1

3 2

4 4

5 6

6 9

7 12

8 16

9 20

10 25

11 30

12 36

13 42

14 49

15 56

16 64

17 72

18 81

19 90

20 100

. . .

156 6084

157 6162

158 6241

159 6320

160 6400

To multiply 83× 74:

83 + 74 = 157 → 6162

83− 74 = 9 → 20

6142
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This is the Babylonian quarter-square method. It uses the identity

(x+ y)2

4
− (x− y)2

4
= xy.

To multiply numbers up to n, you need 2n quarter-squares (as opposed to
n2 entries in a multiplication table).
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A di�erent table-based method was introduced by John Napier in 1614.

It was turned into a computing device by William Oughtred in 1622.
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A simple slide rule:

1 2 4 8 16 32?

?1 2 4 8 16 32

What number should go here?

1 2 4 8 16 32
√
32

1 2 4 8 16 32√
32

√
32 = 22.5 ≈ 5.657

In general, the number located d units from the left is 2d.
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If x = 2d, then d = log2 x is the (base-2) logarithm of x.

With a table of logarithms, you can do multiplication with just addition and
a few lookups.

x log10 x

1.0 .00000

1.1 .04139

1.2 .07918

1.3 .11394

1.4 .14613

1.5 .17609

1.6 .20412

1.7 .23045

1.8 .25527

1.9 .27875

2.0 .30103

13 = 1.3× 101 → 1.11394
× 14 = 1.4× 101 → + 1.14613

≈ 180 = 1.8× 102 ← 2.26007

It can be a bit imprecise...
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Computational complexity

Question

What is the fastest way to multiply?

Question

How do we judge the speed of an algorithm?

A: Count the number of operations required with n digit numbers as inputs.

For example, adding two n digit numbers requires n one-digit additions and
potentially n carries, for a total of 2n operations.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 14 / 24



What about multiplication?

For the standard method:

n2 one-digit multiplications,

≈ n2 2-digit additions (equivalent to ≈ 2n2 one-digit additions)

for a total of about 3n2 operations.

For peasant multiplication:

There are ≈ 3.3n rows.

For each row, we may have to do an ≈ n-digit halving, doubling, and
addition (≈ 3n operations),

for a total of about 10n2 operations.

We say that both algorithms run in O(n2) operations.
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Big O notation

O is `Big O' notation meaning roughly, �on the order of� or �up to a
constant factor.� Thus O(n) could mean 2n or 999n+ 7.

Why don't we care about constant factors?

For really really big n, the constant is not important: any O(n) algorithm
will be faster than any O(n2) algorithm for n≫ 0, even if it is slower for
small n due to more �overhead.�

For instance, 999n < n2 when n > 999.
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Kolmogorov's conjecture

In 1960, Russian mathematician Andrey Kolmogorov made the following
conjecture at a conference.

Conjecture

Any algorithm to multiply two n-digit numbers requires at least O(n2)
steps.
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This conjecture intrigued 23-year-old student Anatoly Karatsuba.

Within a week, Karatsuba had disproved the conjecture by �nding a way to
multiply two n-digit numbers using O(n1.58) operations!

Kolmogorov was so pleased by the result that he wrote it up and had it
published on Karatsuba's behalf.
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Karatsuba multiplication

Consider multiplying two-digit numbers using the standard method (before
performing carries).

a b
× c d

a× d b× d
a× c b× c

a× c (a× d) + (b× c) b× d
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To multiply ab× cd, we need to �nd:

X = a× c

Y = b× d

Z = (a× d) + (b× c)

It seems like we need to do 4 multiplications.

But there is another way: note that

(a+ b)× (c+ d) = (a× c) + (a× d) + (b× c) + (b× d)

= X + Z + Y

Thus
Z = (a+ b)× (c+ d)−X − Y.

Then we can �nd X, Y , and Z using only 3 multiplications instead of 4 at
the expense of more additions/subtractions.
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5 3
× 2 7

2 1
4 1

1 0

1 4 3 1

X = 5× 2 = 10
Y = 3× 7 = 21
Z = (5 + 3)× (2 + 7)−X − Y

= 8× 9− 10− 21 = 41
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We traded a multiplication for a bunch of additions. Is this really faster?

Not for two-digit numbers...

But we can also use this idea for numbers with more digits!

3825 4926
× 2937 6328

3117 1728
???? ????

1123 4025

(standard)
Z = 3825× 6328 + 4926× 2937

(Karatsuba)
Z = (3825 + 4926)× (2937 + 6328)

− 31171728− 11234025

We're replacing a hard multiplication with easy additions/subtractions,
which are much faster!
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We can divide and conquer to get more savings by using Karatsuba's
algorithm for the smaller multiplications.

To multiply two 16-digit numbers, Karatsuba would do:

1 16-digit multiplication → 3 8-digit multiplications

3 8-digit multiplications → 9 4-digit multiplications

9 4-digit multiplications → 27 2-digit multiplications

27 2-digit multiplications → 81 1-digit multiplications

Compare with 162 = 256 1-digit multiplications for the standard algorithm.

For 1000-digit numbers, the standard algorithm needs 1000000 1-digit
multiplications while Karatsuba needs only 60000.

In general, Karatsuba's algorithm uses only

O(nlog2 3) ≈ O(n1.58)

operations.
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Can we do better?

Karatsuba (1960) O(n1.58)

Can multiply 2-digit numbers with 3 multiplications instead of 4

Toom-Cook (1963) O(n1.46)

Can multiply 3-digit numbers with 5 multiplications instead of 9

Can make 1.46 close to 1 with more pieces but a lot of overhead

Schönhage and Strassen (1971) O(n · log n · log logn)
Based on Fast Fourier Transform

Faster for numbers > 10000 digits

Fürer (2007) O(n · log n · 2O(log∗ n))

Slower for practical applications due to large overhead

Harvey and van der Hoeven (2021) O(n · log n)

Open question

Is there an algorithm for multiplying n-digit numbers that is faster than
O(n · log n)?
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