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Addition is easy.
1 11 1
2384762451
4+ 8421793627
10806556078

Multiplication is hard.

2384762451
x8421793627
16693337157
4769524902

14308574706
7154287353
21462862059
16693337157
2384762451
4769524902
9539049804
19078099608
20083977211740699777

What is the fastest way to multiply?
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The Standard Algorithm

123
X456
738
615
492
56088

Requires:
e multiplying every digit in the first number by every digit in the second
number;

@ knowledge of a 10 x 10 multiplication table.
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The lattice or grid method:

1 2 3

11
00408124
50510155
0612186

6
\088

123 x 456 = 56088

The underlying process is the same as the standard algorithm (the same
multiplications and additions are done but in a slightly different order).
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The lattice method was used in various historical computing devices.

Napier's bones (1617)  Genaille-Lucas rulers (1891)
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Peasant multiplication

What if you don’t have a multiplication table memorized?
Enter Russian peasant multiplication, based on doubling and halving.

41 x 23
/
odd —

N

1 736
943

Requires:
o Knowledge of addition and halving;

@ More steps than the standard algorithm, but the steps are simpler.
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A similar method involving only doubling was used by the ancient

Egyptians.

Ricky Liu (UW)

41%x23=(32+8+1) x 23

1 23
R
492
8 184
—6—368—
32 736
A1 943
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Actually, this is essentially the standard algorithm in binary!

1 01 11 23

X 1 01 1 x 41
10111 23

1 01 11 184

1 0111 736
1110101111 943
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Table-based methods

Instead of a multiplication table, some methods used other tables.

110 6|9 11 | 30 16 | 64 156 | 6084
211 7 112 12 | 36 17| 72 157 | 6162
312 8 | 16 13 | 42 18 | 81 . 158 | 6241
4|4 9 120 14 | 49 19 | 90 159 | 6320
5|6 10 | 25 15 | 56 20 | 100 160 | 6400

To multiply 83 x 74:

83+ 74 =157 — 6162
83 —-T4=9 — 20

6142
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This is the Babylonian quarter-square method. It uses the identity

(z+y)? (z-y? _
1 T

To multiply numbers up to n, you need 2n quarter-squares (as opposed to
n? entries in a multiplication table).
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A different table-based method was introduced by John Napier in 1614.
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A simple slide rule:

T
BN ER N
What number should go here?
IR
‘ \ \

V32 = 2%° ~ 5.657
In general, the number located d units from the left is 2¢.
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If 2 = 27, then d = log, « is the (base-2) logarithm of .

With a table of logarithms, you can do multiplication with just addition and
a few lookups.

x| loggx
1.0 | .00000
1.1].04139
1.2 | .07918
%% 13 =13x100 — 1.11394
—— X 14 =14x10" — + 1.14613

1.5 | .17609 — 5 i
T ~180 =18 x 102 « 2.26007

1.7 .23045
1.8 ] .25527
1.9 | .27875
2.0 |.30103

It can be a bit imprecise...
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Computational complexity

What is the fastest way to multiply?
How do we judge the speed of an algorithm?

A: Count the number of operations required with n digit numbers as inputs.

For example, adding two n digit numbers requires n one-digit additions and
potentially n carries, for a total of 2n operations.
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What about multiplication?

For the standard method:

@ n? one-digit multiplications,

e ~ n? 2-digit additions (equivalent to ~ 2n? one-digit additions)
for a total of about 3n? operations.
For peasant multiplication:

@ There are =~ 3.3n rows.

@ For each row, we may have to do an =~ n-digit halving, doubling, and
addition (& 3n operations),

for a total of about 10n? operations.

We say that both algorithms run in O(n?) operations.
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O is ‘Big O’ notation meaning roughly, “on the order of” or “up to a
constant factor.” Thus O(n) could mean 2n or 999n + 7.

Why don’t we care about constant factors?

For really really big n, the constant is not important: any O(n) algorithm
will be faster than any O(n?) algorithm for n >> 0, even if it is slower for
small n due to more “overhead.”

For instance, 999n < n? when n > 999.
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Kolmogorov's conjecture

In 1960, Russian mathematician Andrey Kolmogorov made the following
conjecture at a conference.

Any algorithm to multiply two n-digit numbers requires at least O(n?)
steps.
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This conjecture intrigued 23-year-old student Anatoly Karatsuba.

Within a week, Karatsuba had disproved the conjecture by finding a way to
multiply two n-digit numbers using O(n'*%) operations!

Kolmogorov was so pleased by the result that he wrote it up and had it
published on Karatsuba’s behalf.
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Karatsuba multiplication

Consider multiplying two-digit numbers using the standard method (before
performing carries).

a b
X c d

axd bxd
axec bxc

axc (axd)+(bxec) bxd
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To multiply ab x cd, we need to find:
e X =axc
oY =bxd
e Z=(axd)+ (bxc)
It seems like we need to do 4 multiplications.

But there is another way: note that

(a+b)x(c+d)=(axc)+ (axd)+ (bxc)+ (bxd)
—X+Z+Y
Thus
Z=(a+b) x(c+d)—X-Y.

Then we can find X, Y, and Z using only 3 multiplications instead of 4 at
the expense of more additions/subtractions.
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5 3
X 27 X=5x2=10
2 1 Y=3x7=21
4 1 Z=064+3)x24+7)-X-Y
1 0 =8x9-10—-21 =41
1 4 3 1
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We traded a multiplication for a bunch of additions. Is this really faster?
Not for two-digit numbers...

But we can also use this idea for numbers with more digits!

3825 4926 (standard)
y 92937 6328 Z = 3825 x 6328 4 4926 x 2937
3117 1728 (Karatsuba)
ey Z = (3825 + 4926) x (2937 + 6328)
1123 4025 — 31171728 — 11234025

We're replacing a hard multiplication with easy additions/subtractions,
which are much faster!
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We can divide and conquer to get more savings by using Karatsuba's
algorithm for the smaller multiplications.

To multiply two 16-digit numbers, Karatsuba would do:

1 16-digit multiplication — 3 8-digit multiplications

3 8-digit multiplications — 9 4-digit multiplications

9 4-digit multiplications — 27 2-digit multiplications

27 2-digit multiplications — 81 1-digit multiplications
Compare with 162 = 256 1-digit multiplications for the standard algorithm.

For 1000-digit numbers, the standard algorithm needs 1000000 1-digit
multiplications while Karatsuba needs only 60000.

In general, Karatsuba's algorithm uses only
O(nlog2 3) ~ O(n1'58)

operations.
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Can we do better?
e Karatsuba (1960) O(n'®)
e Can multiply 2-digit numbers with 3 multiplications instead of 4
e Toom-Cook (1963) O(n!46)

o Can multiply 3-digit numbers with 5 multiplications instead of 9
e Can make 1.46 close to 1 with more pieces but a lot of overhead

@ Schonhage and Strassen (1971) O(n - logn - loglogn)

e Based on Fast Fourier Transform
o Faster for numbers > 10000 digits

e Fiirer (2007) O(n - logn - 2000g" 7))
o Slower for practical applications due to large overhead

@ Harvey and van der Hoeven (2021) O(n - logn)

Open question

Is there an algorithm for multiplying n-digit numbers that is faster than
O(n-logn)?
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