
The changing ×:
Multiplication algorithms, new and old

Ricky Liu

University of Washington Math Hour

May 22, 2022

Ricky Liu (UW) Multiplication algorithms May 22, 2022 1 / 24



Addition is easy.

+

1 1 1 1

2 3 8 4 7 6 2 4 5 1
8 4 2 1 7 9 3 6 2 7

1 0 8 0 6 5 5 6 0 7 8

Multiplication is hard.

2 3 8 4 7 6 2 4 5 1
8 4 2 1 7 9 3 6 2 7

1 6 6 9 3 3 3 7 1 5 7
4 7 6 9 5 2 4 9 0 2

1 4 3 0 8 5 7 4 7 0 6
7 1 5 4 2 8 7 3 5 3

2 1 4 6 2 8 6 2 0 5 9
1 6 6 9 3 3 3 7 1 5 7
2 3 8 4 7 6 2 4 5 1

4 7 6 9 5 2 4 9 0 2
9 5 3 9 0 4 9 8 0 4

1 9 0 7 8 0 9 9 6 0 8
2 0 0 8 3 9 7 7 2 1 1 7 4 0 6 9 9 7 7 7

×

Question

What is the fastest way to multiply?

Ricky Liu (UW) Multiplication algorithms May 22, 2022 2 / 24



The Standard Algorithm

1 2 3
4 5 6
7 3 8

6 1 5
4 9 2
5 6 0 8 8

×

Requires:

multiplying every digit in the �rst number by every digit in the second
number;

knowledge of a 10× 10 multiplication table.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 3 / 24



The lattice or grid method:

1 2 3

4

5

6

0

4

0

8

1

2

0

5

1

0

1

5

0

6

1

2

1

8

880

6

5

0

11

123× 456 = 56088

The underlying process is the same as the standard algorithm (the same
multiplications and additions are done but in a slightly di�erent order).

Ricky Liu (UW) Multiplication algorithms May 22, 2022 4 / 24



The lattice method was used in various historical computing devices.

Napier's bones (1617) Genaille-Lucas rulers (1891)

Ricky Liu (UW) Multiplication algorithms May 22, 2022 5 / 24



Peasant multiplication

What if you don't have a multiplication table memorized?
Enter Russian peasant multiplication, based on doubling and halving.

41

20

10

5

2

1

× 23

46

92

184

368

736

943

odd

Requires:

Knowledge of addition and halving;

More steps than the standard algorithm, but the steps are simpler.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 6 / 24



A similar method involving only doubling was used by the ancient
Egyptians.

41× 23 = (32 + 8 + 1)× 23

1

2

4

8

16

32

41

23

46

92

184

368

736

943

Ricky Liu (UW) Multiplication algorithms May 22, 2022 7 / 24



Actually, this is essentially the standard algorithm in binary!

1 0 1 1 1
× 1 0 1 0 0 1

1 0 1 1 1
1 0 1 1 1

1 0 1 1 1

1 1 1 0 1 0 1 1 1 1

23
× 41

23
184
736

943

Ricky Liu (UW) Multiplication algorithms May 22, 2022 8 / 24



Table-based methods

Instead of a multiplication table, some methods used other tables.

1 0

2 1

3 2

4 4

5 6

6 9

7 12

8 16

9 20

10 25

11 30

12 36

13 42

14 49

15 56

16 64

17 72

18 81

19 90

20 100

. . .

156 6084

157 6162

158 6241

159 6320

160 6400

To multiply 83× 74:

83 + 74 = 157 → 6162

83− 74 = 9 → 20

6142

Ricky Liu (UW) Multiplication algorithms May 22, 2022 9 / 24



This is the Babylonian quarter-square method. It uses the identity

(x+ y)2

4
− (x− y)2

4
= xy.

To multiply numbers up to n, you need 2n quarter-squares (as opposed to
n2 entries in a multiplication table).

Ricky Liu (UW) Multiplication algorithms May 22, 2022 10 / 24



A di�erent table-based method was introduced by John Napier in 1614.

It was turned into a computing device by William Oughtred in 1622.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 11 / 24



A simple slide rule:

1 2 4 8 16 32?

?1 2 4 8 16 32

What number should go here?

1 2 4 8 16 32
√
32

1 2 4 8 16 32√
32

√
32 = 22.5 ≈ 5.657

In general, the number located d units from the left is 2d.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 12 / 24



If x = 2d, then d = log2 x is the (base-2) logarithm of x.

With a table of logarithms, you can do multiplication with just addition and
a few lookups.

x log10 x

1.0 .00000

1.1 .04139

1.2 .07918

1.3 .11394

1.4 .14613

1.5 .17609

1.6 .20412

1.7 .23045

1.8 .25527

1.9 .27875

2.0 .30103

13 = 1.3× 101 → 1.11394
× 14 = 1.4× 101 → + 1.14613

≈ 180 = 1.8× 102 ← 2.26007

It can be a bit imprecise...

Ricky Liu (UW) Multiplication algorithms May 22, 2022 13 / 24



Computational complexity

Question

What is the fastest way to multiply?

Question

How do we judge the speed of an algorithm?

A: Count the number of operations required with n digit numbers as inputs.

For example, adding two n digit numbers requires n one-digit additions and
potentially n carries, for a total of 2n operations.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 14 / 24



What about multiplication?

For the standard method:

n2 one-digit multiplications,

≈ n2 2-digit additions (equivalent to ≈ 2n2 one-digit additions)

for a total of about 3n2 operations.

For peasant multiplication:

There are ≈ 3.3n rows.

For each row, we may have to do an ≈ n-digit halving, doubling, and
addition (≈ 3n operations),

for a total of about 10n2 operations.

We say that both algorithms run in O(n2) operations.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 15 / 24



Big O notation

O is `Big O' notation meaning roughly, �on the order of� or �up to a
constant factor.� Thus O(n) could mean 2n or 999n+ 7.

Why don't we care about constant factors?

For really really big n, the constant is not important: any O(n) algorithm
will be faster than any O(n2) algorithm for n≫ 0, even if it is slower for
small n due to more �overhead.�

For instance, 999n < n2 when n > 999.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 16 / 24



Kolmogorov's conjecture

In 1960, Russian mathematician Andrey Kolmogorov made the following
conjecture at a conference.

Conjecture

Any algorithm to multiply two n-digit numbers requires at least O(n2)
steps.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 17 / 24



This conjecture intrigued 23-year-old student Anatoly Karatsuba.

Within a week, Karatsuba had disproved the conjecture by �nding a way to
multiply two n-digit numbers using O(n1.58) operations!

Kolmogorov was so pleased by the result that he wrote it up and had it
published on Karatsuba's behalf.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 18 / 24



Karatsuba multiplication

Consider multiplying two-digit numbers using the standard method (before
performing carries).

a b
× c d

a× d b× d
a× c b× c

a× c (a× d) + (b× c) b× d

Ricky Liu (UW) Multiplication algorithms May 22, 2022 19 / 24



To multiply ab× cd, we need to �nd:

X = a× c

Y = b× d

Z = (a× d) + (b× c)

It seems like we need to do 4 multiplications.

But there is another way: note that

(a+ b)× (c+ d) = (a× c) + (a× d) + (b× c) + (b× d)

= X + Z + Y

Thus
Z = (a+ b)× (c+ d)−X − Y.

Then we can �nd X, Y , and Z using only 3 multiplications instead of 4 at
the expense of more additions/subtractions.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 20 / 24



5 3
× 2 7

2 1
4 1

1 0

1 4 3 1

X = 5× 2 = 10
Y = 3× 7 = 21
Z = (5 + 3)× (2 + 7)−X − Y

= 8× 9− 10− 21 = 41

Ricky Liu (UW) Multiplication algorithms May 22, 2022 21 / 24



We traded a multiplication for a bunch of additions. Is this really faster?

Not for two-digit numbers...

But we can also use this idea for numbers with more digits!

3825 4926
× 2937 6328

3117 1728
???? ????

1123 4025

(standard)
Z = 3825× 6328 + 4926× 2937

(Karatsuba)
Z = (3825 + 4926)× (2937 + 6328)

− 31171728− 11234025

We're replacing a hard multiplication with easy additions/subtractions,
which are much faster!

Ricky Liu (UW) Multiplication algorithms May 22, 2022 22 / 24



We can divide and conquer to get more savings by using Karatsuba's
algorithm for the smaller multiplications.

To multiply two 16-digit numbers, Karatsuba would do:

1 16-digit multiplication → 3 8-digit multiplications

3 8-digit multiplications → 9 4-digit multiplications

9 4-digit multiplications → 27 2-digit multiplications

27 2-digit multiplications → 81 1-digit multiplications

Compare with 162 = 256 1-digit multiplications for the standard algorithm.

For 1000-digit numbers, the standard algorithm needs 1000000 1-digit
multiplications while Karatsuba needs only 60000.

In general, Karatsuba's algorithm uses only

O(nlog2 3) ≈ O(n1.58)

operations.

Ricky Liu (UW) Multiplication algorithms May 22, 2022 23 / 24



Can we do better?

Karatsuba (1960) O(n1.58)

Can multiply 2-digit numbers with 3 multiplications instead of 4

Toom-Cook (1963) O(n1.46)

Can multiply 3-digit numbers with 5 multiplications instead of 9

Can make 1.46 close to 1 with more pieces but a lot of overhead

Schönhage and Strassen (1971) O(n · log n · log logn)
Based on Fast Fourier Transform

Faster for numbers > 10000 digits

Fürer (2007) O(n · log n · 2O(log∗ n))

Slower for practical applications due to large overhead

Harvey and van der Hoeven (2021) O(n · log n)

Open question

Is there an algorithm for multiplying n-digit numbers that is faster than
O(n · log n)?

Ricky Liu (UW) Multiplication algorithms May 22, 2022 24 / 24


