Counting in Catalan handshakes, trees, & paths UW Math Hour 2023 May 21 Kyle Ormsby REED COLLEGE

trees DOOOOhandshakes () paths 🔨

	And the pattern continues:
	Trees, handshike, and paths (and many other structures!) are counted by the Catalan numbers:
	n 0 1 2 3 4 5 6 7 Cat(n) 1 1 2 5 14 42 132 439 whure
	$Cat(n+1) = Cat(0) \cdot Cat(n) + Cat(1) \cdot Cat(n-1) + Cat(2) \cdot Cat(n-2) + \cdots$ + Cat(n-1) \cdot Cat(1) + Cat(n) \cdot Cat(0)
	$= \sum_{i=0}^{n} \operatorname{Cat}(i) \cdot \operatorname{Cat}(n-i) = \frac{1}{2n+1} \begin{pmatrix} 2n+1 \\ n \end{pmatrix} \cdot (\text{to be explaind})$

Combinatorics — the mathematics of counting
Counting: it's easy!
Counting : it's hard! How many substitution codes
Counting: it's hard! How many substitution codes $(A \rightarrow X, B \rightarrow F, C \rightarrow A,)$ are there? What if no letter may substitute for itself?
$A = 26! = 26 \cdot 25 \cdot 24 \cdots 2 \cdot 1 \approx 4 \cdot 10^{26}$
or $26! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{1}{26!}\right) \approx \frac{26!}{e} \approx 1.5 \cdot 10^{20}$
Eulur's constant 2.71828

What is counting? Sequentially label with numbers so that each object gets exactly one label. But. What is a number? Potential Answer The number 6 is the collection of all collections that can be "registered" with {1,2,3,4,5,6} Foundational movisters nearby!

3 Counting Principles Additive Counting For a set A, write A=BLC if every element of A is in exactly one of B or C. This is a partition of A, which is the disjoint union of B, C. ··B E.g. $\{1,2,3,4,5,6\} = \{2,5\} \sqcup \{1,3,4,6\}$ BLC Theorem If $A = B \amalg C$, then |A| = |B| + |C|. · · /c E.g.(ct'd) = 2+4

Multiplicative Counting (ct'd) Subsets For sets A, B, suppose every element of A is also an element of B. We then call A a subset of B and write A = B. Q If |B| = n, how many sets A are subsets of B! (IF there are 12 flowers and your friend says you can take whichever you like, how many different bouquets can you make?) A in lout in lout in lout in lout Make 2 choices n consecutive . . b₁. . . b₂. . . b₃. b_n. times; so 2.2.2...2=2° subsets.

Multiplicative Counting (ct'd)	
Permutations	
A permutation of {1,2,,n} is a reordering of the elements,	
A permutation of {1,2,,n} is a raordering, of the elements, or, equivalently, a bijection {1,2,,n} - {1,2,,n}:	
$\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	
$3 6 2 5 \leftrightarrow 3 4 4 5 5 5 5 6 6 6 6 6 6$	
· · · · · · · · · · · · · · · · · · ·	
Theorem There are $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$ permutations of an n-element set.	
n 1 2 3 4 5 6 7 8 9	
n! 1 2 6 24 120 720 5040 40320 362880	

3 Counting Principles	
3. Overcounting	
Theorem If we count each element of a set A in times and count is N, then $ A = \frac{N}{m}$.	our total
Q Six colleagues at a business meeting each shake each hands exactly once? How many handshakes occur in total?	· · · · · ·
A Each of the 6 people shake > hands, so 6.5 handshaker, but. We counted each handshake twice (Alice - Bob	(n-1) (n-1) (n-2) (n-3) +1

Overcounting (et 2)
Choosing k from n
Q How many different 4 flower bouquets can be made from 12 flowers?
First attempt 12.11.10.9
But $\nabla \mathcal{R}^{\ast} \mathcal{P} = \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{R} = \cdots$
We've overcounted by a factor of 4!, the number of permutations of each 4 flower bouquet. <u>A</u> $12.11.10.9/(4!) = 495$
<u>A</u> 12.11.10 9/(4!) = 495
Theorem There are $\frac{n \cdot (n-1)(n-2) \cdots (n-k+1)}{k!}$ k-element subsets of $\{1, 2,, n\}$.

The Binomial Triangle
• Write
$$\binom{n}{k}$$
 - read 'n choose k' - for the # of k-element
subsets of $\{1,2,...,n\}$, so $\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$
• Let $A = \{such subscentaining, n\}$, $B = \{such sets not containing, n\}$
so that $\binom{n}{k} = [A] + (B]$ (by additive counting principle)
• To count A, choose k-1 elements of $\{1,2,...,n-1\}$ (then add n to the set),
for B, choose k elements of $\{1,2,...,n-1\}$.
Theorem $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (sometimes known as Pascal's identity.)

16 = 24 120 210 165 330 462 462 330 165 78 286 715 1287 1716 1716 1287 91 364 1001 2002 3003 3432 3003 2002 1001 364 1365 3003 5005 6435 6435 5005 3003 1365 455 4368 8008 11440 12870 11440 8008 4368 182

Symmetry Theorem $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}$ Row Sum Theorem. $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$

The binomial triangle (ct'd)

Binomials & Paths Q How many "N/E lattice paths" on the grid from (0,0) to (n,k)? (0,7) (11,7) (6,0) (11,0) A n+k total steps, exactly k of which are N's, so $\binom{n+k}{k} \stackrel{=}{=} \binom{n+k}{n} \stackrel{=}{=} \binom{n+k}{n}$

Catalan Structures	
1. Mountain Ranges	
NE/SE lattice paths from $(0,0)$ to $(2n,0)$ that never the x-axis	go below
the x-axis	
2 Dyck Paths:	
N/E lattice paths from (0,0) to (n,n) that never g	jo above
N/E lattice paths from $(0,0)$ to (n,n) that never g the diagonal:	jo above
the diagonal:	jo above
the diagonal:	jo above
	po above
the diagonal:	po above
the diagonal:	p above

Theorem There are $\frac{1}{n+1} \binom{2n}{n}$ =: Cat(n) Dyck paths from (0,0) to (n,n). Proof Idua Let Ln be the collection of N/E lattice paths from (0,0) to (n,n) so that $|L_n| = \binom{2n}{n}$. Now partition Ln as Eo IIE, II -- IIEn where E: ELn consists of paths with i N steps above the diagonal. (Note: E. = {Dyck paths }.) Then $|L_n| = |E_o| + |E_1| + \dots + |E_n|$ by additive counting. Claim |E0|=|E,|===|En| (Try to prove it!) Thus #Dyck paths = $|E_o| = \frac{|L_n|}{n+1} = \frac{1}{n+1} \binom{2n}{n}$.

Parentheses & Handshakes E E N N M EENEENNNEN (()(()))()Dyck word: n E's, n N's well-balanced #E's ≥ #N's reading laft toright parentheses $(1)(1)(1) \xrightarrow{1}{2} \xrightarrow{1}{3} \xrightarrow{1}{4} \xrightarrow{1}{5} \xrightarrow{1}{6} \xrightarrow{1}{7} \xrightarrow{1}{9} \xrightarrow{1}{10}$ $nested ares joining \xrightarrow{1}{2}, \dots, \xrightarrow{1}{n} in upper$ 1,2,..., In in upper half plane noncrossing hand shakes Theorem All of these structures are counted by $\frac{1}{n+1} {2n \choose n} = \operatorname{Cat}(n)$.

Catalan Recurrence Let A = { nested arcs joining 1,2,...,2n in upper half planes. Partition A according to k such that so that $A^n = A_1 \perp A_2 \perp \cdots \perp A_n \quad (*)$ = Cat(k-1) Cat(n-k)So by (1) + additive counting, $Cat(n) = Cat(0) Cat(n-1) + Cat(1) Cat(n-2) + \dots + Cat(n-1) Cat(0)$

• $Cat(0) = \frac{1}{1} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
• Cat(1) = Cat(0) Cat(0) = 1 = $\frac{1}{2} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
• Cat (2) = Cat (0) Cat (1) + Cat (1) Cat (0) = $1 + 1 + 1 = 2 = \frac{1}{3} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$
• Cat (3) = Cat (0) Cat (2) + Cat (1) Cat (1) + Cat (2) Cat (0)
$= 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = 1 \cdot 2 \cdot 1 = 5 = \frac{1}{4} \left(\frac{6}{3}\right) = \frac{1}{4} \left(\frac{6}{3$
• $Cat(4) = Cat(0) Cat(3) + Cat(1) Cat(2) + Cat(2) Cat(1) + Cat(3) Cat(0)$
$= \cdot 5 + \cdot 2 + 2 \cdot \cdot + 5 \cdot = \mathcal{H} = \frac{1}{5} \left(\frac{8}{4}\right)$
• $Ca+(5) = Ca+(0)Cat(4) + Cat(1)Cat(3) + Cat(2)Cat(2) + Cat(3)Cat(1)$ + Cat(4)Cat(0)
$= [1 \cdot 14] + 1 \cdot 5 + [2 \cdot 2 + 5 \cdot] + 14 \cdot [1 = 42] = \frac{1}{6} \left(\frac{10}{5}\right)$

Trees 7 eaver A full binary tree looks like Leach "branching" has two offshoots, one to the left, the other to the right Theorem There are $Cat(n) = \frac{1}{n+1} {2n \choose n}$ full binary trees with n+1 leaves Proof Idea Partition according to number of leaves on the left branch from the root: k leaves Use this to show that # full binary trees with n+1 leaves satisfies the Catalan recurrence.

Meanders (open problem closed meander crossings 6 pair of nested arc systems \leftarrow joining 1,2,...,6

Meandurs (ct'd)	
	1 loop - closed meanders
	$\frac{1}{3} \frac{1}{100} \frac{1}{1$
	Thure are 8 closed meanders
	with 6 crossings
200 200 200 200	
$\kappa_{1}^{2} = \kappa_{1}^{2} + \kappa_{2}^{2} + \kappa_{1}^{2} + \kappa_{1$	7 · · · · · · · · · · · · · · · · · · ·
M _n 1 2 8 42 262 1828 1	13820 110 954

Open Problem Let $M_n^{(u)} := \#$ meandric systems with 2n crossings and k loops $M_n := M_n^{(1)} = \#$ closed meanders with 2n crossings

Find a formular for Mn and Mn^(k)

Henri Poincarí 1854 - 1912

Vladimir Arnol'd 1937-2010

Francesco - Golinelli - Guitter, 1995
Solution for
$$n-5 \le k \le n$$
:
 $M_n^{(n)} = \frac{(2n)!}{n!(n+1)!}$
 $M_n^{(n-1)} = \frac{2(2n)!}{(n-2)!(n+2)!}$
 $M_n^{(n-2)} = \frac{2(2n)!}{(n-3)!(n+4)!}(n^2 + 7n - 2)$

$$M_n^{(n-3)} = \frac{4(2n)!}{3(n-4)!(n+6)!} (n^4 + 20n^3 + 107n^2 - 107n + 15)$$
$$M_n^{(n-4)} = \frac{2(2n)!}{3(n-5)!(n+8)!} (n^6 + 39n^5 + 547n^4 + 2565n^3 - 5474n^2 + 2382n - 672)$$

$$M_n^{(n-5)} = \frac{4(2n)!}{15(n-6)!(n+10)!} (n^8 + 64n^7 + 1646n^6 + 20074n^5 + 83669n^4 - 323444n^3 + 257134n^2 - 155604n + 45360)$$

	F	- -	١٢	•	H	h,	L	^		R	L	a	d	,] 1		-	• • •		•	•
	<u>ht</u>	<u>tp</u> s	<u>:://l</u>	<u>kyl</u> e	<u>əor</u>	<u>ms</u>	s <u>by</u>	<u>.git</u>	hu	<u>b</u> io	<u>o/f</u> i	<u>les</u>	/ <u>1</u> 1	<u>3f</u>	1 <u>1</u> 1	t <u>ex</u>	<u>t.p</u>	d _. f	•	
																			•	[
		rh Ma	<i>e</i> in	k.	Jon	[]	D	Ď,	av	٩	, c	ine	ł	Ŗ	y.	d's	•			
									de	nt	5)		?∧c	1					•	
	• •	th	an	k	ر ا	jor	. /												•	
																			•	
																			•	
																			•	

KYLE ORMSBY & DAVID PERKINSON

DISCRETE STRUCTURES

