Counting in Catalan handshaws, trees, \& paths

UW Math Hour 2023 Magy 21

And the pattern continues:
Trees, handshakes, and paths (and many other structures!) are counted by the Catalan numbers:

$$
\begin{array}{c|ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\cot (n) & 1 & 1 & 2 & 5 & 14 & 42 & 132 & 439 & \cdots
\end{array}
$$

where

$$
\begin{aligned}
\operatorname{Cat}(n+1) & =\operatorname{Cat}(0) \cdot \operatorname{Cat}(n)+\operatorname{Cat}(1) \cdot \operatorname{Cat}(n-1)+\operatorname{Cat}(2) \cdot \operatorname{Cat}(n-2)+\cdots \\
& +\operatorname{Cat}(n-1) \cdot \operatorname{Cat}(1)+\operatorname{Cat}(n) \cdot \operatorname{Cat}(0) \\
& \left.=\sum_{i=0}^{n} \operatorname{Cat}(i) \cdot \operatorname{Cat}(n-i)=\frac{1}{2 n+1}\binom{2 n+1}{n} \quad \text { (to be explainel } . .\right)
\end{aligned}
$$

Combinatorics - the mathematics of counting
Counting: it's easy! 6 pennies
Counting : its hard! How many substitution codes $(A \rightarrow X, B \rightarrow F, C \rightarrow A, \ldots)$ are there? What if no later may substitute for itself?

A $26!=26 \cdot 25 \cdot 24 \cdots 2 \cdot 1 \approx 4 \cdot 10^{26}$
or $26!\left(\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\cdots+\frac{1}{26!}\right) \approx \frac{26!}{e} \approx 1.5 \cdot 10^{26}$
Euler's constant 2.71828 ...

What is counting?
Sequentially label with numbers so that each object gets exactly
 one label.
But...
What is a number?
Potential Answer The number 6 is the collection of all collections that can be "registered" with $\{1,2,3, x, 5,6\}$.
(2) Foundational monsters nearby!

Bijection
aba "cardinality"
Two salts (collections of objects) have the same size when there is a one-te-one correspondence (aka bijection) between them:

Write $|A|=|B|$ and call A and B equinumerous.
Note If we count A (say $|A|=n)$ and A and B are equinumerous, then $\left.\right|_{B} \mid=n$ as wall!

3 Counting Principles

1. Ad ditive Counting

For a set A, write $A=B \Perp C$ if every element of A is in exactly one of B or C. This is a partition of A, which is the disjoint union of B, C.
E.g. $\{1,2,3,4,5,6\}=\{2,5\} 11\{1,3,4,6\}$

Theorem If $A=B \Perp C$, then $|A|=|B|+|C|$.
E.g. (ct'd) $6=2+4$

3 Counting Principles
2. Multiplicative Counting

Theorem If we can enumerate (count) the elements of a set A by first making m choices and then making n choices, then $|A|=m \cdot n$.

Multiplicative Counting (ct'd)
Subsets
For sets A, B, suppose every element of A is also an element of B. Wa then call A a subset of B and write $A \subseteq B$.
Q If $|B|=n$, how many sets A are subsets of B ?
(If there are 12 flowers and your friend says you can take whichever you like, how many different bouquets can you make?)
A $\underbrace{\text { in lout }}_{b_{1}} \underbrace{\text { in/out }}_{b_{2}} \underbrace{\text { in lout }}_{b_{3}} \cdots \underbrace{\text { in lout }}_{b_{n}}$ Make 2 choices n consecutive $2 \cdot 2 \cdot 2 \cdots \cdot 2=2^{n}$ subsets.

Multiplicative Counting (ct'd)
Permutations
A permutation of $\{1,2, \ldots, n\}$ is a reordering of the elements, or, equivalently, a bijection $\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$:

Theorem Thess are $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$ permutations of an n-element set.

n	1	2	3	4	5	6	7	8	9
$n!$	1	2	6	24	120	720	5040	40320	362880

3 Counting Principles
3. Overcounting

Theorem If we count each element of a set A m times and our total count is N, then $|A|=\frac{N}{m}$.

Q Six colleagues at a business mating each shake each others hands exactly once? How many handshakes occur in total?
A Each of the 6 prop le shake 5 hands, so 6.5 handshake, but... we counted each handshake twice (Alice-Bob and $($ Bob-Alice $)$ so $\frac{6.5}{2}=15$ handshakes.

Overcounting $\left(c t^{\prime} d\right)$
Choosing k from n
Q How many differed flower bouquets can be made from 12 flowers?
First attempt 12.11 .10.9

We've overcounted by a factor of 4!, the number of permutations of each 4 flower bouquet.
A. $12 \cdot 11 \cdot 10 \cdot 9 /(4!)=495$

Theorem There are $\frac{n \cdot(n-1)(n-2) \cdots(n-k+1)}{k!}$ k-element subsets of $\{1,2, \ldots, n\}$.

The Binomial Triangle

- Write $\binom{n}{k}$ - read "n choose k " - for the $\#$ of k-element subsets of $\{1,2, \ldots, n\}$, so $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+2)}{k!}=\frac{n!}{k!(n-k)!}$.
- Let $A=\{$ such suts containing $n\}, B=\{$ such sets not containing $n\}$. so that $\binom{n}{k}=|A|+|B|$ (by additive counting principle)
- To count A, choose $k-1$ elements of $\{1,2, \ldots, n-1\}$ (then add n to the set), for B, choose k elements of $\{1,2, \ldots, n-1\}$.
Theorem $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad$ (Sometimes known as Pascal's identity)

The binomial triangle (ct'd)

The binomial triangle (ct'd)

Symmetry Theorem

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Row Sum Theorem,

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n} .
$$

Binomials \& Paths
Q How many. "N/E lattice paths" on the grid from $(0,0)$ to (n, k) ?

A $n+k$ total steps, exactly k of which are N 's, so

$$
\binom{n+k}{k}=\binom{n+k}{n} \text {. }
$$

Catalan Structures

1. Mountain Ranges:
$N E / S E$ lattice paths from $(0,0)$ to $(2 n, 0)$ that never go below the x-axis
2. Duck Paths:
N / E lattice paths from $(0,0)$ to (n, n) that never go above the diagonal:

Theorem There are $\frac{1}{n+1}\binom{2 n}{n}=:$ Cat (n) Dyck paths from $(0,0)$ to (n, n).
Proof Idea Lat L_{n} be the collection of N / E lattice paths from $(0,0)$ to (n, n) so that $\left|L_{n}\right|=\binom{2 n}{n}$. Now partition L_{n} as $E_{0} \Perp E_{1} \Perp \cdots \Perp E_{n}$ where $E_{i} \subseteq L_{n}$ consists of paths with i N steps above the diagonal.
(Note: $E_{0}=\{$ Dyck path $\}$.) Then

$$
\left|L_{n}\right|=\left|E_{0}\right|+\left|E_{1}\right|+\cdots+\left|E_{n}\right|
$$

by additive counting.
Claim. $\left|E_{0}\right|=\left|E_{1}\right|=\cdots=\left|E_{n}\right|$ (Try to prove it!)
Thus \#Dyck paths $=\left|E_{0}\right|=\frac{\left|L_{n}\right|}{n+1}=\frac{1}{n+1}\binom{2 n}{n}$.

Parentheses \& Handshakes

\leadsto EENEENNNEN $\leadsto(()(()))()$
Deck word: n E's, n N's well-balaneed \# E^{\prime} s $\geqslant N^{\prime}$ s reading last toright parentheses

$1,2, \ldots, 2 n$ in upper half plane
Theorem All of these structures are counted
 noncrossing hand shakes by $\frac{1}{n+1}\binom{2 n}{n}=\operatorname{Cat}(n)$.

Catalan Recurrence
Let $A^{n}=$ \{nested arcs joinining $1,2, \ldots, 2 n$ in upper half plane $\}$. Partition A^{n} according to k such that so that

$$
A^{n}=A_{1} \Perp A_{2} \Perp \cdots \Perp A_{n}
$$

$\in A_{8}$ for $n=5$. By multiplicative counting,

$$
\begin{aligned}
\left|A_{k}\right| & =\left|A^{k-1}\right| \cdot\left|A^{n-k}\right| \\
& =\operatorname{Cat}(k-1) \cdot \operatorname{Cat}(n-k)
\end{aligned}
$$

So by $(A)+$ additive counting,

$$
\left.\operatorname{Cat}(n)=\operatorname{Cat}(0) \operatorname{Cat}(n-1)+\operatorname{Cat}(1) \operatorname{Cat}(n-2)+\cdots+\operatorname{Cat}(n-1) \operatorname{Cat} \mathbf{C}_{0}\right) \text {. }
$$

$$
\begin{aligned}
& \operatorname{Cat}(0)= 1=\frac{1}{1}\binom{0}{0} \\
& \operatorname{Cat}(1)= \operatorname{Cat}(0) \cdot \operatorname{Cat}(0)=1=\frac{1}{2}\binom{2}{1} \\
&\operatorname{Cat}(2)=\operatorname{Cat} 10) \operatorname{Cat}(1)+\operatorname{Cat}(1) \operatorname{Cat}(0)=1 \cdot 1+1 \cdot 1=2=\frac{1}{3}\binom{4}{2} \\
&= 1 \cdot 2+1 \cdot 1+2 \cdot 1=5=\frac{1}{4}\binom{6}{3} \\
&= 1 \cdot 5+1 \cdot 2+2 \cdot 1+5 \cdot \operatorname{Cat}(2)+\operatorname{Cat}(1) \operatorname{Cat}(1)+\operatorname{Cat}(2) \operatorname{Cat}(0) \\
&+\frac{1}{5}\binom{8}{4} \\
&+\operatorname{Cat}(4) \operatorname{Cat}(3)+\operatorname{Cat}(1) \operatorname{Cat}(2)+\operatorname{Cat}(2) \operatorname{Cat}(1)+\operatorname{Cat}(3) \operatorname{Cat}(0) \\
&=1 \cdot 14+1 \cdot 5+2 \cdot 2+5 \cdot 1+14 \cdot 1=42)=\frac{1}{6}\binom{10}{5}
\end{aligned}
$$

Trees
A full binary tree looks like
Theorem There are $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$ full binary trees with $n+1$ leaves.
 two offshoots, one to the loft, the other to the right

Proof Idea Partition according to number of leaves on the left branch from the root:

Use this to show that \# full binary trees with $n+1$ leaves satisfies the Catalan recurrence:

Meanders (aqun problom!)

Meanders (ct'd)
There are $\operatorname{Cat}(n) \cdot \operatorname{Cat}(n)=\operatorname{Cat}(n)^{2}$ meandric systems with $2 n$ crosings

$$
n=3
$$

(๑) जि एि जि जि

जि जि जि जि ति
एि जि एिध जि जित

जि जि चैच जै़ रिज

Open Problem
Let $M_{n}^{(k)}:$ \# meand vic systems with $2 n$ crossings and k loops
$M_{n}:=M_{n}^{(1)}=$ closed meanders with $2 n$ crossings
Find a formular for M_{n} and $M_{n}^{(k)}$.

Henri Poincará

$$
1854-1912
$$

Francesco - Golinelli - Guitter, 1995
Solution for $n-5 \leq k \leq n$:

$$
\begin{aligned}
M_{n}^{(n)} & =\frac{(2 n)!}{n!(n+1)!} \\
M_{n}^{(n-1)} & =\frac{2(2 n)!}{(n-2)!(n+2)!} \\
M_{n}^{(n-2)} & =\frac{2(2 n)!}{(n-3)!(n+4)!}\left(n^{2}+7 n-2\right) \\
M_{n}^{(n-3)} & =\frac{4(2 n)!}{3(n-4)!(n+6)!}\left(n^{4}+20 n^{3}+107 n^{2}-107 n+15\right) \\
M_{n}^{(n-4)} & =\frac{2(2 n)!}{3(n-5)!(n+8)!}\left(n^{6}+39 n^{5}+547 n^{4}+2565 n^{3}-5474 n^{2}+2382 n-672\right) \\
M_{n}^{(n-5)} & =\frac{4(2 n)!}{15(n-6)!(n+10)!}\left(n^{8}+64 n^{7}+1646 n^{6}\right. \\
& \left.\quad+20074 n^{5}+83669 n^{4}-323444 n^{3}+257134 n^{2}-155604 n+45360\right)
\end{aligned}
$$

$k=1$: You, 2023 ?

Further Reading

DISCRETE STRUCTURES
Thank you to Dave and Reed's Math 113 students, and thank you!

