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A bounded set E in the plane is Jordan Measurable if xg is Riemann integrable. xg is discontinuous
exactly on OF, so from a general theorem, we have

Theorem 1. A bounded set E is Jordan measurable if and only if the Lebesgue measure of OF is 0.
However there is a better theorem:
Theorem 2. A bounded set E is Jordan measurable if and only if the Jordan measure of OF is 0.

Corollary 1. The boundary of a bounded set is of Lebesgue measure 0 if and only if it is of Jordan measure
0.

The corollary can be proved directly using the Heine-Borel theorem.

To prove Theorem 2 we start with a lemma.

Lemma 1. A set E is of Jordan measure 0 if and only szor every € > 0 there is a finite union of rectangles,

UR“ with sides parallel the the axis lines, so that E C UR and Z |R;| < e.
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Proof. If E has Jordan measure 0 then the upper sums Sp(xg) can be made as small as we please. This
gives 2 finite set of rectangles satisfying the requirement. On the other had if we have a set of rectangles

with Z |R;| < €/2and E C U R;, then by fattening them up slightly we can assume they are open. Then
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taking a partition P that makes all edges of these rectangles unions of rectangles in the partition, we find

that we can make Sp(xg) < €.
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Proof. (of Theorem 2.) Suppose E is Jordan measurable. Then there is a partition P such that 0F C
UR”, where sz are special rectangles and Z \RU] =Sp(xe) — sp(xe) < €.

For the reverse direction, suppose |0E| = 0. Then choose open rectangles such that OF C UR,- and
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Z |R;| < e. Now choose a partition P so that these rectangles are unions of rectangles defined by the
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partition. Then every rectangle not included in this union either consists entirely of points of E or entirely

of points of E°. Hence every special rectangle (see definition of special rectangles in the remark following)
for P and F is included in this union. Thus Z |Rij| = Sp(xE) — sp(xE) < € and xg is integrable.
O



jordan 2

REMARK. Here’s another argument. Let P be a partition and let Eij be the special rectangles for
FE in this partition. Recall the special rectangles are characterized by the property that él-j UE # () and
ﬁij U E° # (. By looking at separate cases, it’s not too hard to see that OF C U éw Here’s a summary
of that argument. If p € OF is in the interior of R;;, then R;; UE # () and R;; U E€ # (. If p € OF is on
the boundary of some rectangle, then: if p ¢ E then there is a point in one of the neighboring rectangles
that is in F; if p € E, then there is a point in a neighboring rectangle that is not in . So in every case, if
p € E, then p € EU for some special rectangle EU

We now have (for any partition, P),

Sp(xe) - sp(xs) = 3 |Ril. 1)

Taking inf’s,

A(E) ~ A(E) = mf{(Y_|Ryjl} (2)
Since OF C Uéij,
A(OE) < A (U Ezy) = Z |Rijl. (3)

Now take inf’s to get

A(OF) < A(E) — A(E) (4)

Now take any special rectangle. Since it contains a point in £ and a point in £° and since it is convex
it contains the line segment joining these two points. One of the points on this line segment must be a
point of F. Hence every special rectangle contains a point of F. That means that every special rectangle
contributes to the upper sum for JF. In other words,

Sp(xor) > > |Rijl. (5)
Take inf’s of both sides to get
ADE) > i (Y [Byl) = A(E) ~ A(E) (6)

and we get

A(E) — A(E) = A(OE),

whether E is measurable or not. In particular E is measurable if and only if A(QF) = 0.



