Induction

October 3, 2008

Here is an informal statement of the principle of induction.

Theorem 1. Let X be a subset of the natural numbers, $X \subset \mathbb{N}$. Suppose $1 \in X$ and if $n \in X$ then $n+1 \in X$. Then $X = \mathbb{N}$.

Proof. Every non-empty subset of $\mathbb N$ has a least element. Let $Y=\mathbb N-X$. If $X\neq \mathbb N$ then $Y\neq \emptyset$ and hence has a least element m. We know $1\in X$. So m>1 and $m-1\notin Y$, since m is the least element in Y. Hence $m-1\in X$. But then $m\in X$, by our assumption. This can't be since $m\in Y$, so $m\notin X$. Conclusion: $Y=\emptyset$ and $X=\mathbb N$.