Differentiability and the Chain Rule

September 24, 2010

This note will give an alternate definition of differentiability and derivation of the chain rule. I learned this idea from some notes of Michael Range. He attributes the idea to Caratheodory. The usual definition is as follows.

Definition 1. Let f be a function defined in a neighborhood of a point a in \mathbb{R}^n . f is differentiable at a if there is a vector $c = (c_1, c_2, \ldots, c_n) \in \mathbb{R}^n$ so that

$$\lim_{x \to a} \frac{f(x) - f(a) - \sum_{i=1}^{n} c_i (x_i - a_i)}{|x - a|} = 0.$$
 (1)

In this definition, |x-a| can be any one of the *p*-norms, $|x-a|_p = \left(\sum_{i=1}^n |x_i-a_i|^p\right)^{1/p}$. If we use the 1-norm we can write

$$|x|_1 = \sum_{i=1}^{n} \sigma_i x_i, \tag{2}$$

where σ_i is the sign of x_i . The numbers c_i are defined to be the partial derivatives of f at a, $\frac{\partial f}{\partial x_i}(a) = c_i$ and $\nabla f(a) = (c_1, \dots, c_n)$.

Theorem 1. f is differentiable at a if and only if there are functions $q_i(x), i = 1, ..., n$ which are continuous at a, such that

$$f(x) = f(a) + \sum_{i=1}^{n} q_i(x)(x_i - a_i).$$
(3)

Proof. Assume f is differentiable. Let

$$r(x) = \frac{f(x) - f(a) - \sum_{i=1}^{n} c_i(x_i - a_i)}{|x - a|_1}.$$
 (4)

By (1), $r(x) \to 0$ as $x \to a$. Using (2) rewrite (4) as

$$f(x) = f(a) + \sum_{i=1}^{n} (c_i + \sigma_i r(x))(x_i - a_i),$$
 (5)

where σ_i is the sign of $x_i - a_i$. Now let $q_i(x) = c_i + \sigma_i r(x)$. Since $r(x) \to 0$, q_i is continuous at a and we have proved (3).

Assume (3), where q_i is continuous at a. Then let $c_i = q_i(a)$. We can write $q_i(x) = c_i + r_i(x)$, where $r_i \to 0$ as $x \to a$. Then

$$\frac{f(x) - f(a) - \sum_{i=1}^{n} c_i(x_i - a_i)}{|x - a|} = \frac{\sum_{i=1}^{n} r_i(x)(x_i - a_i)}{|x - a|},$$
(6)

chain rule 2

and

$$\left| \frac{\sum_{1}^{n} r_{i}(x)(x_{i} - a_{i})}{|x - a|} \right| \leq \sum_{1}^{n} |r_{i}(x)|,$$

since $|x_i - a_i|/|x - a| \le 1$. This goes to 0 as $x \to a$.

Remark: $q_i(a) = \frac{\partial f}{\partial x_i}(a)$.

Theorem 2. (Chain rule) Let f be differentiable at $a \in \mathbb{R}^n$. Let $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ be differentiable at 0 and $\gamma(0) = a$. Then $g(t) = f(\gamma(t))$ is differentiable at 0 and

$$g'(0) = \nabla f(a) \cdot \gamma'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)\gamma_i'(0).$$

Proof. The proof is a string of equations. Differentiability of γ_i implies $\gamma_i(t) = \gamma_i(0) + s_i(t)t$ where s_i is continuous at 0 and $s_i(0) = \gamma_i'(0)$.

$$g(t) = f(\gamma(0)) + \sum_{1}^{n} q_{i}(\gamma(t))(\gamma_{i}(t) - \gamma_{i}(0))$$

$$= g(0) + \sum_{1}^{n} q_{i}(\gamma(t))(s_{i}(t))t$$

$$= g(0) + \left(\sum_{1}^{n} q_{i}(\gamma(t))(s_{i}(t))\right)t.$$

The expression $\sum_{i=1}^{n} q_i(\gamma(t))(s_i(t))$ is continuous at 0 and its value at 0 is

$$\sum_{1}^{n} c_{i} \gamma_{i}'(0) = \sum_{1}^{n} \frac{\partial f}{\partial x_{i}}(a) \gamma_{i}'(0).$$