Math 335 Sample Problems

One notebook sized page of notes (one side) will be allowed on the test. You may work together on the sample problems – I encourage you to do that. The test will cover 4.5, 4.6, 4.7, 5.6, 5.7, 5.8, 6.1, and 6.2. The midterm is on Monday, January 30.

- 1. Let f(x) satisfy $0 \le f(x) \le f(y)$ if $x \ge y$. Suppose $\int_1^\infty f(x)dx$ converges. Prove $\lim_{x \to +\infty} xf(x) = 0$.
- 2. Assume $a_n \geq 0$ for all $n \geq 1$. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges. Give an example of a sequence $a_n \geq 0$ such that $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges and $\sum_{1}^{\infty} a_n$ diverges.
- 3. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. (Assume $a_n \ge 0$.)
- 4. Let x_n be a convergent sequence and let $c = \lim_{n \to \infty} x_n$. Let p be a fixed positive integer and let $a_n = x_n x_{n+p}$. Prove that $\sum a_n$ converges and

$$\sum_{1}^{\infty} a_n = x_1 + x_2 + \dots x_p - pc.$$

- 5. Suppose $a_n > 0$, $b_n > 0$ for all n > 1. Suppose that $\sum_{1}^{\infty} b_n$ converges and that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for $n \geq N$. Prove that $\sum_{1}^{\infty} a_n$ converges.
- 6. Let S be the set of all positive integers whose decimal representation does not contain 2. Prove that $\sum_{n \in S} \frac{1}{n}$ converges.
- 7. Prove that $\int_0^\infty \cos x^2 dx$ converges, but not absolutely.
- 8. Let $a = \lim_{n \to \infty} a_n$. Prove that $\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$.
- 9. Decide if the following integrals converge conditionally, converge absolutely, or diverge.

(a)
$$\int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$$

$$\int_0^\pi \frac{dx}{(\cos x)^{\frac{2}{3}}}$$

(c)
$$\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$$

- 10. Let f and g be integrable on [a, b] for every b > a.
 - (a) Prove that

$$(\int_{a}^{b} |fg|)^{2} \le \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}.$$

(b) Prove that if $\int_a^\infty f^2$ and $\int_a^\infty g^2$ converge then $\int_a^\infty fg$ converges absolutely.

- 11. (a) Suppose $\sum_{1}^{\infty} a_n$ converges. Fix $p \in \mathbb{Z}^+$. Prove that $\lim_{n \to \infty} (a_n + a_{n+1} + \dots + a_{n+p}) = 0$.
 - (b) Suppose $\lim_{n\to\infty} (a_n + a_{n+1} + \dots a_{n+p}) = 0$ for every p. Does $\sum_{n=1}^{\infty} a_n$ converge?
- 12. Let C be the curve of intersection of y+z=0 and $x^2+y^2=a^2$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_C (xz+1)dx + (yz+2x)dy$.
- 13. (a) Prove that $\int_C \frac{-ydx + xdy}{x^2 + y^2}$ is not independent of path on $\mathbf{R}^2 \mathbf{0}$.
 - (b) Prove that $\int_C \frac{xdx + ydy}{x^2 + y^2}$ is independent of path on $\mathbf{R}^2 \mathbf{0}$. Find a function f(x,y) on $\mathbf{R}^2 \mathbf{0}$ so that $\nabla f = (\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2})$.
- 14. Let $a_n > 0$ and suppose $a_n \ge a_{n+1}$. Prove that $\sum_{1}^{\infty} a_n$ converges if and only if $\sum_{1}^{\infty} a_{3n}$ converges.
- 15. Suppose that $a_n>0$ is a sequence of positive numbers and suppose that the limit $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ exists. Then prove that $\lim_{n\to\infty}\sqrt[n]{a_n}$ exists and

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n}$$

- 16. You will need to know the definitions of the following terms and statements of the following theorems.
 - (a) Convergence and divergence of a series
 - (b) Comparison test
 - (c) Integral test
 - (d) Cauchy condensation test
 - (e) Root test and ratio test
 - (f) Stokes' theorem

- (g) Potentials and independence of path
- (h) Poincare's lemma
- (i) Improper single and multiple integrals
- (j) Integrals dependent on a parameter
- 17. There may be homework problems or example problems from the text on the midterm.