Math 335 Sample Problems

One notebook-sized page of notes (both sides may be used) will be allowed on the final exam. The final will be comprehensive.

1. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{\sin (n x)}{x} d x=\frac{\pi}{2}
$$

2. Define a function $\log _{p}(x)$ inductively by the formulas $\log _{0}(x)=x, \log _{p+1}(x)=$ $\log \left(\log _{p}(x)\right)$. Prove by induction that the series

$$
\sum_{n=m}^{\infty} \frac{1}{\log _{0}(n) \log _{1}(n) \log _{2}(n) \ldots \log _{p}(n)}
$$

(where m is large enough for the denominators to be defined as real numbers) diverges for every p.
3. Suppose that $a_{n}>0$, that a_{n} is decreasing, and that $\sum_{1}^{\infty} a_{n}$ converges. Is it true that $\lim _{n \rightarrow \infty} n a_{n}=0$? If true prove it, if false give a counterexample.
4. Show that the series $\sum_{1}^{\infty} \frac{\sin n x}{\sqrt{n}}$ converges for all x and uniformly on any interval of the form $[\delta, 2 \pi-\delta]$, where $\delta>0$ is small. Show that the series is not the Fourier series of a Riemann integrable function.
5. Find the solution of $u_{t}=3 u_{x x}, u(0, t)=u(\pi, t)=0, u(x, 0)=$ $\cos x \sin 5 x$. (This is easier than it looks.)
6. (a) Let $\sum_{0}^{\infty} a_{n} x^{n}$ be a series with radius of convergence R. Substitute $r e^{i \theta}$ for x and get a new series involving $e^{i n \theta}$. If $0<r<R$ prove that this is a Fourier series (the variable is θ).
(b) Prove that $\sum_{0}^{\infty} r^{2 n}\left|a_{n}\right|^{2}$ converges for $0 \leq r<R$.
7. Prove that

$$
\int_{0}^{1}\left(1-t^{4}\right)^{-1 / 2} d t=\frac{\Gamma\left(\frac{5}{4}\right) \sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)} .
$$

8. Folland, §8.6: problem 10.
9. You may assume that $\sum_{n \neq 0} \frac{e^{i n x}}{n}$ is the Fourier series of a Riemann integrable function. Since $\sum_{n>0} \frac{1}{n^{2}}<\infty$, the Riesz-Fischer Theorem asserts that $\sum_{n>0} \frac{e^{i n x}}{n}$ is also the Fourier series of a function in $L^{2}[-\pi, \pi]$. Prove that $\sum_{n>0} \frac{e^{i n x}}{n}$ is not the Fourier series of a piecewise continuous function. (Even more is true: this series is not the Fourier series of any Riemann integrable function.) You may use the fact that $-\log (1-z)=$ $\sum_{n>0} \frac{z^{n}}{n},|z|<1$ and that the real part of $\log (1-z)=\log (|1-z|)$.
10. Find the function (it's a polynomial of degree 2) represented by the series $\sum_{k \in \mathbf{Z}, k \neq 0} \frac{e^{i k x}}{k^{2}}$ by using the Fourier series for the 2π-periodic function equal to x on $(0,2 \pi)$. You may use $\sum_{k \in \mathbf{Z}, k \neq 0} \frac{1}{k^{2}}=\frac{\pi^{2}}{3}$.
11. Let f be a 2π-periodic function and let a be a fixed real number and let a new function g be defined by $g(x)=f(x-a)$. What is the relation between the Fourier coefficients $\widehat{f}(n)$ and $\widehat{g}(n)$?
12. Let f be a 2π-periodic, piecewise smooth function. Let $\widehat{f}(n)$ be the complex Fourier coefficients of f. Show that there is a constant M (which will depend on f) such that $|\widehat{f}(n)|<M / n$ for all n. Do not assume f is continuous.
13. Let f and g be continuous 2π-periodic functions. Define the convolution of f and g to be the function. $f * g(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x-t) g(t) d t$.
(a) Prove that $f * g$ is 2π-periodic.
(b) Prove that $\widehat{f * g}(n)=\widehat{f}(n) \widehat{g}(n)$, so the Fourier series of $f * g$ is $\sum_{-\infty}^{\infty} c_{n} d_{n} e^{i n x}$, where $c_{n}=\widehat{f}(n), d_{n}=\widehat{g}(n)$.
14. (a) Find the cosine series of f where
$f(x)=0,0<x<\pi / 2 ; f(x)=1, \pi / 2<x<\pi$.
(b) Prove that the series converges for all x.
(c) For which x does the series converge absolutely?
15. Find the Fourier series of

$$
\frac{1-r^{2}}{1-2 r \cos x+r^{2}}
$$

where $0 \leq r<1$. (You don't need to integrate.)
16. let f be 2π-periodic, continuous, and piecewise smooth. Let m be any positive integer and define the function f_{m} by the formula $f_{m}(x)=$ $f(m x)$. Prove that $\widehat{f_{m}}(n)=\widehat{f}\left(\frac{n}{m}\right)$ if m divides n and is 0 otherwise.
17. Determine a, b, c so that $f_{0}(x)=1, f_{1}(x)=x+a, f_{2}(x)=x^{2}+b x+c$ is an orthogonal set using the inner product $\langle f, g\rangle=\int_{0}^{2} f g$ on $[0,2]$.
18. There may be problems from the text, statements of theorems from the text, problems from previous review sets, or examples from class on the exam.

