Math 335 Sample Problems

One notebook sized page of notes (*one side*) will be allowed on the test. You may work together on the sample problems – I encourage you to do that. The test will cover 4.5-4.7, 5.4-5.8, and 6.1-6.4. The midterm is on Monday, February 3.

- 1. Let C be the curve of intersection of y + z = 0 and $x^2 + y^2 = a^2$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_C (xz+1)dx + (yz+2x)dy$.
- 2. (a) Prove that ∫_C (-ydx + xdy/x² + y²) is not independent of path on R² 0.
 (b) Prove that ∫_C (xdx + ydy/x² + y²) is independent of path on R² 0. Find a function f(x, y) on R² 0 so that ∇f = (x/x² + y²), (y/x² + y²).

3. Assume $a_n \ge 0$ for all $n \ge 1$. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges. Give an example of a sequence $a_n \ge 0$ such that $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges and $\sum_{1}^{\infty} a_n$ diverges.

4. Prove that if
$$\sum_{n=1}^{\infty} a_n$$
 converges then $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. (Assume $a_n \ge 0$.)

5. Let x_n be a convergent sequence and let $c = \lim_{n \to \infty} x_n$. Let p be a fixed positive integer and let $a_n = x_n - x_{n+p}$. Prove that $\sum a_n$ converges and

$$\sum_{1}^{\infty} a_n = x_1 + x_2 + \dots x_p - pc.$$

6. Suppose $a_n > 0$, $b_n > 0$ for all n > 1. Suppose that $\sum_{1}^{\infty} b_n$ converges and that $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$ for $n \ge N$. Prove that $\sum_{1}^{\infty} a_n$ converges.

7. Let S be the set of all positive integers whose decimal representation does not contain 2. Prove that $\sum_{n \in S} \frac{1}{n}$ converges.

- 8. Prove that $\int_0^\infty \cos x^2 dx$ converges, but not absolutely.
- 9. Let $a = \lim_{n \to \infty} a_n$. Prove that $\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$.

10. Decide if the following integrals converge conditionally, converge absolutely, or diverge.

(a)

$$\int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$$
(b)

$$\int_{0}^{\pi} \frac{dx}{(\cos x)^{\frac{2}{3}}}$$
(c)

$$\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$$

- 11. Let f and g be integrable on [a, b] for every b > a.
 - (a) Prove that

$$(\int_a^b |fg|)^2 \le \int_a^b f^2 \int_a^b g^2.$$

(b) Prove that if $\int_a^{\infty} f^2$ and $\int_a^{\infty} g^2$ converge then $\int_a^{\infty} fg$ converges absolutely.

- 12. (a) Suppose $\sum_{1}^{\infty} a_n$ converges. Fix $p \in \mathbb{Z}^+$. Prove that $\lim_{n \to \infty} (a_n + a_{n+1} + \dots + a_{n+p}) = 0$. (b) Suppose $\lim_{n \to \infty} (a_n + a_{n+1} + \dots + a_{n+p}) = 0$ for every p. Does $\sum_{1}^{\infty} a_n$ converge?
- 13. Let $a_n > 0$ and suppose $a_n \ge a_{n+1}$. Prove that $\sum_{1}^{\infty} a_n$ converges if and only if $\sum_{0}^{\infty} a_{3n}$ converges.

14. Let S be the surface (torus) obtained by rotating the circle $(x-2)^2 + z^2 = 1$ around the z-axis. Compute the integral $\int_S \mathbf{F} \cdot \mathbf{n} dA$, where $\mathbf{F} = (x + \sin(yz), y + e^{x+z}, z - x^2 \cos y)$.

Sample Problems

15. Let w(x) satisfy w''(x) + w(x) = 0, w(0) = 0, w'(0) = 1. Let $f(x) = \int_0^x (w(x-y))h(y)dy$. Prove that f''(x) + f(x) = h(x), f(0) = 0, f'(0) = 0.

16. Suppose $a_n > b_n > 0$, $a_n > a_{n+1}$ and $\lim_{n \to \infty} a_n = 0$. Does $\sum_{1}^{\infty} (-1)^n b_n$ converge? Give a proof or a counterexample.

- 17. We have covered the following:
 - (a) Divergence theorem
 - (b) Stokes' theorem
 - (c) Integrating vector derivatives
 - (d) Integrals dependent on a parameter
 - (e) Improper single and multiple integrals
 - (f) Convergence and divergence of a series
 - (g) Comparison test
 - (h) Integral test
 - (i) Cauchy condensation test
 - (j) Root test and ratio test
 - (k) Absolute and conditional convergence of a series
 - (l) Dirichlet's test
 - (m) Abel's test and theorem
- 18. There may be homework problems or example problems from the text on the midterm.