Double Series

February 5, 2011

This note is a brief discussion of double series.

Definition 1. Suppose $\{a_{m,n}\}$ is a double sequence. $\lim_{m,n\to\infty} a_{m,n} = a$ means that for every $\epsilon > 0$ there is an integer K so that if $m \geq K$ and $n \geq K$ then $|a_{m,n} - a| \leq \epsilon$.

Theorem 1. If $\lim_{m,n\to\infty} a_{m,n} = a$ and $\lim_{n\to\infty} a_{m,n}$ exists for every m then $\lim_{m\to\infty} (\lim_{n\to\infty} a_{m,n}) = a$.

Proof. Let $b_m = \lim_{n \to \infty} a_{m,n}$. For large enough $n, m |a_{m,n} - a| < \epsilon$. Hence $|\lim_{n \to \infty} a_{m,n} - a| = |b_m - a| \le \epsilon$. Hence $|\lim_{n \to \infty} b_m - a| \le \epsilon$. Since ϵ is arbitrary, $\lim_{m \to \infty} (\lim_{n \to \infty} a_{m,n}) = a$.

Definition 2. Let $\sum_{m,n} a_{m,n}$ be an infinite series. Let $\sum_{j=1,k=1}^{j=m,k=n} a_{j,k} = s_{m,n}$. $\sum_{m,n} a_{m,n}$ converges if $\lim_{m,n\to\infty} s_{m,n}$ exists.

Corollary 1. If $\sum_{m,n} a_{m,n}$ converges and $\sum_{n=1}^{\infty} a_{m,n}$ exists for all m, then

$$\sum_{m,n} a_{m,n} = \sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}).$$

Definition 3. $\sum_{m,n} a_{m,n}$ converges absolutely if $\sum_{m,n} |a_{m,n}|$ converges.

Theorem 2. If $\sum_{m,n} a_{m,n}$ converges absolutely then $\sum_{m,n} a_{m,n}$ converges and the sum can be computed by any arrangement of the terms.

This theorem is proved in the same way as the theorem for singly indexed series.

Theorem 3. If $\sum_{m=0}^{\infty} (\sum_{n=0}^{\infty} |a_{m,n}|)$ converges then $\sum_{m=0}^{\infty} a_{m,n}$ converges absolutely and $\sum_{m=0}^{\infty} a_{m,n} = \sum_{m=0}^{\infty} (\sum_{n=0}^{\infty} a_{m,n})$. We can compute the sum $\sum_{m=0}^{\infty} a_{m,n}$ in any order.

Proof. $\sum_{j,k}^{m,n} |a_{j,k}| \leq \sum_{j}^{m} \sum_{k}^{\infty} |a_{j,k}| \leq \sum_{j}^{\infty} (\sum_{k}^{\infty} |a_{j,k}|)$, so $\sum_{m,n} a_{m,n}$ converges absolutely, hence converges. Now we can use Theorem 1 to complete the proof.

Theorem 4. Suppose $\sum_n a_n$ and $\sum_n b_n$ converge absolutely. Let $A = \sum a_n$, $B = \sum b_n$, $c_n = \sum_{j+k=n} a_j b_k$. Then $AB = \sum_n c_n$.

Proof. Let $d_{j,k} = a_j b_k$. Then $\sum_j (\sum_k |d_{j,k}|)$ converges, hence $AB = \sum_j (\sum_k d_{j,k}) = \sum_k c_n$ since we can compute the sum in any order.