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This paper explains two important results about compactness, the Heine-
Borel theorem and the Arzela-Ascoli theorem. We prove them first in Rd. Then
(for the more curious) we explain how they generalize to the more abstract
setting of metric spaces.

These results are well-known among mathematicians and are taught to all
graduate students and many undergraduates. An overview of the history of the
theorems can be found on Wikipedia. We also give references to several proofs
in textbooks.

This exposition is meant to be accessible to advanced undergraduate math
majors. It was written for students at the University of Washington honors
advanced calculus series, Math 334-336. I was the TA in the 2014-2015 academic
year with professor James A. Morrow, and the textbook was Folland’s Advanced
Calculus [2].

1 The Heine-Borel Theorem

The goal of this section is to prove the following theorem which shows that
different definitions of compactness are equivalent. Some references for this
theorem are [4, Theorem 2.41] and [2, Theorems 1.21 and 1.24].

Theorem 1. Let S ⊂ Rd. The following are equivalent:

a. Every open cover of S has a finite subcover.

b. S is closed and bounded.

c. Every sequence in S has a subsequence converging to a point in S.

Part 1: Prove (a) implies (b).

Assume (a) holds. First, we show S is bounded. Let B(0, k) be the open ball
of radius k centered at the origin. The collection {B(0, k)}∞k=1 is an open cover

of S. By (a) it has a finite subcover, so S ⊂
⋃J
j=1B(0, kj). The union of these

balls is equal to the largest ball since they are nested. Thus, S is contained in
some ball, so it is bounded.
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To prove S is closed, it suffices to show that S contains all its limit points.
Suppose that {xn} is a sequence in S converging to a point x0. Suppose for the
sake of contradiction that x0 6∈ S. Let Ok = {x : |x − x0| > 1/k}. Then the
union of the Ok’s is Rd \ {x0}, which contains S. Thus, {Ok} is an open cover
of S, so there is a finite subcover. Since the Ok’s are nested, we have S ⊂ Ok
for some k. By definition of Ok, this means that |x − x0| > 1/k for all x ∈ S.
In particular, |xn − x0| > 1/k. But this contradicts xn → x0. Therefore, what
we assumed was false and x0 ∈ S as desired.

Part 2: Prove (b) implies (c).

Assume (b) holds. Let {xn} be a sequence in S. We must construct a convergent
subsequence. Since S is bounded, it is contained in some cube Q1 = [−N,N ]d.
Divide Q1 into 2d cubes with half the length. Since there are infinitely many
indices n in the sequence, one of the smaller cubes must contain xn for infinitely
many n. Call this smaller cube Q2. Now subdivide Q2 and find a cube Q3 ⊂
Q2 of half the length which also contains xn for infinitely many n. Continue
inductively to construct a sequence of nested cubes Q1 ⊃ Q2 ⊃ Q3 ⊃ . . . such
that each cube has half the length of the previous one, and each cube contains
infinitely many points of the sequence.

Now we choose our subsequence as follows: Let xn0
= x0. Let n2 be the

first index such that xn2
∈ Q2. Let n3 be the first index greater than n2 such

that xn3
∈ Q3; such an n3 must exist because Q3 contains infinitely points of

the sequence. Let nj be the first index greater than nj−1 such that xnj ∈ Qj .
This defines a subsequence {xnj}∞j=1.

We claim {xnj
} is Cauchy. Choose ε > 0. Choose J large enough that

the diagonal of the cube QJ has length less than ε (specifically, choose J such
that

√
dN2−J < ε). If j, k ≥ J , then xnj

and xnk
are in QnJ

, and therefore,
|xnj
− xnk

| < ε. This shows {xnj
} is Cauchy and hence it converges.

Part 3: Prove (c) implies (a).

This is the hardest part, and has several steps. First, note that if (c) holds,
then S must be bounded. Indeed, if it was not bounded, there would exist a
sequence {xn} in S such that |xn| → ∞. This sequence could not possibly have
a convergent subsequence.

The next step is the following lemma, which is interesting in itself:

Lemma 1 (Lebesgue number lemma). Suppose S ⊂ Rd and (b) holds. Let
{Uα}α∈A be an open cover S. There exists a δ > 0 such that any set E ⊂ S
with diamE < δ is contained in a single Uα.

Remarks: Here the diameter of a set E ⊂ Rd is

diamE = sup
x,y∈E

|x− y|.

2



Also, A is just some set which we use to index the open sets in our cover. The
number δ is called a Lebesgue number for {Uα}.

Proof of Lemma 1. Suppose for the sake of contradiction that no such δ exists.
That means that in particular that δ = 1/k does not work for any integer k. So
for any integer k, there exists Ek ⊂ S with diamEk < 1/k such that Ek is not
contained in any single Uα. Choose a point xk ∈ Ek. Since we assumed (b), the
sequence {xk} has a subsequence {xkj} converging to a point x0 ∈ S.

Then x0 is in some Uα, and since Uα is open, there is a ball B(x0, r) ⊂ Uα.
Choose j large enough that 1/kj < r/2 and |xkj − x0| < r/2. Then diamEk <
r/2. So if y ∈ Ek, we have |y − xkj | < 1/kj < r/2. But |xkj − x0| < r/2, so
by the triangle inequality, |y− x0| < r. Therefore, Ek ⊂ B(x, r) ⊂ Uα, and this
contradicts our choice of Ek.

Completing the proof of Part 3. Let Uα be an open cover of S. We must find
a finite subcover. Let δ > 0 be a Lebesgue number for the open cover, as
constructed in the Lemma. Since S is bounded, it is contained in some cube.
By subdividing the cube into small pieces, we can cover S by finitely many
cubes Q1, . . . , QK such that diamQk < δ. Then diam(S ∩Qk) ≤ diamQk < δ,
and therefore each S∩Qk is contained in some Uαk

by the definition of δ. Since
the S ∩Qk’s cover S, we know that the Uαk

’s cover S, and hence Uα1
, . . . , UαK

is the desired finite subcover.

2 The Arzela-Ascoli Theorem in Rd

Any bounded sequence of real numbers has a convergent subsequence. How-
ever, the same is not true for sequences of functions, especially if “convergence”
means uniform convergence. Consider the example fn(x) = sinnx. I claim that
no subsequence converges uniformly on [0, 2π]. Suppose for the sake of contra-
diction that a subsequence {fnj

}∞j=1 converges uniformly on [0, 2π]. Then it is
uniformly Cauchy, so there is an J such that

|fnj
(x)− fnk

(x)| < 1 for all x ∈ [0, 2π], for all j, k ≥ J.

For a given j ≥ J , there is an interval (a, b) ⊂ [0, 2π] on which sinnjx > 0.
Now choose k large enough that 2π/nk < b− a. Then (a, b) must contain a full
period of sinnkx, and hence contains a point x0 with sinnkx = −1. Then

| sinnjx0 − sinnkx0| > 1,

contradicting the above assertion that the subsequence is uniformly Cauchy.
Thus, for a sequence of functions to have a convergent subsequence, we will

need stronger hypotheses than merely boundedness. We will assume that the
sequence is equicontinuous, which means that for any x0 ∈ Rd and ε > 0, there
exists a δ > 0 such that

|x− x0| < δ implies |fn(x)− fn(x0)| < ε for all n.
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Equicontinuity of a sequence of functions is stronger than just continuity, be-
cause it requires that the same δ work for all of the functions. We can see
from the above example that this does not happen automatically: The sequence
sinnx is not equicontinuous; if we take x0 = 0 and ε < 1, then for any δ, there
is an n such that sinnx = 1 for some x with |x− x0| < δ, so we cannot get the
same δ to work for all the fn’s.

We will also assume that the sequence {fn} is pointwise bounded, which
means that for each x0, the sequence of real numbers {fn(x0)}∞n=1 is bounded.
The following theorem is due to Arzela and Ascoli. Proofs can be found in [4,
Theorem 7.26], [1, §4.6], [3, §11.4].

Theorem 2 (Arzela-Ascoli). Suppose {fn} is a sequence of functions Rn → R
which is equicontinuous and pointwise bounded. Then there exists a subsequence
fnj

which converges uniformly on compact sets to a continuous function f .

“Uniform convergence on compact sets” means the following: For each com-
pact set S and each ε > 0, there exists a K such that

|fnj
(x)− fnk

(x)| < 1 for all x ∈ S, for all j, k ≥ K.

Here, K depends on S and ε.
Our strategy will be construct a subsequence fnj

such that {fnj
(x)} con-

verges whenever x is a rational number. Then we will have to prove that in fact
fnj (x) converges for all real numbers, and that the convergence is uniform on
compact sets. To do this, we will need the following lemma.

Lemma 2. Let {fn} be an equicontinuous and pointwise bounded sequence of
functions Rd → R. If S ⊂ Rd is compact, then S is uniformly equicontinuous
on S.

“Uniformly equicontinuous on S” mean that for any ε > 0, there exists a
δ > 0 such that

|x− y| implies |fn(x)− fn(y)| < ε for all x, y ∈ S, for all n.

This is a stronger condition than equicontinuity: In equicontinuity, the δ is
allowed to depend on ε and x, but not n. In uniform equicontinuity, the δ is
allowed to depend on ε, but not n or x.

Proof of Lemma. The proof of the lemma is exactly the same as the proof that a
continuous function is uniformly continuous on any compact set: Choose ε > 0.
By equicontinuity, for each z, there exists a δz such that

|z − y| < δz implies that |fn(z)− fn(y)| < ε/2 for all n.

The balls {B(z, δz)}z∈S form an open cover of S. By the Lebesgue number
lemma, there exists a δ such that any E ⊂ S with diamE < δ is contained in
some open set from our cover. Then if |x− y| < δ, the set {x, y} has diameter
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less than δ, so x and y are both contained in B(x, δz) for some z ∈ S. This
implies that

|fn(x)− fn(z)| < ε/2 and |fn(y)− fn(z)| < ε/2 for all n.

Hence, by the triangle inequality, |fn(x) − fn(y)| < ε for all n. Since x and y
were arbitrary, we know that

|x− y| < δ implies |fn(x)− fn(y)| < ε for all x, y ∈ S, for all n.

Proof of Arzela-Ascoli Theorem. We first find a subsequence fnj
such that for

each x with rational coordinates, the sequence of numbers {fnj
(x)}∞j=1 con-

verges. The argument is a version of Cantor’s famous “diagonalization” proof.
The rational numbers can be listed in a sequence {ak}∞k=1. The “pointwise
boundedness” assumption guarantees that {fn(a1)}∞n=1 is a bounded sequence of
real numbers, hence there is a subsequence {fnj} such that {fnj (x)} which con-
verges. To avoid horrible notation later, denote this subsequence by {f1,j}∞j=1.
Now note that {f1,j(a2)} is a bounded sequence, and therefore, we can choose a
subsequence {f2,j}∞j=1 such that {f2,j(a2)} converges. We continue inductively:
Once the subsequence {fk,j}∞j=1 has been chosen, we choose a subsequence of
that called {fk+1,f}∞j=1 such that {fk+1(ak)} converges.

The end result is a sequence of sequences,

f1,1, f1,2, f1,3, . . .

f2,1, f2,2, f2,3, . . .

f3,1, f3,2, f3,3, . . .

. . .

where each row is a subsequence of the previous row and they are all sub-
sequences of {fn}. Consider the diagonal sequence {fj,j}∞j=1. For each k, the
sequence {fj,j}∞j=k is a subsequence of {fk,j}∞j=k. Since {fk,j(ak)}∞j=1 converges,
we know {fj,j(ak)}∞j=k converges. This implies {fj,j(ak)}∞j=1 converges (since
this only depends on the behavior for j ≥ k).

Therefore, {fj,j} is a subsequence of fn which converges at all the rational
points. Let’s rename {fj,j} as {fnj

}. We now have to prove that {fnj
} converges

uniformly on each compact set S. Since S is contained in some ball B. Since
we do not yet have a candidate for a limit function, we will do this by proving
it is uniformly Cauchy on S. Choose ε > 0. By the Lemma, there is a δ such
that

|x− y| < δ implies |fn(x)− fn(y)| < ε/3 for all x, y ∈ S, for all n.

The balls {B(y, δ/2)}y∈S are an open cover of S, and thus, we can cover S by
finitely many balls {B(y`, δ/2)}L`=1. Let z` be a rational number in B(y`, δ/2).
Since {fnj (z`)} converges, it is Cauchy, and there is a K` such that

|fnj (z`)− fnk
(z`)| < ε/3 for all j, k ≥ K`.
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Let K = max(K1, . . . ,KL) (here it is essential that we had finitely many z`’s).
I claim that

|fnj (x)− fnk
(x)| < ε for all x ∈ S for all j, k ≥ K.

Any x ∈ S is contained in some B(y`, δ/2), which implies |x − z`| ≤ |x − y`| +
|z` − y`| < δ. Thus, by our choice of δ,

|fn(x)− fn(z`)| < ε/3 for all n.

For j, k ≤ K, we have

|fnj
(x)− fnk

(x)| ≤ |fnj
(x)− fnj

(z`)|+ |fnj
(z`)− fnk

(z`)|+ |fnk
(z`)− fnk

(z)|

<
ε

3
+
ε

3
+
ε

3
= ε

as claimed.
Thus, {fnj

} is uniformly Cauchy on S and therefore it converges uniformly
on S to a continuous function. This implies that for any x, {fnj (x)} con-
verges (by taking S = {x}). Thus, there is a well-defined limit function f(x) =
limj→∞ fnj

(x). On any compact set S, fnj
converges uniformly to f . This f

is continuous on any ball B because on B it is a uniform limit of continuous
functions.

Remark: The same proof will work if fn is defined on any open set Ω ⊂ Rd
rather than Rd (with slight modification).

Exercise 1. Let {fn} be a sequence of continuous functions Rd and f a con-
tinuous function. Prove that fn → f uniformly on compact sets, if and only if
every subsequence of {fn} has a subsubsequence which converges to f uniformly
on compact sets.

The following exercise is an example of the use of compactness in proving
existence of solutions to differential equations, which can found in [3, §11.5]. We
remark that compactness is often used to prove existence of solutions to partial
differential equations in the setting of Sobolev spaces.

Exercise 2 (Peano’s existence theorem). Consider the differential equation y′ =
F (t, y), where F is continuous on [−a, a]× [−b, b] for some a, b > 0. Prove that
it has a solution y(t) with y(0) = 0 defined in some neighborhood of the origin
by the following steps:

a. Note F is bounded. If |F (t, y)| ≤M , then choose δ such that Mδ ≤ b.

b. (Integral equation with a time delay): For each n, prove that there is a yn :
[−δ/n, δ]→ R with yn(0) = 0 and

yn(t) =

∫ t

0

F (s− δ/n, y(s− δ/n)) ds for t ∈ [0, δ].

6



Hint: Set yn(t) = 0 for t ∈ [−δ/n, 0], then define yn on [0, δ/n] by the integral
equation above. Show that |yn(t)| ≤ b/n on this interval. Next, extend yn
to [δ/n, 2δ/n] and show it is bounded by 2b/n on this interval. Continue
inductively.

c. Show that the sequence {yn} is equicontinuous and pointwise bounded on
[0, δ]. Conclude there is a subsequence converging uniformly to some y :
[0, δ]→ R.

d. Prove that y satisfies the integral equation:

y(t) =

∫ t

0

F (s, y(s)) ds for t ∈ [0, δ].

e. By a symmetrical argument, construct a solution on [−δ, 0]. Paste these
solutions together to obtain a solution of the integral equation on [−δ, δ] and
conclude that it solves the differential equation.

f. Using the example y′ = y1/3, show that the solution is not necessarily unique.

3 Metric Spaces

In Rd, we had a distance function d(x, y) = |x − y| that satisfies the following
important properties:

• Nonnegativity: d(x, y) is a nonnegative real number.

• Non-degeneracy: d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

For many basic results about continuity, compactness, connectedness, etc., all
we needed was the ability to measure distance. So we could have done the proofs
on some abstract set in which all we assumed was that a distance function exists.
So we make the following general definition: A metric space (X, d) is a set X
with a distance function d that satisfies the four properties listed above.

Metric spaces are everywhere. Here are a few important examples:

• X = Rd is a metric space with d(x, y) = |x− y|.

• Take X = C([0, 1]), the set of continuous functions f : [0, 1] → R. We
define d(f, g) = supx∈[0,1] |f(x)−f(y)|. You should verify that this satisfies
the triangle inequality and other properties for a distance function.

• Take X = C([0, 1]), but with a different distance function: d(f, g) =∫ 1

0
|f − g|. Verify that this is actually is a distance function.

• If X is a metric space, and Y ⊂ X, then Y is also a metric space with the
same distance function (if d : X ×X → [0,∞), then the distance function
for Y is the restriction to Y × Y ).

7



Open and Closed Sets, Continuity

The ideas of balls, open sets, and continuity generalize to metric spaces. Suppose
(X, d) is a metric space. If x ∈ X and r > 0, we define B(x, r) = {y ∈ X :
d(x, y) < r. We say U ⊂ X is open if for any x ∈ U , there exists r > 0 such
that B(x, r) ⊂ U . Observe/verify the following properties:

• X and ∅ are open.

• Any union of open sets is open.

• A finite intersection of open sets is open.

• Balls are open. (The proof uses the triangle inequality.)

We say C ⊂ X is closed if Cc is open.
If (X, d) and (Y, d′) are metric spaces, we say f : X → Y is continuous if

the following holds: If V ⊂ Y is open, then f−1(V ) ⊂ X is open. Equivalently,
f : X → Y is continuous if for any x0 ∈ X and any ε > 0, there exists a δ > 0
such that d(x, x0) < δ implies d′(f(x), f(x0)) < ε. (You should verify that these
two definitions of continuity are equivalent; the proof is exactly the same as the
proof for X = Rd.)

Sequences, Completeness, and Compactness

If {xn} is a sequence in X, we say xn → x if d(xn, x) → 0. If f is continuous
and xn → x, then f(xn)→ f(x). As an exercise, prove

Proposition 1. The following are equivalent:

• Y ⊂ X is closed.

• If {yn} is a sequence in Y and yn → y0, then y0 ∈ Y .

We say {xn} is Cauchy if for any ε > 0, there exists N such that d(xn, xm) <
ε for all m,n ≥ N . In Rn, we saw that all Cauchy sequences converge. However,
this is not the case in general. For example, Q is a metric space with d(x, y) =
|x − y|, but not every Cauchy sequence of rational numbers converges to a
rational number. If it happens that every Cauchy sequence in X converges to a
point in X, then we say X is complete. For example,

• The real numbers are complete.

• If X is complete, then Y ⊂ X is complete if and only if it is closed. Here
completeness of Y means that every Cauchy sequence in Y converges to a
point in Y , not just a point in X.

• C([0, 1]) is complete in the metric d(f, g) = supx∈[0,1] |f(x) − f(y)|. (See
below.)
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• However, it is not complete in the metric d(f, g) =
∫ 1

0
|f − g|. (You might

have to think about this a while before you can find an example of a
Cauchy sequence which does not converge to a continuous function.)

In Rd, we showed that compact sets satisfy a covering property. In the
general case, we will take this covering property as the definition: We S ⊂ X is
compact if every open cover of X has a finite subcover. Just as in Rd, continuous
functions map compact sets to compact sets.

Proposition 2. Let X and Y be metric spaces and f : X → Y a continuous
function. If S ⊂ X is compact, then f(S) is compact.

Proof. Let {Vα}α∈A be an open cover of f(S). Let Uα = f−1(Vα). Then
{Uα}α∈A is an open cover of S, because for any x ∈ S, f(x) must be in some
Vα, and then x ∈ Uα. Since S is compact, there is a finite subcover Uα1

, . . . , UαK
.

Then Vα1 , . . . , VαK
are a finite subcover of f(S); for if y ∈ f(S) and y = f(x),

then x is in some Uαk
, which means f(x) ∈ Vαk

.

For any compact metric space X, let C(X) be the space of continuous func-
tions X → R (or X → C if you prefer), with the distance given by

d(f, g) = ‖f − g‖u = sup
x∈X
|f(x)− g(x)|.

The supremum must be achieved because f − g is a continuous function on a
compact set X, so the image must be a compact subset of R. Thus, the distance
function is well-defined. Now let’s prove

Proposition 3. C(X) is complete.

Proof. Suppose {fn} is a Cauchy sequence in C(X). For any x ∈ X, {fn(x)} is
a Cauchy sequence of real numbers because

|fn(x)− fm(x)| ≤ ‖fn − fm‖u .

Thus, f(x) = limn→∞ fn(x) exists. Now we must show that ‖fn − f‖u → 0.
Choose ε > 0. There exists N such that

‖fn − fm‖u ≤ ε for all n,m ≥ N.

So for any x, |fn(x) − fm(x)| ≤ ε for n,m ≥ N . Taking m → ∞ shows that
|fn(x)− f(x)| ≤ ε for all n ≥ N . Since x was arbitrary, we have ‖fn − f‖u ≤ ε.
Thus, fn → f uniformly. Finally, we must show f is continuous. Fix x0 ∈ X
and ε > 0. Choose n large enough that ‖fn − f‖u < ε/3. Since fn is continuous,
there exists a δ such that

d(x, x0) < δ implies |fn(x)− fn(x0)| < ε/3.

By the triangle inequality, d(x, x0) implies

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|
< ε.

Thus, f is continuous and fn → f in the C(X) metric.
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4 Generalization of the Heine-Borel Theorem

S is sequentially compact if every sequence in S has a subsequence converging to
a point in S. As in Rd, compactness and sequential compactness are equivalent.
However, a closed and bounded set might not be compact, for two reasons.

First, if our metric spaceX is not complete, we could have a Cauchy sequence
{xn} contained in S which does not converge to anything; in that case, it would
not be possible to find a convergent subsequence, so S would not be sequentially
compact. Thus, we need to assume that S is complete even if the larger metric
space isn’t.

Second, the proof of the Heine-Borel theorem used the fact that any bounded
set in Rd can be covered by finitely many cubes of diameter < δ. In other metric
spaces, a bounded set might not be coverable by finitely many sets of diameter
< δ. So we use a stronger condition called total boundedness: S is totally
bounded if for any r > 0, S can be covered by finitely many balls of radius
r. The center of each ball is assumed to be in S. We can now generalize the
Heine-Borel theorm to the following (see also [1, Theorem 0.25], [3, §11.2]):

Theorem 3. Let X be a metric space and S ⊂ X. The following are equivalent:

a. S is compact.

b. S is complete and totally bounded.

c. S is sequentially compact.

Proof. (a) implies (b). First, we show S is complete. Suppose {xn} is a Cauchy
sequence in S. Let

δn = sup
m≥n

d(xm, xn).

Since the sequence is Cauchy, δn must be finite and approach zero as n → ∞
(verify). Let

On = {x ∈ X : d(x, xn) > δn}.

This set is open (verify). Any finite subcollection On1
, . . . , Onk

cannot cover S;
for if N = max(n1, . . . , nk), then we have N ≥ nk for each k, and hence

d(xnk
, xN ) ≤ sup

m≥nk

d(xm, xnk
) = δnk

.

But d(xN , xnk
) ≤ δnk

means that xN 6∈ Onk
, but xN ∈ S. Thus, On1

, . . . , OnK

do not cover S. Therefore, {On}∞n=1 must not be a cover of S, since otherwise we
could find a finite subcover On1 , . . . , OnK

, which we just proved was impossible.
So there is an x0 ∈ S which is not in any of the On’s. This implies that
d(x0, xn) ≤ δn → 0, and therefore xn → x0.

Now we show S is totally bounded. Choose r > 0. Then {B(x, r)}x∈S is an
open cover of S, so there is a finite subcover B(x1, r), . . . , B(xK , r). So S can
be covered by finitely many balls of radius r.
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(b) implies (c). Let {xn} be a sequence in S. We construct a Cauchy
subsequence using a similar diagonalization argument to the proof of Arzela-
Ascoli earlier. We define subsequences {xk,n}∞n=0 by induction on k. Let x0,n =
xn. Now suppose {xk,n} has been chosen. By (b), we can cover S by finitely
many balls of radius 1/k. Since there are only finitely many balls, at least one
of them must contain xk,n for infinitely many values of n. Call it B(yk, 1/k),
and let {xk+1,n} be the subsequence of {xk,n} consisting of all the points in
B(yk, 1/k). Then let xnj

= xj,j . To show {xnj
} is Cauchy, choose ε > 0,

and let 2/K < ε. For j, k ≥ K, we know xnj
= xj,j is an element of the

sequence {xj,n}∞n=1 and the same holds for xnk
. Thus, xnj

and xnk
are both in

B(yK , 1/K), and so by the triangle inequality

d(xnj
, xnk

) < 2/K < ε for all j, k ≥ K.

So {xnj
} is Cauchy and converges to a point in S by (b).

(c) implies (a). Let {Uα} be an open cover. As before, our strategy is to
prove first that there is a Lebesgue number δ such that any set of diameter less
than δ is contained in a single Uα, and second that S can be covered by finitely
many sets of diameter less than δ.

First, let’s show {Uα} has a Legesgue number δ. Suppose not. Then there
exists En with diamEn < 1/n such that En is not contained in any Uα. Let
xn ∈ En. By (c), there is a convergent subsequence xnj

→ x0 ∈ S. Then x0 is
in some Uα0 , and there is a ball B(x0, r) ⊂ Uα0 . Choose j large enough that
1/nj < r/2 and d(xnj , x0) < r/2. Then if y ∈ Enj , we have

d(y, x0) ≤ d(y, xnj ) + d(xnj , x0) < 1/nj + r/2 < r,

and therefore, y ∈ B(x0, r) and y ∈ Uα0
. This shows Enj

⊂ Uα0
contrary to our

assumption. So there is a Lebesgue number for {Uα}.
Next, we show that S can be covered by finitely many balls of radius ε < δ/2.

Suppose not. Choose some x1 ∈ S. By assumption, B(x1, ε) does not cover S,
so we can choose an x1 ∈ S\B(x1, ε). We construct a sequence {xn} inductively:
Once x1, . . . , xn are chosen, S is not covered by B(x1, ε), . . . , B(xn, ε), so there
is an xn+1 ∈ S that is not in any of these balls. Then if j < k, we have
d(xj , xk) ≥ ε since xk 6∈ B(xj , ε). Therefore, {xn} cannot have a convergent
subsequence, a contradiction.

Therefore, S can be covered by finitely many balls B(x1, ε), . . . , B(xK , ε).
Since diamB(xk, ε) ≤ 2ε < δ, we know each B(xk, ε) is contained in some Uαk

.
Therefore, Uα1

, . . . , UαK
is the desired finite subcover of S.

5 Generalized Arzela-Ascoli Theorem

The Arzela-Ascoli theorem generalizes to continuous functions on a compact
metric space X. The definitions of equicontinuous and pointwise bounded are
exactly the same as for functions on Rd, and we could state a version of the
Arzela-Ascoli theorem that sounds exactly the same as Theorem 2. However,
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here we will look at the theorem more topologically–as a characterization of
compact subsets of C(X). The proof deals with the three metric spaces X, R,
and C(X), and roughly speaking relates balls in C(X) to balls in X and R.

This proof is based on [1, §4.6] and [3, §11.4].

Theorem 4. Let X be a compact metric space, and let F ⊂ C(X).

1. F is totally bounded if and only if it is equicontinuous and pointwise bounded.

2. F is compact if and only if it is closed, equicontinuous, and pointwise bounded.

3. Any equicontinuous and pointwise bounded sequence in C(X) has a conver-
gent subsequence.

4. Any convergent sequence in C(X) is equicontinuous and pointwise bounded.

Proof. (1). Suppose F is totally bounded. We can choose finitely many C(X)-
balls B(f1, 1), . . . , B(fK , 1) which cover F . Let M = max(‖f1‖u , . . . , ‖fk‖u)+1.
Any f ∈ F is in contained in some B(fk, 1), which implies

‖f‖u ≤ ‖fk‖u + ‖f − fk‖u ≤M.

So |f(x)| ≤ M for all x, and {f(x)}f∈F is bounded. (This proof in fact shows
F is uniformly bounded since the M did not depend on x.)

To prove F is equicontinuous, choose x0 ∈ X and ε > 0. By assumption, F
can be covered by finitely many balls B(f1, ε/3), . . . , B(fK , ε/3). For each fk,
there is a δk such that

d(x, x0) < δk implies |fk(x)− fk(x0)| < ε/3.

Let δ = min(δ1, . . . , δK). Any f ∈ F is contained in some B(fk, ε/3), which
implies ‖fk − f‖ < ε/3. If d(x, x0) < δ ≤ δk, then we have

|f(x)− f(x0)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(x0)|+ |fk(x0)− f(x0)|
≤ ‖f − fk‖u + |fk(x)− fk(x0)|+ ‖f − fk‖u
< ε.

Since the same δ works for all f , we have equicontinuity.
Conversely, suppose F is equicontinuous and pointwise bounded, and we

prove it is totally bounded. Choose r > 0. For each x ∈ X, there is an δx
such that d(y, x) < δx implies that |f(y) − f(x)| < r/4. Then {B(x, δx)}x∈X
is an open cover of X, so there is a finite subcover B(x1, δ1), . . . , B(xJ , δJ).
By pointwise boundedness, we know {f(xj)}f∈F is bounded for each n. Say
|f(xj)| ≤ Mj , and let M = max(M1, . . . ,MJ). Now [−M,M ] is a bounded set
in R and hence can be covered by finitely many balls B(y1, r/4), . . . , B(yK , r/4).

Let A = {x1, . . . , xJ} and B = {y1, . . . , yK}. Then BA (the set of functions
from A to B) is a finite set because A and B are finite sets. We will cover F by
finitely many C(X)-balls indexed by BA. If φ : A→ B, then let

Fφ = {f ∈ F : f(xj) ∈ B(φ(xj), r/4) for each j}.
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(Here φ(xj) one of the yk’s.) Every f ∈ F is in one of the Fφ’s because f(xj)
must be in some B(yk, r/4) for each j. Choose one fφ from each Fφ. Suppose
f ∈ Fφ. Any x is contained in some B(xj , rj), which implies

|f(x)− f(xj)| < r/4, |fφ(x)− fφ(xj)| < r/8.

But f(x) ∈ B(φ(xj), r/4) and fφ(x) ∈ B(φ(xj), r/4), which implies

|f(x)− φ(xj)| < r/4, |fφ(x)− φ(xj)| < r/4.

By the triangle inequality, |f(x) − fφ(x)| < r, and therefore ‖f − fφ‖u < r
(the inequality remains strict because the maximum of |f − fφ| is achieved).
Therefore, f ∈ B(fφ, r). And since f was arbitrary, Fφ ⊂ B(fφ, r). Therefore,
the balls {B(fφ, r)}φ∈BA cover F , so F can be covered by finitely many balls
of radius r, which completes (1).

(2) now follows easily. By Theorem 3, F is compact if and only if it is
complete and totally bounded. Because C(X) is complete, F is closed if and
only if it is complete. And by part (1), it is totally bounded if and only if it
equicontinuous and pointwise bounded.

(3). Let {fn} be an equicontinuous and pointwise bounded sequence. Let
S ⊂ C(X) be the set of fn’s. By (1), S is totally bounded, and this implies S
is totally bounded (exercise). So S is compact by (2). So any sequence in S has
a convergent subsequence and hence {fn} has a convergent subsequence.

(4). Let {fn} be a sequence in C(X) converging to f , and let S be the set
of fn’s together with f . I claim S is totally bounded. Choose r > 0. There is
an N such that ‖fn − f‖u < r for n ≥ N , so fn ∈ B(f, r). Then the finitely
many balls B(f1, r), B(f2, r), . . . , B(fN , r) and B(f, r) cover S. So S is totally
bounded, hence equicontinuous and pointwise bounded by (1).

Exercise 3. Let X be a compact metric space, Y a metric space, and f : X → Y
continuous. Prove that f is uniformly continuous.

Exercise 4. By adapting the proof of (1), show that any totally bounded F ⊂
C(X) is uniformly equicontinuous. (The δ does not depend on x.)

Exercise 5. Prove (4) directly from the definition without using (1) or (2).
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