Uniform Convergence and Riemann Integrability

Theorem 1. Let $f_n \in \mathcal{R}[a,b]$ be a sequence of Riemann integrable functions. Suppose the sequence converges uniformly on [a,b] to a function f. Then f is Riemann integrable.

Proof. First, there is a uniform bound B for all $||f_n||_{\infty}$, since by uniform Cauchy $||f_n||_{\infty} < ||f_N||_{\infty} + 1$, for $n \geq N$ and we can take B to be $\max\{||f_1||_{\infty}, \ldots, ||f_N||_{\infty} + 1\}$. Let $M = ||f||_{\infty}$. Since $||f - f_n||_{\infty} \leq \epsilon$ for $n \geq N$, we know that f is bounded and the bound M satisfies $M \leq B + \epsilon$. Now take any subinterval J of [a, b], and let $M_J(f) = \sup\{f(x) : x \in J\}$, $m_J(f) = \inf\{f(x) : x \in J\}$, etc. (the usual notation). Now that we have fixed N and ϵ , we can assert

$$-\epsilon + m_J(f_N) \le f(x) \le M_J(f_N) + \epsilon$$
,

for any $x \in J$ and this holds for any $J \subset [a,b]$. (This works for all J, with no need to adjust N or ϵ .) This implies

$$-\epsilon + m_J(f_N) \le m_J(f) \le M_J(f) \le M_J(f_N) + \epsilon.$$

Now let \mathcal{P} be a partition of [a, b], let J be any of the intervals in the partition, multiply by |J| and sum to get

$$-\epsilon(b-a) + s_{\mathcal{P}}(f_N) < s_{\mathcal{P}}(f) < S_{\mathcal{P}}(f) < S_{\mathcal{P}}(f_N) + \epsilon(b-a).$$

At this point we choose the partition \mathcal{P} so that for this fixed N

$$S_{\mathcal{P}}(f_N) - s_{\mathcal{P}}(f_N) \le \epsilon.$$

With this choice of \mathcal{P} ,

$$S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f) < \epsilon(1 + 2(b - a)).$$