Math 335 Sample Problems

One notebook sized page of notes (one side)will be allowed on the test. You may work together on the sample problems - I encourage you to do that. The test will cover 4.5-4.7, 5.4-5.8, and 6.1-6.2. There may be homework problems on the test. The midterm is on Monday, February 1.

1. Let C be the curve of intersection of $y+z=0$ and $x^{2}+y^{2}=a^{2}$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_{C}(x z+1) d x+(y z+2 x) d y$.
2. (a) Prove that $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$ is not independent of path on $\mathbf{R}^{2}-\mathbf{0}$.
(b) Prove that $\int_{C} \frac{x d x+y d y}{x^{2}+y^{2}}$ is independent of path on $\mathbf{R}^{2}-\mathbf{0}$. Find a function $f(x, y)$ on $\mathbf{R}^{2}-\mathbf{0}$ so that $\nabla f=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$.
3. Assume $a_{n} \geq 0$ for all $n \geq 1$. Prove that if $\sum_{1}^{\infty} a_{n}$ converges then $\sum_{1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges. Give an example of a sequence $a_{n} \geq 0$ such that $\sum_{1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges and $\sum_{1}^{\infty} a_{n}$ diverges.
4. Prove that if $\sum_{1}^{\infty} a_{n}$ converges then $\sum_{1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges. (Assume $a_{n} \geq 0$.)
5. Let x_{n} be a convergent sequence and let $c=\lim _{n \rightarrow \infty} x_{n}$. Let p be a fixed positive integer and let $a_{n}=x_{n}-x_{n+p}$. Prove that $\sum a_{n}$ converges and

$$
\sum_{1}^{\infty} a_{n}=x_{1}+x_{2}+\ldots x_{p}-p c .
$$

6. Suppose $a_{n}>0, b_{n}>0$ for all $n>1$. Suppose that $\sum_{1}^{\infty} b_{n}$ converges and that $\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}$ for $n \geq N$. Prove that $\sum_{1}^{\infty} a_{n}$ converges.
7. Let S be the set of all positive integers whose decimal representation does not contain 2 . Prove that $\sum_{n \in S} \frac{1}{n}$ converges.
8. Prove that $\int_{0}^{\infty} \cos x^{2} d x$ converges, but not absolutely.
9. Let $a=\lim _{n \rightarrow \infty} a_{n}$. Prove that $\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=a$.
10. Decide if the following integrals converge conditionally, converge absolutely, or diverge.
(a)

$$
\int_{-\infty}^{+\infty} x^{2} e^{-|x|} d x
$$

(b)

$$
\int_{0}^{\pi} \frac{d x}{(\cos x)^{\frac{2}{3}}}
$$

(c)

$$
\int_{1}^{\infty} \frac{\sin (1 / x)}{x} d x
$$

11. Let f and g be integrable on $[a, b]$ for every $b>a$.
(a) Prove that

$$
\left(\int_{a}^{b}|f g|\right)^{2} \leq \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}
$$

(b) Prove that if $\int_{a}^{\infty} f^{2}$ and $\int_{a}^{\infty} g^{2}$ converge then $\int_{a}^{\infty} f g$ converges absolutely.
12. (a) Suppose $\sum_{1}^{\infty} a_{n}$ converges. Fix $p \in \mathbb{Z}^{+}$. Prove that $\lim _{n \rightarrow \infty}\left(a_{n}+a_{n+1}+\ldots a_{n+p}\right)=0$.
(b) Suppose $\lim _{n \rightarrow \infty}\left(a_{n}+a_{n+1}+\ldots a_{n+p}\right)=0$ for every p. Does $\sum_{1}^{\infty} a_{n}$ converge?
13. Let $a_{n}>0$ and suppose $a_{n} \geq a_{n+1}$. Prove that $\sum_{1}^{\infty} a_{n}$ converges if and only if $\sum_{1}^{\infty} a_{3 n}$ converges.
14. Let S be the surface (torus) obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ around the z-axis. Compute the integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$, where $\mathbf{F}=\left(x+\sin (y z), y+e^{x+z}, z-x^{2} \cos y\right)$.
15. Let $a_{n}>0$ and let

$$
L_{n}=\left[\log \left(\frac{1}{a_{n}}\right)\right] /(\log n)
$$

Assume $L=\lim _{n \rightarrow \infty} L_{n}$ exits.
(a) If $L>1$ prove that $\sum_{n} a_{n}$ converges.
(b) If $L<1$ prove that $\sum_{n} a_{n}$ diverges.
16. Let $w(x)$ satisfy $w^{\prime \prime}(x)+w(x)=0, w(0)=0, w^{\prime}(0)=1$. Let $f(x)=\int_{0}^{x}(w(x-y)) h(y) d y$. Prove that $f^{\prime \prime}(x)+f(x)=h(x), f(0)=0, f^{\prime}(0)=0$.
17. We have covered the following:
(a) Divergence theorem
(b) Stokes' theorem
(c) Integrating vector derivatives
(d) Integrals dependent on a parameter
(e) Improper single and multiple integrals
(f) Convergence and divergence of a series
(g) Comparison test
(h) Integral test
(i) Cauchy condensation test
(j) Root test and ratio test
18. There may be homework problems or example problems from the text on the midterm.

