Math 335 Sample Problems

One notebook-sized page of notes (both sides may be used) will be allowed on the final exam. No electronic devices allowed. The final will be comprehensive.

1. Suppose f is continuous and piecewise smooth. Prove that

$$
\sum_{n \neq 0} \left\lvert\, \hat{f}\left((n) \left\lvert\, \leq\left(2 \sum_{1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2} \frac{1}{\sqrt{2 \pi}}\left(\int_{-\pi}^{\pi}\left|f^{\prime}\right|^{2}\right)^{1 / 2}=\sqrt{\frac{\pi}{6}}\left(\int_{-\pi}^{\pi}\left|f^{\prime}\right|^{2}\right)^{1 / 2}\right.\right.\right.
$$

2. Prove that

$$
\int_{0}^{1}\left(1-t^{4}\right)^{-1 / 2} d t=\frac{\Gamma\left(\frac{5}{4}\right) \sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)}
$$

3. Let f be a 2π-periodic function and let a be a fixed real number and let a new function g be defined by $g(x)=f(x-a)$. What is the relation between the Fourier coefficients $\widehat{f}(n)$ and $\widehat{g}(n)$?
4. Find the Fourier series of

$$
\frac{1-r^{2}}{1-2 r \cos x+r^{2}}
$$

where $0 \leq r<1$. (You don't need to integrate.)
5 . Let f be a 2π-periodic, piecewise smooth function. Let $\widehat{f}(n)$ be the complex Fourier coefficients of f. Show that there is a constant M (which will depend on f) such that $|\widehat{f}(n)|<M /|n|$ for all $n \neq 0$. Do not assume f is continuous.
6. Suppose f is Riemann integrable, and f_{k} is a sequence of Riemann integrable functions on $[0,2 \pi]$ such that $\lim _{k \rightarrow \infty} \int_{0}^{2 \pi}\left|f_{k}-f\right|=0$. Prove that the Fourier coefficients satisfy $\lim _{k \rightarrow \infty} \widehat{f_{k}}(n)=\widehat{f}(n)$ for each n.
7. Suppose f and g are 2π-periodic and Riemann integrable on compact subsets of \mathbf{R}. Suppose also that $f(x)=g(x)$ in a neighborhood of a point x_{0}. Suppose that the Fourier series for one of the functions converges at x_{0}. Prove that the other series converges and

$$
\sum_{-\infty}^{\infty} \widehat{f}(n) e^{i n x_{0}}=\sum_{-\infty}^{\infty} \widehat{g}(n) e^{i n x_{0}} .
$$

Hint: Look at $f-g$.
8. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{\sin (n x)}{x} d x=\frac{\pi}{2}
$$

9. Define a function $\log _{p}(x)$ inductively by the formulas $\log _{0}(x)=x, \log _{p+1}(x)=\log \left(\log _{p}(x)\right)$. Prove by induction that the series

$$
\sum_{n=m}^{\infty} \frac{1}{\log _{0}(n) \log _{1}(n) \log _{2}(n) \ldots \log _{p}(n)}
$$

(where m is large enough for the denominators to be defined as real numbers) diverges for every p.
10. Suppose that $a_{n}>0$, that a_{n} is decreasing, and that $\sum_{1}^{\infty} a_{n}$ converges. Is it true that $\lim _{n \rightarrow \infty} n a_{n}=0$? If true prove it, if false give a counterexample.
11. Suppose that f is 2π-periodic, continuous, and piecewise linear (that means that there is a finite set (in $[-\pi, \pi]$) of intervals in each of which f is defined by a linear function). Prove that

$$
|\widehat{f}(n)| \leq \frac{c}{n^{2}}
$$

for some constant c.
12. Show that the series $\sum_{1}^{\infty} \frac{\sin n x}{\sqrt{n}}$ converges for all x and uniformly on any interval of the form $[\delta, 2 \pi-\delta]$, where $\delta>0$ is small. Show that the series is not the Fourier series of a Riemann integrable function.
13. Find the solution of $u_{t}=3 u_{x x}, u(0, t)=u(\pi, t)=0, u(x, 0)=\cos x \sin 5 x$. (This is easier than it looks.)
14. (a) Let $\sum_{0}^{\infty} a_{n} x^{n}$ be a series with radius of convergence R. Substitute $r e^{i \theta}$ for x and get a new series involving $e^{i n \theta}$. If $0<r<R$ prove that this is a Fourier series (the variable is θ).
(b) Prove that $\sum_{0}^{\infty} r^{2 n}\left|a_{n}\right|^{2}$ converges for $0 \leq r<R$.
15. Compute

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} \sin ^{2}(n x) d x
$$

16. Folland, $\S 8.6$: problem 10.
17. Let f and g be continuous 2π-periodic functions. Define the convolution of f and g to be the function. $f * g(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x-t) g(t) d t$.
(a) Prove that $f * g$ is 2π-periodic.
(b) Prove that $\widehat{f * g}(n)=\widehat{f}(n) \widehat{g}(n)$, so the Fourier series of $f * g$ is $\sum_{-\infty}^{\infty} c_{n} d_{n} e^{i n x}$, where $c_{n}=$ $\widehat{f}(n), d_{n}=\widehat{g}(n)$.
18. (a) Find the cosine series of f where

$$
f(x)=0,0<x<\pi / 2 ; \quad f(x)=1, \pi / 2<x<\pi
$$

(b) Prove that the series converges for all x.
(c) For which x does the series converge absolutely?
19. Suppose $a_{n}>0$ and $\sum_{1}^{\infty} a_{n}$ converges. Let $t_{n}=\sum_{k \geq n} a_{k}$.
(a) Prove that $\sum \frac{a_{n}}{t_{n}}$ diverges.
(b) Prove that $\sum \frac{a_{n}}{\sqrt{t_{n}}}$ converges.
20. Suppose $a_{n}>0, b_{n}>0$ suppose $f(x)=\sum a_{n} x^{n}$ and $g(x)=\sum b_{n} x^{n}$ converge for all x. Suppose also that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$. Prove that

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=c
$$

21. (a) Let $r=\sqrt{x^{2}+y^{2}}$. Prove that $\frac{y}{r^{2}}$ is harmonic when $y>0$.
(b) Suppose $\phi(t)$ is continuous on $[a, b]$. Let

$$
u(x, y)=\int_{a}^{b} \frac{\phi(t) y d t}{(x-t)^{2}+y^{2}}
$$

Prove that u is harmonic when $y>0$.
22. Suppose $f(x)$ is 2π periodic and satisfies $|f(x)-f(y)| \leq M|x-y|$ for all x, y. Let

$$
u(r, \theta)=\int_{0}^{2 \pi} f(\theta+\phi) P_{r}(\phi) d \phi
$$

for $0<r<1$, where $P_{r}(\phi)$ is the Poisson kernel. Prove that $\frac{\partial u}{\partial \theta}$ exists and $\left|\frac{\partial u}{\partial \theta}\right| \leq M$.

23 . let f be 2π-periodic, continuous, and piecewise smooth. Let m be any positive integer and define the function f_{m} by the formula $f_{m}(x)=f(m x)$. Prove that $\widehat{f_{m}}(n)=\widehat{f}\left(\frac{n}{m}\right)$ if m divides n and is 0 otherwise.
24. Determine a, b, c so that $f_{0}(x)=1, f_{1}(x)=x+a, f_{2}(x)=x^{2}+b x+c$ is an orthogonal set using the inner product $\langle f, g\rangle=\int_{-1}^{1} f g$ on $[-1,1]$.
25. (Extra, extra credit) Let (x) be the function with period 1 that equals x on $(-1 / 2,1 / 2)$ and equals 0 at $\pm 1 / 2$. Define a function f as follows

$$
f(x)=\sum_{1}^{\infty} \frac{(n x)}{n^{2}}
$$

This is an example of Riemann (not published until after his death).
(a) Prove that the series defining (1) converges uniformly on \mathbb{R}.
(b) Prove that f is continuous except at points of the form $\frac{2 s+1}{2 n}$. Prove that if $2 s+1$ and n are relatively prime there is a jump discontinuity of size $\frac{-\pi^{2}}{8 n^{2}}$ at $\frac{2 s+1}{2 n}$.
(c) Prove that f is Riemann integrable on each compact subinterval of \mathbb{R}.
26. There may be problems from the text, statements of theorems from the text, problems from previous review sets, or examples from class on the exam.

