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As this ratio tends to zero, when ¢ > 1, but —» -+ 00, when « <1, Eymakoff's
test therefore provides the known conditions for convergence and divergence
of these series, as asserted 28,

2. We may of course make use of other functions instead of e®. If ¢ (x)
is any monotone increasing positive function, everywhere differcntiable, for
which ¢ () > x always, the series Xa, will converge or diverge according as

we have
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for all sufficiently large z's

With Ermakoff’'s test and Cauchy’s integral test, we have command over
the most important tests for our present series.

§ 41. General remarks on the theory of the convergence
and divergence of series of positive terms.

Practically the whole of the 19t*h century was required to cstab-
lish the convergence tests set forth in the preceding sections and to
elucidate their meaning. It was not till the end of that century, and in
particular by Pringsheim’s investigations, that the fundamental questions
were brought to a satisfactory conclusion. By these researches,
which covered an extiemely extensive field, a series of questions were
also solved, which were only timidly approached before his time,
although now they appear to us so simple and transparent that it
seems almost inconceivable that they should have ever presented any
difficulty??, still more so, that they should have been answered 1n a com-
pletely erroncous manncr. How great a distance had to be traversed
before this point could be reached is clear if we reflect that Euler
never troubled himself at all about questions of convergence; when a
series occurred, he would attribute to it, without any hesitation, the
value of the expression which gave rise to the series®. Lagrange in
17703 was still of the opinion that a series represents a definite
value, provided only that its terms decrease to 032, To refute the latter

28 This also holds for p =0, if we interpret log_,  to mean e=,
9 As a curiosity, we may mention that, as late as 18385 and 1889, several
memoirs were published with the object of demonstrating the existence of con-

vergent series Y ¢, for which ff:;i“ did not tend to a limit! (Cf. 159, 3.)
n

8 Thus in all seriousness he deduced from =14x+2%24..., that

1—2z

1—141—14—-...

and

1-242°—2%4—...,

@l 0o =

Cf the first few paragraphs of § 59.
% V., Euvres, Vol. 3, p. 61.
8 In this, however, some traces of a sense for convergence may be seen,
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assumption expressly by referring to the fact (at that time already
. 1
well known) of the divergence of 27, appears to us at present

superfluous, and many other presumptions and attempts at proof cur-
rent in previous times are in the same case. Their interest is there-
fore for the most part historical. A few of the questions raised, how-
ever, whether answered in the affirmative or negative, remain of
sufficient interest for us to give a rapid account of them. A con-
siderable proportion of these are indeed of a type to which anyone
who occupies himsef much with series is naturally led.

The source of all the questions which we propose to discuss
resides in the inadequacy of the ciiteria. Those which are necessary
and suffticient for convergence (the main criterion 81) are of so general
a nature, that in particular cases the convergence can only rarely be ascer-
tained by their means. All our remaining tests (comparison tests or trans-
formations of comparison tests) were sufficient criteria only, and they only
enabled us to recognise as convergent series which converge at least
as rapidly as the comparison series employed. The question at once
arises:;

1. Does a series exist which converges less rapidly than any other? §'78.
This question is alrcady answcred, in the negative, by the theorem
c’l

o3

n-1
, — 0.
The question is answered almost more simply by J. Hadamard?®?®,

175, 4. In fact, when 2'¢, converges, so does 3¢/ = Y

, though,

. . v et )
obviously, less rapidly than 2'c,, as ¢,:¢c,’ =7 2

who takes the series 2'¢ = 2,(1/;: -V ;;) Since ¢, =7,_, — 7,
the ratio ¢ :c ' =V;:: +V ;; — 0. The accented seiies conver-
ges less rapidly than the unaccented series.

The next question is cqually casy to solve:

2. Does a series exist which diverges less rapidly than any other?

Here again, the theorem of Abel-Dini 173 shows us that when 2'd,
diverges, so does 2'd ' = 21%, and hence the answer has to be in

the negative. In fact as d,:d = D, — -}- 00, the theorem provides,
for each given divergent scries, another whose divergence is not so
rapid.

These circumstances, together with our preliminary remarks,
show that

3. No comparison test can be effective with all series.

Closcly connected with this, we have the following question, raised.
and also answered, by Abel3!:

83 Acta mathematica, Vol. 18, p. 319. 1894.
8 J. f. d. reine u. angew. Math,, Vol. 3, p. 80. 1828
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4. Can we find positive numbers p,, such that, simultaneously,
a) p.a,—0 convergence}
b) p.a, =>a>0 divergence

of every possible series of positive terms?

} are sufficient conditions for {

It again follows from the thcorem of Abel-Dint that this is not
the case. In fact, if we put a"=£‘—, o« > 0, the series 2'q, necessar-
n

: : 3 ’r__ ~ Ay T .
ily diverges, and hence so does 2'a' = > where s, =a, 4-++-4-a,.

n

But, for the latter, p, a, = —;x— —0.

n

The object of the comparison tests was, to some extent, the con-
struction of the widest possible conditions sufficient for the determination
of the convergence or divergence of a series. Conversely, it might be
required to construct the narrowest possible conditions necessary for
the convergence or divergence of a series. The only information we
have so far gathered on this subject is that 4, — O is nccessary for
convergence. It will at once occur to us to ask:

5. Must the terms a, of a convergent series tend fo zero with
any particular rapidity? It was shown by Pringsheim?*® that this is
not the case. However slowly the numbers p, may tend to - co, we
can invariably construct conveigent serics 2'c, for which

mpnc,l= -+ oo.

Indeed every convergent series 2'¢c,’, by a suitable rearrangement, will
producc a series 2'¢, to support this statement?S,

Proof. We assume given thc numbers p,» ncreasing to -+ oo,
and the convergent scries 2'c,’. Let us choose the indices n, n,, ...,
#,,... odd and such that

1 cz'!v—-l (”
Pn, v

and let us write Cp, = ¢’.—y, filling in the remaining ¢,’s with the terms

=1,2,..)

¢/y¢s ... in their original order. The series 2'¢c, is obviously a re-
arrangement of 2'¢ . DBut
p,.c,. >V

nn
whenever # becomes equal to one of the indices #,. Accordingly, as
asserted,
limp,c, = + oco.
The underlying fact in this connection is simply that the behaviour
ot a sequence of the form (p,c,) bears no essential relation to that of

% Math. Annalen, Vol. 35, p 344. 1890
3% Cf. Theorem 82,3, which takes into account a sort of decrease on
the average of the terms a,,.
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the series X'c, — i. e. with the sequence of partial sums of this
series, — since the latter, though not the former, may be funda-
mentally altered by a rearrangement of its tcrms.

6. Similarly, no condition of the form limp, d, > O is mecessary
for the divergence of 2d,, however rapidly the positive numbers p,
may increase to + oco®?. On the contrary, every divergent series 2'd/,
provided 1ts terms tend to O, becomes, on being suitably rearranged,
a series 2'd, (still divergent, of course) for which limp, d, = 0. —

The proof is easily deduced on the same lines as the preceding.
The following question goes somewhat further:

7. Does a scale of comparison tests exist which is sufficient for
all cases? More precisely: Given a number of convergent series

T, Ze®, ..., Ze®, ...

cach of which converges less rapidly than the preceding, with e. g.

ck+D
_1;_(7‘),___. -+ oo, for fixed k.
n

(The logarithmic scale affords an example of such series.) Is é¢ pos-
stble to construct a series converging less rapidly than any of the given
sertes? ‘The answer is in the affirmative3®. The actual construction
of such a scries is indecd not difficult. With a suitable choice of the
indices n,, ny, ..., #;, ..., the series

— A1) (1; (1) (2) ) (3)
b= o el oo o) e e o oy s
3 4)
+ Cﬂ; -*- Cﬂ3+1 + s
1s itself of the kind required. We nced only choosc these indices so

large that if we denote by rﬂ(k’ the remainder, after the nth term, of
the serics 2 cn(k),

1 . a
for every n > n,, we have 7,® < o with ¢, > 2,®

) » n g Ng => My, » w r® < os 7 c”(s) > 2 c”"”

L4 L . . L] L [ . . . [ ) . . . . . . . . L . . . . . .

: 1 :
(k+1) ” cg+ﬂ

” " n> n,>n,._, » " 7n < 9% > 2 C,,(k)

The series 2'¢, 1s certainly convergent, for each successive portion of
it belonging to one of the series 3¢, ® is certainly less than the

82 Pringsheym, loc. cit. p. 357

8 For the logarithmic scale, this was shewn by P. du Bois-Reymond (J. f.
d. reine u. angew. Math,, Vol. 76, p. 88. 1873). The above extended solution
is due to J. Iladamard (Acta math, Vol. 18 p. 325, 1894).
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remainder of this series, starting with the samec initial term, i. e
< El; (k=2, 3,...). On the other hand, for every fixed k&,

c‘” ~|-—OO,

in fact for n > n, (9 > k) we have obviously > 27°%  This proves

ua
all that was requxred. — In particular, thcrc, are series converging
more slowly than all the series of our logarithmic scale®?.

8. We may show, quite as simply, that, given a number of di-

vergent series X'd_ ® k=1, 2,..., each diverging less rapidly than

the preceding, with, specifically, d,‘,"“) = dn(") — 0, say, there are always

divergent series 2'd, diverging less rapidly than every ome of the
series 2 dﬂ(k).

All the above remarks bring us near to the question whether and
to what extent the terms of convergent series are fundamentally distin
guishable from those of divergent series. In consequence of 7. and 8., we
shall no longer be surprised at the observation of Steltjes:

9. Denoting by (&,, &,, ...) an arbitrary monotone descending se-
quence with himit O, a convergent series 2'c, and a divergent series
2 d, can always be specified, such that c, = ¢,d, . — In fact, if g, —0

1 - .
monotonely, p, = ——* -}~ oo monotonely. The series
n

P1+(1’3 p1 ++(Pn {)n—l)+."’

whose partial sums are the numbcers p,, is thercfore divergent. By
the theorem of Abel-Dini, the series

y 'vf)n+1_f)n
_S.'d \
n=1 n

n-l Pnta

1s

is also divergent. But the series 2¢, = ¢ d, = 2](%— :bl
” nt+1/
convergent by 131. —
The following remark is only a re-statement in other words of
the above:

10. However slowly p,— - 00, there is a convergent series 2'c,
and a divergent series 2'd, for which d, = p, c,.

In this respect, the two remarks due to Pringsheim, given in 5.
and 6., may be formulated even more forcibly as follows:

8 The missing initial terms of these series may be assumed to be each
replaced by unity.
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11. Howcver rapidly 2'c, may converge, there are always divergent
sertes, — 1ndeed divergent series with monotonely diminishing
terms of limit 0, — for which

- ¥n
Thus 2'd, must have an infinite number of terms essentially smaller
than the corresponding terms of ¢ . Conversely:

However rapidly 2'd, may diverge, provided only d,— 0, there

. & . T ¢
are always convergent series 2'¢, for which hmzE = -} 00o.

n
We have only to prove the former statement. llere a scries 2'd,
of the form
S 1 1 1
ufJO dn = c1 —‘l' ¢ +“' _l_ 121 _I"'Q Cn,y +-¢Zcﬂ| +”' +—?:Clh

1 1 1 1
+5en gt gen T gln e

is of the required kind, if thec increasing scquence of indices n,, #,, ...
be chosen suitably and the successive groups of equal terms contain
respcctively n,, (n, —n,), (n; — n,), ... terms. In fact, in order that
this scries may diverge, 1t is sufficicnt to choose the number of terms 1n
each group so large that their sum > 1, and in order that the se-
quence of terms in the serics be monotone, 1t 1s sufficient to choose
;> ny_, solarge that ¢, <<¢u  (k=1,2,...;n,=1) asis always

. . d, 1
possible, since ¢, — 0. As the ratio . bas the value FET for n =mn,,
. d
it follows that hmz—’i = (0, as required.

- ¥n

In the preceding remarks we have considercd only convergence
or divergence per se. It might be hoped that with narrower require-
ments, e.g. that the terms of the series should diminish monotonely,
a correspondingly greater amount of information could be obtained.
Thus, as we have seen, for a convergent series X'¢, whose terms
dimimish monotonely, we have n ¢, — 0. Can more than this be asserted?
The answer is in the negative (cf. Rem. 5):

12. However slowly the positive numbers p, may increase to -+ oo,
there are always convergent series of monotonely diminishing terms
for which

n Pﬂ cn

not only does mnot tend to O, but has -}-o0o for upper limit'e.

40 Pringsheim, loc. cit. In particular it was much discussed whether for
convergent series of positive terms, diminishing monotonely, the expression
nlog n-c, must —» 0; the opinion was held by many, as late as 1860, that
nlog n.c, - 0 was necessary for convergence.
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The proof is again quite easy. Choose indices 7, < m, <...
such that

Pn, = 4" »=1,2,..)
and write

1

€, =Cy ==crr=Cp = —w=m,

! ! ny \/Pfh

C = C == Oy, == L

m+1 — OIny +2 — n, n,‘/_f’;:,
. L 1

Cnv_l_,’1= e o o o o & —/— Cn" — ny v:'———_’

1’m«

The groups of terms here indicated contribute successively less than

1 1 . . . .
—]1, ga? g to the sum of the series 2'c,, so that this series

will converge. On the other hand, for each n = n, we have

n Pn cn = V pn ?
so that, as was required,
lim#n-p,-c, = -+ oo.

13. These remarks may easily be multiplied and extended in all
possible directions. They make it clear that it is quife useless to
attempt to introduce anything of the nature of a boundary between
convergent and divergent series, as was suggested by P. du Bois-
Reymond. The notion involved is of course vague at the outset. But
in whatever manner we may choose to render it precise, it will ncver
correspond to the actual circumstances. We may illustrate this on the
following lines, which obviously suggest themselves 4.

a) As long as the terms of the serics 2'¢, and 2'd  aie subjected

to no restriction (excepting that of being > 0), the ratio ‘-:'3 is capable
n

of assuming all possible values, as besides the inevitable relation

lim z;! =0 we may also have ii?ﬁ%f == -} o0.

The polygonal graphs by which the two sequences (c¢,) and (d,) may be
represented, in accordance with 7, 6, can therefore intersect at an in-
definite number of points (which may grow more and more numerous,
to an arbitrary extent).

41 A detailed and careful discussion of all the questions belonging to the sub-
ject will be found in Pringsheim’s work mentioned on p. 2, and also in his writings
in the Math. Ann. Vol. 35 and in the Munch. Ber. Vol. 26 (1896) and 27 (1897),
to which we have repeatedly referred.
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b) By our remark 11, this remains true when the two sequences
(¢,) and (d,) are both monotone, in which case the graphs above referred
to are both monotone descending polygonal lines. It is therefore certainly
not possible to draw a line stretching to the right, with the property that
every scquence of type (c,) has a graph, no part of which lies above the linc
in question, and every sequence of type (d,) a graph, no part of which lies
below this line, — even if the two graphs are monotone and are considered
only from some point situated at a sufficiently great distance to the right.

14. Notes 11 and 12 suggest the question whether the statements
there made remain unaltered if the terms of the constructed scries 2'c,
and 2'd, are not merely sz#22Hly monotone as above, but fully monotone
in the sense of p. 263. This question has been answered in the affirmative
by H. Hahn %2,

§ 42. Systematization of the general theory of convergence.

The eclement of chance inherent in the theory of convergence as
developed so far gave rise to various attempts to systematize the criteria
from more general points of view. The first extensive attempts of this
kind were made by P. du Bois-Reymond 43, but were by no means brought
to a conclusion by him. A. Pringshesm ! has been the first to accomplish
this, in a manner satisfactory both from a theoretical and a practical stand-
point. We propose to give a short account of the leading features of the
developments due to him .

All the criteria set forth in these chapters have been comparison tests,
and their common source is to be found in the two comparison tests of
the first and second kinds, 157 and 158. The former, namely

(I) a, = C, : e, a,=d, : D,

is undoubtedly the simplest and most natural test imaginable; not so
that of the second kind, given originally in the form

Qni1 .- Cui . Qnit - Cni1 .
W2 e S a, 4 S
n n n n

2 J1. Ilahn, Uber Rethen mit monoton abnehmenden Gliedern, Monatsheft
f. Math. u. Physik, Vol. 33, pp. 121—134, 1923.

43 J. f. d. reine u. angew. Math. Vol. 76, p. 61. 1873,

44 Math. Ann. Vol. 35, pp. 207—394. 1890.

45 We have all the more reason for dispensing with details in this connexion,
seeing Pringsheim’s researches have been developed by the author himself in a
very complete, detailed, and readily accessible form.



