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 The Remarkable Theorem of Levy and Steinitz

 PETER ROSENTHAL, University of Toronto

 The author received his Ph.D. from the University of Michigan in 1967,
 under the supervision of Paul Halmos. His main mathematical interest has
 been in the theory of bounded linear operators on Hilbert space, especially in

 results related to invariant subspaces.

 1. Introduction. Everyone knows Riemann's theorem that a conditionally conver-
 gent series of real numbers can be rearranged to sum to any real number. An
 alternate formulation is the following: the set of all sums of rearrangements of a
 given series of real numbers is the empty set, a single point, or the entire real line.

 What is the corresponding theorem for series of complex numbers?
 Our informal survey has shown that surprisingly few mathematicians know the

 answer to this question, although the answer is a very natural one that was
 published more than eighty years ago.

 The theorem is the following: the set of all sums of rearrangements of a given series
 of complex numbers is the empty set, a single point, a line in the complex plane, or the
 whole complex plane.

 The analogue holds in n dimensions:

 THE LEVY-STEINITZ THEoREM. The set of all sums of rearrangments of a given
 series of vectors in a finite-dimensional real Euclidean space is either the empty set or a
 translate of a subspace (i.e., a set of the form v + M, where v is a given vector and M
 is a linear subspace).

 Since a finite-dimensional complex vector space is a real vector space of twice the
 dimension, the Levy-Steinitz Theorem implies that the set of rearrangements of a
 series in a complex Eucidean space is the empty set or a translate of a real
 subspace.

 The theorem was first proven by P. Levy [4] in 1905. In 1913, Steinitz [61 pointed
 out that Levy's proof was incomplete, especially in the higher-dimensional cases.
 Steinitz [6] filled the gap in Levy's proof and also found an entirely different
 approach.

 The purpose of this article is to make this beautiful result more widely known.
 We present Steinitz' approach, as modified by Gross [1]. The main reason that

 this theorem is not better known is that the difficulty of the proof seems to be out of

 342
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 THE REMARKABLE THEOREM OF LtVY AND STEINITZ 343

 proportion to the result. We have endeavored to divide the proof into easily-digested
 pieces with the hope of making it both accessible and interesting.

 We begin with the "Polygonal Confinement Theorem" as proven by Gross [1];
 this says that an arbitrarily large but finite set of vectors, each of length less than
 one, which sums to 0, can be rearranged so that none of the partial sums is more
 than a certain constant which depends only on the dimension of the vector space.

 In section 3 we discuss "The Rearrangement Theorem," which states that some
 rearrangement of a series converges to S if a subsequence of the sequence of partial
 sums of the series converges to S and the sequence of terms converges to 0. This
 theorem, which is a consequence of the Polygonal Confinement Theorem, is surely
 of interest in its own right.

 We present the Levy-Steinitz Theorem in section 4. In section 5 we briefly discuss
 certain related results and references.

 I was told of the Levy-Steinitz Theorem by Israel Halperin. The first few times
 that he started to explain the proof to me, I didn't listen; I assumed that I could
 prove the theorem in some easier way. Finally, after I realized I couldn't prove it, I
 let him describe the proof. The exposition that follows is mainly based on these
 private lectures, for which I am extremely grateful.

 2. The Polygonal Confinement Theorem.

 In the Steinitz-Gross proof of the Levy-Steinitz Theorem the basic technical

 lemma is the following.

 THE POLYGONAL CONFINEMENT THEOREM ([6], [1]). For each dimension n there is
 a constant C,, such that whenever { vi: i = 1, . . ., m } is a finite family of vectors in Rn

 which sums to 0 and satisfies Ivi vI < 1 for all i, there is a permutation P of (2,.. ., m)
 with the property that

 Vi + VP v(i) < Cn

 for every j. Moreover, we can take C1 = 1 'and Cn < 4C,-1 ? 1 for every n.

 Proof. The case n = 1 is easy. If, for example, v1 > 0, we can choose P(2) so
 that vP(2) < 0, and keep choosing negative v's until the sum of all the chosen vectors
 becomes negative. Then choose the next v to be positive, and keep choosing positive
 v's until the sum of all the chosen vectors becomes positive. Continue in this manner

 until all the v's are used. Since IviI < 1 for all i, it is clear that each partial sum in
 this arrangement is within 1 of 0. Hence, C1 = 1.

 The general case is proven by induction. Assume that n > 1 and that Cn__ is
 known to be finite, and consider a collection { v, } of vectors satisfying the hypothe-
 ses.

 Since { vi } is finite there are a finite number of possible partial sums of the v's
 that begin with vl; let L be such a partial sum with maximal length among all such
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 344 PETER ROSENTHAL [April

 partial sums. Then L = v1 + u1 + .. +?us, where {ul,..., us} c {vi}. Let
 {w1,..., wt} denote the other v's, so that L + w1 + ?w + w= 0.

 We use the notation (ulv) to denote the Eucidean inner product of u and v.
 We begin with a proof that the { ui} point in the same general direction as L,

 while the { w1 } point in the opposite direction; (a diagram makes this very
 plausible).

 Claim (a): (uilL) > 0 for all i.
 To see this, suppose that (uilL) < 0, for some i. Then

 L 1

 (L-ui)IL) = IILI - J(uilL) > IILII,
 ( ILII I I

 so IIL - uill > JILI, which contradicts the assumption that L is a longest such
 partial sum.

 Claim (b): (v1IL) > 0.
 For if (v1IL) < 0, then

 -L ( __"1(Iv)>ILI
 (Il l(v,i + w ? +w,)) = (v7 -l L)) =L IILII ( - IILI

 so v1 + w1 + ? w would be a longer partial sum than L.

 Claim (c): (wilL) < 0 for all i. For if there was an i with (wilL) > 0, then

 / ~~L =IILII?
 ((L + wj)jl JII ILIJ + . | > JILI1

 and, therefore, IlL + will > JILI. But IlL + will is the length of a partial sum of the
 required kind. Thus this would also contradict IILII being the longest length of such
 a partial sum.

 We use the inductive hypothesis in the (n - l)-dimensional space

 L- = {v E RW: (vlL) = 0).

 We let v' denote the component of a vector v in L"; i.e.,

 (vlL)
 v'= v - -IILII2

 Then L = vu + ul + +us implies v' + u? + u =0. For a similar
 reason, w' + * ?wt =. By the inductive hypothesis, there exists a permutation
 Q of (1, ..., s) such that

 v/ + EuQ(i < Cn-, for j = 1 . . ., s,
 QI
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 1987] THE REMARKABLE THEOREM OF LtVY AND STEINITZ 345

 and there exists a permutation R of (2,..., t) such that

 I

 wt + EwR() < C,_1 for j = 2,..., t.

 Define R(1) = 1.

 Now the idea is to keep the above orders within the u's and the w's (which will
 keep the components in LI of partial sums from being too large) and alternately
 "feed in" u's and w's to keep the components along L of length at most 1 (as in the
 proof of the case n = 1).

 More precisely, since (v1IL) > 0 and (wilL) < 0, we can choose a smallest r, say
 rl, such that

 r1

 (v1IL) + (WR(i?L) < O.
 i=l

 Then we choose a smallest s1 such that

 ri S1

 (v+IL) ? W ?) + (uQ(j)2L) > o.
 i=l i=l

 Then a smallest r2 such that

 rl 51 r2

 (v1IL) + S (WR(i)L) + E (uQ(0|L) + E (WR(ilL) < O.
 i=l i=l i=r1+1

 And so on. Arrange the vectors { vi} in the order

 ( V19 WR(1)9 .. 9 W R(rl) i UQ(1)9 .. * UQ(sl) a W R(rl +1) .. 9 WR(r2)9 . )

 In this arrangement, clearly the components along L of each partial sum have
 norm at most 1. The choice of the arrangements Q and R by the inductive
 hypothesis insures that the components orthogonal to L of the partial sums have

 norms at most Cn_ + Cn_ . Hence, the norm of each partial sum is at most

 (2C _1)2 + 1 . This completes the proof.

 3. The Rearrangement Theorem.

 The Rearrangement Theorem is a crucial ingredient of Steinitz' proof of the
 Levy-Steinitz Theorem and is also of independent interest.

 For the proof of the Rearrangement Theorem it is convenient to isolate the
 following consequence of the Polygonal Confinement Theorem.

 LEMMA 1. If {vi: i = 1,..., m} c Rn and II'=m lvill < e, lvill < e for all i, then
 there is a permutation P of (1,..., m) such that

 IIVp(l) + Vp(2) + ***+ VP(r)II < e(Cn + 1)

 for 1 < r < m.
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 346 PETER ROSENTHAL [April

 Proof. Define vm+i = -v - * r so that mIY2+Jvi = 0. By the Polygonal
 Confinement Theorem, there is a permutation P of (2,..., m + 1) such that

 1 rl1
 V1 + E Vp(i) |< Cn

 for all r.

 Then jjv1 + Fli 2vP(i)I1 < ECn for all r. Let P(1) = 1.
 Now order the {vi } according to P, but omit vm+1; since IvIm+iII < e this changes

 the norms of the partial sums by at most e. Hence in this arrangement all the partial

 sums have norm at most eCn + e. This proves the Lemma.

 THE REARRANGEMENT THEOREM. In RN, if a subsequence of the sequence of partial

 sums of a series of vectors converges to S, and if the sequence of terms of the series
 converges to 0, then there is a rearrangement of the series that sums to S.

 Proof. Let { vi,}?? be a sequence of vectors in RW. For each m let Sn = L21lvi.
 We assume that { S,, } S for some subsequence { S,,,, }, and we must show how to
 rearrange the { vi } so that the entire sequence of partial sums converges to S. The
 idea is to use Lemma 1 to obtain rearrangements of each of the families

 (vmk+i, + * *, vmkl l ) so that all the partial sums of these families are small. Then Sm
 is close to Smk if m is between mk and mk+l.

 This can be stated as follows. Let 3k = liSMk - Si"; then {3k} -? 0. Now

 Mk+1l mk+4 mk

 Vi= E Vi vi vmk < 6k+1 ? Sk ? IIvmk+
 i=Mk+l i=1 i=1

 For each k let

 ek= maX{8k+l + Sk,suPt{lvill: i > mk}}.

 Then {C k } 0, and

 v1 < 28k. iF mik + 1-

 i=Mk+lI

 By Lemma 1, for each k there is a permutation Pk Of (mik +1,..., mk+1 - 1) such
 that

 || V VPk)| < 28k(Cn + 1)
 i=Mk+l

 for r = mk + ,,mk+l -1.

 Now arrange the { vi } as follows. Keep VMk in position mk for each k. Then order
 the vi for (Mk + 1) < i < (mk+l - 1) according to Pk. In this arrangement, if
 mk + 1 < m < mk+1 - 1 then 5, - S is a sum of the form ET/=ik+l "kO) with
 m < mk+1, and hence has norm at most 2ek(Cn ? 1). Since { SMk} I S and
 { Ek} - 0, it follows that {Sm } S.
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 4. The LUvy-Steinitz Theorem.

 To prove the Levy-Steinitz Theorem we will need another consequence of the
 Polygonal Confinement Theorem in addition to the Rearrangement Theorem.

 LEMMA 2. If {vi} 1 c RW, w = Em lvi, 0 < t < 1, and IIviII < E for all i, then

 either Il1v - twll < eVCn_,1 + 1 or there is a permutation P of (2,..., m) and an r

 between 2 and m such that IIv + i=2vp(i) - twil < E6 C,1 ? 1

 Proof. Suppose w = 0 (otherwise the result is trivial). Consider first the case

 n = 1. By multiplying through by -1 if necessary, we can assume that w > 0; let s
 denote the smallest i such that

 V1+V2+ ...+vi>tw.

 Since

 V1 + V2 + ...+ Vs-, < tw

 and IvsI < E, it follows that

 Iv1 + V2 + +Vs- tWI < E.

 Thus in the case n = 1 the Lemma holds with Cn-1 = C0 being defined to be 0.
 Note also that, in the case n = 1, no rearranging is necessary to get an appropriate
 partial sum.

 Now consider the general case of RW for n > 1. Since w = ET lvi, the projections
 {v,} of the {vi} onto {w}' add up to 0. Since IIviI < E for all i, the Polygonal
 Confinement Theorem yields a permutation P of (2,..., m) such that

 1 1 1
 -Vj + -P(2) + ... +-Vp(j) |

 for = 2,..., m.
 Also,

 w w w

 V l-) + VP(2)1-i) + ... + VP(m) ll: = jjwj1j

 and j(viIw)/jIwIjI < E for all i. Hence, the case n = 1 yields an r such that

 (vil ) + (VP(2)1 l) + .) + VP(r) lIIw i) - ltwj 6.

 The bounds on the components yield a bound on the vector, so

 /v|1 + VP(2) + ?+VP(r) - tw_I2 < E2C 1 + E2,

 which is the Lemma.

 Now we can finally prove the main theorem.

 THE LEVY-STEINITZ THEOREM ([4], [6]). The set of all sums of rearrangements of a
 given series of vectors in Rn is either the empty set or a translate of a subspace.
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 Proof. Let S denote the set of al sums of convergent rearrangements of the
 series D=lvi. Suppose S is not empty. By replacing v1 by v1 - v, where v is any
 element of S, we can assume that 0 E S. We must show that S is a subspace.

 The proof will require rearranging the series a number of times. The outline of

 the proof that 0, s, and ?2 in S imphes s, + ?2 is in S is the foHowimg. We choose a
 sequence { E,,, } of positive numbers that converges to 0. We form a partial sum of
 Evi, in some order, that is within E1 of sl. Then we construct a partial sum that
 contains all the vectors we have already used and that is within E1 of 0, then a
 partial sum containing all the vectors already used that lies within 21 of S2, then one

 within E2 of s within2 2f 0, E2 of S2, and so on. The vectors used between a sum
 close to 0 and the next sum close to S2 approximately add up to ?2. Interchanging

 them with those between the preceeding sum close to s, and the sum close to 0
 produces partial sums close to Sl + ?2. The Rearrangement Theorem finishes the
 proof.

 We now present the details. Let {Em}4 be a sequence of positive numbers that

 converges to 0. Since an arrangement converges to sl, there exists a finite set I, of
 positive integers such that 1 E I, and "jjilvj - slll < E2. Since an arrangement
 converges to 0, there is a finite set J1 of positive integers such that J. 2 I, and
 Jjj,jvj -0l < -,, and a set K1 D J4 such that IIEjEKVli - S211 < El. There is also a
 set I2 containing both K1 and {2} such that "Ej pv1 - Slil < 2. And so on. That
 is, we inductively construct sets Im. Jm, and Km of positive integers such that

 {1,.. ., m-14 c Kmij c m C Jm C Ki,

 v - <l cm | E V - 0 < e, and || E - S2 < em
 ~~~~Im ~ ~ ie Jm' i eKm

 For each m, starting at m = 1, arrange the indices in Jm so that those in Im come at
 the beginning, and then arrange the indices in Km so that those in Jm come at the

 beginning. Then arrange the indices of Im+l so that those of Km come at the
 beginning. Thus there is a permutation P of the set of positive integers and
 increasing sequences {im {mI} {km } such that im < jm < km < im+ 1 and

 im j.~~~In km , Up( ) - Si < 'em eE Vpt j) <m E E UP(k) 5 2 <em
 i=l j=1 k=l

 for each m.
 Note that

 km km In.

 F? Vp(i)?-2 = i Up(i) UVp(j) S2 < em + em.
 11jm+1 i=1 j=

 It follows that

 im km

 EP Vp(i) ? F VP(i) (S1 + S2) <3em.
 i=1 i-jmlI
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 1987] THE REMARKABLE THEOREM OF LtVY AND STEINITZ 349

 For each m, rearrange the vectors in { vp(j): i = im, *.. km} by interchanging the
 vectors {vP(M): i = im + 1,***, jm} with the vectors {Vp(j): i =1m + 1,..., km}. In
 this new arrangement, the above shows that there is a subsequence of the sequence

 of partial sums that converges to s1 + s2. Since we are assuming S + 0, { vp(j) } -O 0,
 so the Rearrangement Theorem implies that there is another arrangement that
 converges to s1 + S2. Therefore, (s1 + 52) E S.

 It remains to be shown that s E S implies ts E S for all real t. The additivity of
 S implies this for t a positive integer, so it suffices to consider the cases t E (0, 1)
 and t = - 1.

 We start with the arrangement P used above to show the additivity of S. Fix
 t e (0,1). We use Lemma 2. As shown above,

 km

 E Vp(i) - S2 < 2em

 for each m. Let Sm = sup{IIvp(j)II: i =jm + 1, ... I km}, and let
 km

 Um = VP(i) S2.

 By Lemma 2, there is a permutation Qm of {P(im + 1),..., P(km)} and an rm so
 that

 rm

 i VQm(P(i))-t(S2 + Um) < M8m, whereM= M C1 + 1.

 Then

 rm

 E VQ -(P(i)) tS2 < M8m + 28m

 Now

 im rm

 E vp(i) + E VQm(p(i)) - tS2 < M8m + 3em'
 i=1 i=jm+l

 so in this arrangement a subsequence of the sequence of partial sums converges to
 ts2. The Rearrangement Theorem yields ts2 E 5.

 It only remains to be shown that -52 E S. But

 Jm+1 km

 Vp(i) - vP(i) (O S2) < 6m+1 + tm
 i=l i=1

 so

 Jm+ 1

 E _VP(j)(S2) <m+ 1 +m
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 Then

 Jm Jm+1

 E VP(i) + E vp(i) ( S2) < -,m+l + 28m,
 j=l i=kM+l

 and there is an arrangement with a subsequence of the sequence of partial sums

 converging to -s2. By the Rearrangement Theorem, (-s2) E S.

 5. Additional Remarks.

 There are several natural questions related to the Levy-Steinitz Theorem.

 1) Can every translate of every subspace actually occur as a set of sums of
 rearrangements of a series?

 The answer to this question is easily seen to be "yes". For if M is any subspace

 and v is any vector, let {el,..., em) be a basis for M and let {xi) be any
 conditionally convergent sequence of real numbers (e.g., let xi = (- l)i/i). Then
 Riemann's theorem clearly implies that the set of all sums obtained from rearrange-

 ments of the vectors { v, xiej: j = 1, .. ., m; i = 1, 2,3,... ) is v + M.

 2) What conditions on { vi) determine whether the set of sums is empty, is a
 translate of a proper subspace, or is all of Rn?

 Both Levy's [41 and Steinitz' [61 approach to the theorem yield an answer to this
 question. First note that the set of sums is empty unless { vi} -4 0, and, for each
 vector w, the sums DO 1(vilw)+ and DZ l(vilw)- are either both finite or infinite
 (where (vilw)+ is 0 if (vilw) is negative and is (vilw) otherwise, and (vilw)- is 0 if
 (vilw) is positive and is -(vilw) otherwise).

 If both the above conditions are satisfied then it can be shown that arrangements
 of DOv1 do converge.

 If there is no absolute convergence in any direction (i.e., if, for each w, both

 E=? ((vilw)+ and D 1((vilw) are infinite), then the set of sums is the entire space
 RI. If there are vectors w other than 0 for which the above sums are both finite, then
 the set of sums of rearrangements is v + M, where v is any sum and M is the
 orthocomplement of the set of w 's such that these sums are both finite.

 The above-described strengthening of what we have called the Levy-Steinitz
 Theorem appears in the original papers of Levy [4], Steinitz [6] and Gross [1]. It is
 also treated in [2].

 3) What is the situation for other topological vector spaces?
 Since all finite-dimensional topological vector spaces of the same dimension are

 isomorphic, the Levy-Steinitz Theorem holds in any finite-dimensional space.
 In Hilbert space there are counterexamples, the first having been found by

 Marcinkiewicz ([5, p. 106]). This counterexample can be imbedded in many Banach
 spaces as well. The theorem does hold in the topological vector space of all
 sequences [3]. An exposition of these results, as well as a variation of Levy's
 approach, can be found in [2].
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 LETTERS TO THE EDITOR

 Editor,

 In a recent article in this MONTHLY [1], Stephen L. Campbell has given a proof,
 different from the historically well-known Cantor diagonalisation process, of the

 countability of the set of rational numbers.
 His method is similar in spirit to that given in [2], where a Godel index 2n3p5q is

 constructed to correspond to the rational number (- 1)'p/q, where n = 0 or 1

 depending on whether the rational number is positive or negative, respectively. This
 method is easily generalized to cover the case of the set of polynomials with rational
 coefficients as well. In my opinion, this method is more elementary.

 REFERENCES

 1. Stephen L. Campbell, Countability of Sets, this MONTHLY, 93 (1986) 480-481.

 2. Howard Eves and Carroll V. Newsom, An Introduction to the Foundations and Fundamental

 Concepts of Mathematics (revised edition), Holt, Rinehart and Winston, NY (1966), p. 338.

 P.W. Epasinghe

 Department of Mathematics

 University of Colombo
 Sri Lanka
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