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1 Introduction

Plane geometry is based upon the world in which we live—that is, it is based
upon Euclid’s 5 postulates:

• Postulate 1: Two points determine a line.

• Postulate 2: A segment can be extended into a line.

• Postulate 3: A line segment determines a circle, with the segment as the
radius.

• Postulate 4: All right angles are congruent.

• Postulate 5: If a line falling on a pair of lines makes the interior angles
on the same side less than two right angles, the pair of lines meet on the
side of the single line on which the interior angles are less than two right
angles.

Figure 1: The Euclidean Parallel Postulate

The most lengthy postulate, Postulate 5, has caused considerable contro-
versy among mathematicians. Is it necessary? Does assuming its converse give
contradiction? John McLeary derives an elegant result obtained from ignoring
the infamous “parallel postulate”. By combining the subjects of non-Euclidean
geometry, trigonometry, and infinite fractions, he proves the irrationality of π
and e. The following is derived from and contains parts of his paper [3].

2 Geometry

One example of non-Euclidean Geometry is the geometry of a sphere—if we
take the great circles to be the lines, then there are no parallel lines. Thus, we
begin with a definition regarding mappings from spheres.

Definition 2.1. Let the sphere of radius R centered at the origin be denoted
S2

R, and let U be an open subset of S2
R. Then a map projection from S2

R to the
plane is a mapping X : U → R2 that is differentiable, one-to-one, and has a
differentiable inverse.
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2.1 Arclength

A very simple problem in geometry is measuring arclength (for more information
on differential geometry, see [2]). To progress in our argument, we must define
how it is measured. As stated in McLeary’s paper, the length of a curve α :
[t0, t1] → U is given by the integral

∫ t1

t0

ds =
∫ t1

t0

√
E(u(t), v(t))

(
du

dt

)2

+ 2F (u(t), v(t))
du

dt

dv

dt
+ G(u(t), v(t))

(
dv

dt

)2

where (u(t), v(t)) = X(α(t)), and

E(u, v) =
∂X−1

∂u
·
∂X−1

∂u
, F (u, v) =

∂X−1

∂u
·
∂X−1

∂v
, G(u, v) =

∂X−1

∂v
·
∂X−1

∂v

Here, “·” denotes the dot product, and the metric, ds, is given by

ds2 = E(u, v)du2 + 2F (u, v) du dv + G(u, v)dv2

More information on metrics is available in [2], Chapter 8.

2.2 Central Projection

To derive the geometry on which to base our argument, we consider the central projection.
The central projection is a mapping X from the lower hemisphere U = {(x, y, z) ∈
S2

R|z < 0} to the plane T = {(x, y,−R) ∈ R3}, which we will equate with R2.
Consider a non-horizontal line from the center of S2

R through some point in U .
Then X maps that point to the intersection of the line and T .

Figure 2: Central Projection

An interesting and important property of the central projection is that, for
some surfaces, it maps the geodesics to straight lines, where a geodesic is the
curve of shortest length between two points on a given surface. In the case of
the sphere, these are the great circles.
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Example 1. Here we derive the coordinates given by the central projection.
Let the points on the lower hemisphere of radius R be given by (a, b), where
a ∈ (−π, π) is the longitude and b ∈ (−π/2, 0) is the latitude. Consider the
right triangle compsed of the line from the origin to the center of the sphere, the
line from the (a, b) to X(a, b), and the line from X(a, b) to the origin. Then the
horizontal distance from (a, b) to the center of the sphere is given by R cos(b),
and the vertical distance is −R sin(b).

R

b

b

b

-Rcot(b)

-Rsin(b)

-Rcos(b)

Figure 3: Similar Triangles

By similar triangles, the distance from the origin to X(a, b) is −R cot(b).
Furthermore, since a refers to a rotation about the vertical axis of the sphere,
the image X must be correspondingly rotated. Thus

X(a, b) = (−R cos(a) cot(b),−R sin(a) cot(b))

The metric corresponding to this mapping is

ds2 = R2 (R2 + v2)du2 − 2uv du dv + (R2 + u2)dv2

R2 + u2 + v2

(for a derivation of this fact, see [2], page 219). Letting q = 1/R2, the curvature
of a surface, we find

ds2 =
(1 + qv2)du2 − 2quv du dv + (1 + qu2)dv2

1 + qu2 + qv2
(1)

When q > 0, this is simply the geometry of the sphere with radius 1/
√

q. When
q = 0, we simply have ds2 = du2 + dv2, the metric for plane geometry. But
when q < 0, we have the geometry for a surface with negative curvature! With
this in mind, we make a new definition.

Definition 2.2. The q-plane is the subset Dq of R2 given by

Dq = {(u, v)|1 + qu2 + qv2 > 0}

with the metric given by (1).
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When q ≥ 0, this is the entire plane, as we would expect from our geometrical
definition of the central projection. However, when q < 0, it is the open disc of
radius 1/

√
−q centered at the origin. Now, since the central projection carries

geodesics on our surface to straight lines in Dq , we can learn about the geometry
of a surface by examining straight lines in its image, Dq.

2.3 Sides of a Triangle

We choose to consider a right triangle centered at the origin, and use ds to
examine its sidelengths. We take one leg along the u-axis, one leg parallel to
the v-axis, and the hypotenuse connecting the ends of those two legs.

a

b

c

u-axis

v-axis

Figure 4: Lengths of Legs of a Right Triangle

First we find the length of side b. Parametrize b as β(t) = (t, 0) = (u(t), v(t))
for 0 ≤ t ≤ x. Then dβ/dt = (1, 0) = (du(t), dv(t)), ds = (1 + qt2)−1dt, and so
since both v and dv are zero, we have

b =
∫ x

0

dt

1 + qt2

For side a, let α(t) = (x, t) with 0 ≤ t ≤ y. Then dα/dt = (0, 1), and,
making use of (1), ds =

√
1 + qx2dt/(1 + qx2 + qt2). So integrating, we get

a =
∫ y

0

√
1 + qx2

1 + qx2 + qt2
dt =

∫ y

0

d(t/
√

1 + qx2)
1 + q(t/

√
1 + qx2)2

=
∫ y/

√
1+qx2

0

dt

1 + qt2

For side c, we take γ(t) = (tx, ty) for 0 ≤ t ≤ 1. Then dγ/dt = (x, y) and

c =
∫ 1

0

√
(1 + qt2y2)x2 − 2qt2x2y2 + (1 + qt2x2)y2

(1 + qt2x2 + qt2y2)2
dt

=
∫ 1

0

√
x2 + y2dt

1 + q(x2 + y2)t2
=

∫ 1

0

d(
√

x2 + y2t)
1 + q(

√
x2 + y2t)2

=
∫ √

x2+y2

0

dt

1 + qt2
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2.4 Trigonometric Functions

Notice that in the equation for the length of each side, the integrand is the same.
In light of this fact, we create a new function.

Definition 2.3. For s ∈ R, define τq(s) implicitly by

s =
∫ τq(s)

0

dt

1 + qt2

Example 2. Let q = 1. Then s =
∫ τ1(s)

0
dt

1+t2 = arctan τ1(s). So

τ1(s) = tan(s) (2)

Example 3. Let q = −1. Then s =
∫ τ−1

0
dt

1−t2 . A simple application of partial
fractions gives s = 1

2(log(1+τ−1(s))− log(1−τ−1(s))). Then, using the division
identity for logarithms and solving for τ−1(s), we find

τ−1(s) =
e2s − 1
e2s + 1

= tanh s (3)

These examples suggest that we consider τq(s) as the tangent function in
Dq . To determine the other trigonometric functions, we observe that

dτq(s)
ds

= 1 + qτ2
q (s)

Recalling that d
ds tan(s) = sec2(s) = 1 + tan2(s), we have a motivation for

defining the following functions to act as sine and cosine.

Definition 2.4. For s ∈ R, define

σq(s) =
τq(s)√

1 + qτ2
q (s)

, ξq(s) =
1√

1 + qτ2
q (s)

(4)

3 Infinite Series

We now derive some facts about our new trigonometric functions.

Example 4. To find the Taylor Series of ξq(s) and σq(s), we first use the
quotient rule for differentiation on ξq(s). Combined with (5), this gives

dξ(s)
ds

=

−2qτq(s)(1+qτ2
q (s))

2
√

1+qτs
q

1 + qτ2
q (s)

= −qτq(s)ξq(s) = −qσq(s) (5)

after cancellation. Next, we differentiate σq(s) using the product rule

dσq(s)
ds

= (1 + qτ2
q (s))ξq(s) − qτq(s)σq(s) = ξq(s) (6)
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From our definitions, we see that ξq(0) = 1 and σq(s) = 0, so for s ∈ R, we
have the following Taylor Series

ξq(s) = 1 − qs2

2!
+

q2s4

4!
− q3s6

6!
+ · · · (7)

σq(s) = s − qs3

3!
+

q2s5

5!
− q3s7

7!
+ · · · (8)

Note the similarities between these Taylor Series and those of the trigonometric
functions. When q = 1, the above series reduce to cos(s) and sin(s). When
q = −1, they reduce to cosh(s) and sinh(s).

To gain further insight into the trigonometric functions, we examine them
in terms of a new function.

Definition 3.1. The power series Fc(s) is defined for c > 0 and s ∈ R by

Fc(s) = 1 −
s2

c
+

s4

2!c(c + 1)
−

s6

3!c(c + 1)(c + 2)
+ · · ·

In the context of this new function, we can rewrite (4) as σq(s) = sF3/2(s
√

q/2)
and ξq(s) = F1/2(s

√
q/2). Notice here that if q < 0, we are actually giving a

complex argument to Fc(s), even though we defined it originally for only s ∈ R.
However, going back to the definition, we see that Fc(s) is still real for s ∈ C
provided that either Re(s) or Im(s) is zero. This ensures that s2n, the only
terms involving s in our definition of Fc(s), are real.

4 Infinite Continued Fractions

We now consider our functions as infinite continued fractions to gain further
insight.

Lemma 4.1. The series Fc(s) satisfies the identity

Fc+1(s) − Fc(s) =
s2

c(c + 1)
Fc+2(s)

Proof. Since Fc(s) defines an absolutely convergent series, we can rearrange
terms as we please. Let Fc(s, n) be the nth term of Fc(s), with n starting at 0.
We then have the formula

Fc(s, n) =
(−s2)n

n!c(c + 1) · · · (c + n − 1)
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for n > 0. Now consider the following difference

Fc+1(s, n) − Fc(s, n) =
(−s2)n

n!(c + 1)(c + 2) · · · (c + n)

− (−s2)n

n!c(c + 1) · · · (c + n − 1)

=
s2

c(c + 1)
· (−s2)n−1

(n − 1)!(c + 2)(c + 3) · · · (c + n)

=
s2

c(c + 1)
Fc+2(s, n − 1)

with equality between the first and second expressions on the right side from
the fact that 1

n!
( 1

c+n
− 1

c
) = −1

(n−1)!c(c+n)
. So since the constant terms of Fc+1(s)

and Fc(s) cancel, we have the desired result.

From this lemma, we see that

Fc(s)
Fc+1(s)

= 1 − s2

c(c + 1)
Fc+2(s)
Fc+1(s)

Proceeding recursively, we get the infinite fractional expansion

Fc(s)
Fc+1(s)

= 1 −
s2/c(c + 1)

1 −
s2/(c + 1)(c + 2)

1 −
s2/(c + 2)(c + 3)

1 − · · ·

Since we have a formula for the function τq(s) in terms of the functions ξq(s)
and σq(s), and in turn formulas for those in terms of Fc(s), we can write them
as infinite continued fractions.

τq(s)
s

=
F3/2(

√
qs/2)

F1/2(
√

qs/2)
=

1

1−
(qs2/4)(1/2)(3/2)

1 −
(qs2/4)(3/2)(5/2)

1 −
(qs2/4)(5/2)(7/2)

1 − · · ·

In order to further our understanding of τq(s)/s, we must examine infinite
continued fractions in a more general context. First, we consider their conver-
gence.

4.1 Convergents

What follows includes arguments from and based on [1], pages 491-514, which
contains a wealth of information on infinite continued fractions.
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Definition 4.2. For the remainder of this paper, we consider infinite contin-
ued fractions as follows. Let {ak}∞k=1 and {bk}∞k=1 be two sequences of positive
integers. When we speak of convergence of infinite continued fractions, we are
considering the convergence of

b1

a1 −
b2

a2 −
b3

a3 − · · ·

(9)

Definition 4.3. Let p0 = 1, p1 = 0, q1 = 1, and q2 = a1. Then define pn and
qn recursively by

pn = an−1pn−1 − bn−1pn−2

qn = an−1qn−1 − bn−1qn−2

Then we say the convergents of a infinite continued fraction are the ratios pn/qn.

With this definition, we see that

p1

q1
= 0,

p2

q2
=

b1

a1
,

p3

q3
=

b1

a1 −
b2

a2

,
p4

q4
=

b1

a1 −
b2

a2 −
b3

a3

, etc. (10)

That is, when we are testing infinite continued fractions of the form (9)
for convergence, we say that the value of the infinite continued fraction is
limn→∞pn/qn. We now consider possible convergence and divergence results
of infinite continued fractions.

Example 5. The infinite continued fraction

1

1 −
1

1 −
1

1 − · · ·

does not converge. Depending on the values of n, pn/qn alternates between 0, 1,
and ∞. This is an example of oscillating divergence.

Example 6. The infinite continued fraction

1 +
1

1 +
1

1 +
1

1 + · · ·

= c, where c − 1 = 1/c (11)

converges. Solving the quadratic equation in c, we find that the solution is the
Golden Ratio, c = 1+

√
5

2 . Notice that, when we consider the convergents, the
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infinite continued
1

1+
√

5
2 − c

diverges to infinity, a different type of divergence

than we saw in the previous example.

Lemma 4.4. If an ≥ bn + 1 for all n, the convergents form a non-negative,
increasing sequence.

Proof. The first case is simple: p1/q1 = 0 < b1/a1 = p2/q2. For larger n, we use
induction. Since the sequences for a and b both consist of positive integers, and
our hypothesis gives that an ≥ bn + 1 > bn we know an−1 > an−1 − bn/an. So

0 <
bn−1

an−1
<

bn−1

an−1 − bn/an
. Furthermore, from our hypothesis relating an and

bn, we know that

1 > bn/an, so an−1 − bn/an > an−1 − 1 ≥ bn−1, so
bn−1

an−1 − bn/an
< 1

Thus, because an−2 is a positive integer and therefore greater than 1,

an−2 −
bn−1

an−1 − bn/an
> 0 (12)

for all n greater than 3. This is important because it means that since the
left side of (12) is nonnegative, we do not have to worry about the convergents
changing signs. Furthermore, since the left side is nonzero, the convergents are
always defined. Now, suppose that pn/qn is positive. Then

pn

qn
=

b1

a1 −
b2

a2 − · · ·
bn−2

an−2 −
bn−1

an−1

<
b1

a1 −
b2

a2 − · · ·
bn−2

an−2 −
bn−1

an−1 −
an

bn

=
pn+1

qn+1

We next consider another property of convergents.

Lemma 4.5. If an ≥ bn+1 for all n, then qn ≥ 1+b1+b1b2+· · ·+b1b2 · · ·bn−1.

Proof. First, we observe that

qn − qn−1 = an−1qn−1 − bn−1qn−2 − an−2qn−2 + bn−2qn−3

= an−1qn−1 − bn−1qn−2 − an−2qn−2 + (an−2qn−2 − qn−1)

= bn−1

(
an−1 − 1

bn−1
qn−1 − qn−2

)

≥ bn−1(qn−1 − qn−2)
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because an−1 − 1 ≥ bn−1. Using this inequality recursively, we see that

qn − qn−1 ≥ b1b2 · · ·bn−1

Now, making repeated use of this result, we get

qn = (qn − qn−1) + (qn−1 − qn−2) + · · · (q2 − q1) + q1

≥ 1 + b1 + b1b2 + · · ·+ b1b2 · · ·bn−1

To get a more general result regarding infinite continued fractions, we need
one more preliminary result.

Lemma 4.6. If an ≥ bn + 1 for all n, then qn − pn ≥ qn−1 − pn−1 ≥ · · · ≥
q2 − p2 ≥ 1.

Proof. In the case n = 2, q2 − p2 = a1 − b1 ≥ 1. When n = 3, we have

q3 − p3 = a1a2 − b2 − b1a2

≥ (a1 − b1)(b2 + 1) − b2

= (a1 − b1) + b2(a1 − b1 − 1)
= (q2 − p2) + b2((q2 − p2) − (q1 − p1))

This form of q3 − p3 can serve as the base case for an inductive argument. We
notice that

(qn−1 − pn−1) + bn−1((qn−1 − pn−1) − (qn−2 − pn−2))
= (qn−1 − pn−1)(bn−1 + 1) − bn−1(qn−2 − pn−2)
≤ an−1(qn−1 − pn−1) − bn−1(qn−2 − pn−2)
= qn − pn

Thus, if qn−1 − pn−1 ≥ qn−2 − pn−2 ≥ 1, then qn − pn ≥ qn−1 − pn−1.

4.2 Convergence and Irrationality

Theorem 4.7. Suppose an ≥ bn + 1 for all values of n, with strict inequal-
ity holding at least once. Then the infinite continued fraction of the form (9)
converges to a positive limit F < 1.

Proof. By Lemma 3.4, the convergents form a positive, increasing sequence, so
we cannot have the oscillation we saw in Example 6. Then because qn−pn ≥ 1,
pn/qn ≤ 1 − 1/qn. So since qn > 1, we have 0 < F < 1.

Theorem 4.8. The infinite continued fraction of the form (9) converges to an
irrational limit if there exists N such that an ≥ bn + 1 for all n > N , with
an > bn + 1 occurring infinitely often.
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Proof. It suffices to show that the infinite continued fraction

bN

aN −
bN+1

aN+1 −
bN+2

aN+2 − · · ·

(13)

is rational (that the theorem follows is left to the reader). Then (13) con-
verges, by Theorem 4.7, to a positive value less than 1. Now, assume that (13) is
rational. Then we can write it as λ2/λ1, with λ1 and λ2 both positive integers,
and λ1 > λ2. So let

ρ1 =
bN+1

aN+1 −
bN+2

aN+2 − · · ·
Since we know an > bn for infinitely many n, ρ1 must be positive and less than
1. Now, λ2/λ1 = bN/(aN − ρ1), so ρ1 = λ3/λ2 where 0 < λ3 = a2λ2 − b2λ1 < 1
since 0 < ρ1 < 1. Then if we let

ρ2 =
bN+2

aN+2 −
bN+3

aN+3 − · · ·
we find that ρ2 = λ4/λ3, with 0 < λ4 < λ3. Proceeding inductively, we see
that our assumption that (13) is rational requires that there exist an infinite
sequence of integers {λk}∞k=1 such that λk > λk+1 for all k. However, λ1 is
finite, so we have a contradiction. Thus (13) is irrational.

Theorem 4.9. If s and q are rational, then τq(s) is irrational.

Proof. Since q and s are rational, we can write qs2 = m/n. Now suppose τq(s)/s
were rational, then we could say τq(s)/s = a/b. Then

a

b
=

1

1 −
m/n

3 −
m/n

5 −
m/n

7 − · · ·

=
n

n −
mn

3n −
mn

5n −
mn

7n − · · ·

.

Thus, since mn is constant, the hypothesis of the previous theorem are sat-
isfied. So τq(s) cannot be rational.

We our now ready to give our final result.

Corollary 4.10. π and e are irrational.
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Proof. To show π is irrational, let q = 1 and s = π/4. Then since τ1(x) = tan(x),
we see τq(s)/s = tan(π/4)/(π/4) = 4/π. So Theorem 4.9 is contradicted if π
is rational. To show e is irrational, let q = −1 and s = 1. Because τ−1(x) =
tanh(x), τq(s)/s = (e − e−1)/(e + e−1). Thus, e must be irrational to maintain
consistency with Theorem 4.9.

5 Conclusion

McCleary’s paper is interesting because it sets the proofs of the irrationalities
of π and e in a general context—a context that one might expect to have little
to do numberical properties. It is important to be able to unite different parts
of mathematics in this way, as it allows us to use theorems for one topic and
apply them to another. Thus, we gain new methods that may allow us to solve
problems which previously held an elusive solution.
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