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2 Basic Group Theory

1 Introduction

In 2002, a music theorist by the name of Julian Hook published a paper in
the Journal of Music Theory titled, “Uniform Triadic Transformations.” In this
paper, Hook generalized some existing music theoretical concepts and greatly
improved their notation. Hook’s UTTs formed a group with interesting algebraic
properties.

This paper will first give the reader a review of all necessary group theory
to understand the discussion of Hook’s UTTs. Then it will review music theory
(atonal theory in particular) and its evolution to the UTTs. Finally, it will
discuss the UTTs themselves and conclude with some musical applications.

2 Basic Group Theory

Group theory is a branch of mathematics that studies groups. This algebraic
structure forms the basis for abstract algebra, which studies other structures
such as rings, fields, modules, vector spaces and algebras. These can all be
classified as groups with addition operations and axioms.

This section provides a quick and basic review of group theory, which will
serve as the basis for discussions in the group theoretical structure as applied to
music theory. Readers interested in a more thorough discussion to group theory
and abstract algebra may refer to [1] and [2].

2.1 What is a group?

A group is a set such that any two elements x and y can be combined via
“multiplication” to form a unique product xy that also lies in the set. This
multiplication is defined for every group and does not necessarily refer to the
traditional meaning of “multiplication.” We now state the formal definition of
a group:

Definition 2.1. A group is a set G together with a multiplication on G which
satisfies three axioms:

(a) The multiplication is associative, that is to say (xy)z = x(yz) for any
three (not necessarily distinct) elements in G.

(b) There is an element e ∈ G, called an identity element, such that xe = x =
ex for every x ∈ G

(c) Each element x ∈ G has an inverse x−1 which belongs to the set G and
satisfies x−1x = e = xx−1
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2 Basic Group Theory

Two important properties follow easily from the definition of a group. The
proof of these properties is left to the reader.

Theorem 2.2. Every group G satisfies the following properties:

(a) The identity element e of G is unique

(b) For all x ∈ G, the inverse x−1 is unique

Note how commutivity of the multiplication is not required within a group.
Therefore, we define an abelian group as follows:

Definition 2.3. A group G is abelian if its multiplication is commutative.
That is, xy = yx for any two elements in G.

To better illustrate the concept of a group, we now give some examples.

Example 2.4. The reals excluding 0 R\{0} under multiplication:

• The group is closed under multiplication: for all x, y ∈ R, x · y ∈ R.

• The multiplication is associative: for all x, y, z ∈ R, (x · y) · z = x · (y · z).

• The identity is 1: for all x ∈ R, 1 · x = x = x · 1.

• The inverse of x is 1
x : 1

x · x = 1 = x · 1
x .

This group is abelian since x, y ∈ R, x · y = y · x. Note how we must exclude 0
for this to be a group since there exists no inverse for 0. That is, there does not
exists some x ∈ R such that x · 0 = 1

Example 2.5. The integers Z (mod 12), which we will denote as Z12, under
addition (mod 12). (Note: in abstract algebra, Z (mod 12) is generally notated
as Z/(12) and Z12 refers to another algebraic structure. However, in music
theory, only Z (mod 12) is of significance and we will use this more concise
notation.)

• The group is closed under addition (mod 12): for all x, y ∈ Z12,
x+12 y ∈ Z12.

• Addition (mod 12) is associative.

• The identity is 0.

• The inverse of x is 12− x.

This group is also abelian since for all x, y ∈ Z12, x+12 y = x+12 x.

Example 2.6. The dihedral groups represent the symmetries of a regular
polygon that map it onto itself. Consider the regular hexagon. Let r denote
the rotation of through π/3 about the axis of symmetry perpendicular to the
hexagon (rotating), let s denote the rotation through π about an axis of sym-
metry that lies in the plane of the plate (flipping), and let e denote the identity
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2 Basic Group Theory

(leaving the hexagon unchanged). Then the dihedral group D6 consists of the
following 12 twelve elements, as shown in Figure 1.
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Figure 1: Elements of D6

It may seem that the group is not closed under multiplication since the
element sr is missing from the group. However, a rotation r takes the hexagon
from Figure 1a to Figure 1b. A subsequent flip s takes the hexagon from Figure
1b to Figure 1l. Thus, rs is equivalent to r5s. The reader can check that the
whole group is indeed closed under multiplication. In general,

srn = r6−ns, for n ∈ Z6

for the D6 dihedral group.

Definition 2.7. The order of a group is the number of elements in the group.

Definition 2.8. The order of some element x of a group G is the smallest
positive integer n such that xn = e

Definition 2.9. A subgroup of a group G is a subset of G which itself forms
a group under the multiplication of G

Definition 2.10. A group G is cyclic if there exists an x ∈ G such that for all
y ∈ G, y = xn for some n ∈ Z. We call x a generator of G.

2.2 Permutations

Definition 2.11. A permutation of an arbitrary set X is a bijection from X
to itself.

Permutations can be denoted in multiple ways. Consider r from the D6 di-
hedral group. We can represent it as a permutation of integers like so: (054321),
where each integer is sent to the one following it, and the final one is sent to
the first. Likewise, we can write sr as (01)(25)(34).
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2 Basic Group Theory

Definition 2.12. A permutation of the form (a1a2 . . . ak) is called a cyclic
permutation. A cyclic permutation of length k is called a k-cycle.

Definition 2.13. A transposition is 2-cycle.

Any k-cycle (a1a2 . . . ak) can be written as a product of transpositions:

(a1a2 . . . ak) = (a1ak) . . . (a1a3)(a1a2)

Note that transpositions may be written as many different products. This prod-
uct is not unique, but is meant to show the existence of a product consisting
only of transpositions.

Definition 2.14. An even permutation is a permutation that can be written
as an even number of transpositions. The others are called odd permutations.

It may bother the reader that the a permutation in the form of a product of
transpositions is not unique. Perhaps a permutation could be written as both
an even number of transpositions and an odd number. However, the following
theorem shows that the definition is well defined.

Theorem 2.15. Although any permutation can be written as a product of trans-
positions in infinitely many different ways, the number of transpositions which
occur is always even or always odd.

Theorem 2.16. Consider the set X of n elements. The set of all permutations
of X forms a group Sn called the symmetric group of degree n. Multiplication
on this group is defined by composition of functions.

2.3 Morphisms

2.3.1 Homomorphisms

Definition 2.17. Let G and G′ be groups. A homomorphism is a function
ϕ : G→ G′ that preserves the multiplication of G. Therefore,

ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G

Example 2.18. Let ϕ be a function from D12 to Z2 defined by ϕ(rn) = 0 and
ϕ(rns) = 1. Consider two elements x and y in D12. We have four cases:

• x = rm, y = rn:

ϕ(xy) = ϕ(rmrn) = ϕ(rm+n) = 0 = 0 + 0 = ϕ(x)ϕ(y)

• x = rms, y = rn:

ϕ(xy) = ϕ(rmsrn) = ϕ(rm−ns) = 1 = 1 + 0 = ϕ(x)ϕ(y)

• x = rm, y = rns:

ϕ(xy) = ϕ(rmrns) = ϕ(rm+ns) = 1 = 0 + 1 = ϕ(x)ϕ(y)
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2 Basic Group Theory

• x = rms, y = rns:

ϕ(xy) = ϕ(rmsrns) = ϕ(rm−nss) = ϕ(rm−n) = 0 = 1 + 1 = ϕ(x)ϕ(y)

Hence, ϕ satisfies the properties of a homomorphism.

2.3.2 Isomorphisms

Definition 2.19. An isomorphism is a bijective homomorphism.

Example 2.20. Z12 is isomorphic to Z3×Z4. Consider the elements of Z3×Z4:

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

Send each element (x, y) to 4x+ y and you have Z12

2.3.3 Automorphisms

Definition 2.21. An automorphism of a group G is an isomorphism from
G to G. The set of all automorphisms forms a group under composition of
functions, which is called the automorphism group of G and written Aut(G).

Automorphisms fix the identity and send generators to generators.

Example 2.22. Consider the automorphisms of Z4. There are only two gener-
ators in this group: 1 and 3. Therefore, there are only two elements in Aut(Z4):
the trivial one, and the one that flips 1 and 3.

2.4 Products

2.4.1 Direct Products

Theorem 2.23. The set G×H of two groups G and H is a group that consists
of the elements (g, h) where g ∈ G and h ∈ H. Given two elements (g, h) and
(g′, h′) of G×H, multiplication on this group is defined by

(g, h)(g′, h′) = (gg′, hh′)

where the first term, gg′, inherits the multiplication of G, and the second, hh′,
inherits the multiplication of H. We call this group the direct product G×H
of G and H.

Proof. Associativity follows from the associativity in both G and H. The iden-
tity is (e, e) and the (g−1, h−1) is the inverse of (g, h).

Example 2.24. Consider Z4 × Z2. This group has 8 elements:

(0,0), (1,0), (2,0), (3,0),
(0,1), (1,1), (2,1), (3,1).

Multiplication is defined by

(x, y) + (x′, y′) = (x+4 x
′, y +2 y

′)
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2 Basic Group Theory

2.4.2 Semidirect Products

Theorem 2.25. Suppose we have the groups G, H and the homomorphism
ϕ : G→ Aut(H). Then the “twisted” direct product GoH forms a new group.
Its elements are of the form (g, h) with g ∈ G and h ∈ H and multiplication is
defined by

(g, h)(g′, h′) = (g · ϕ(h)(g′), h · h′).
We call this group the semidirect product of G and H.

Example 2.26. Consider the semidirect product Z4 oZ2. The elements in this
group are the same as those in Z4 × Z2 as listed in Example 2.24.

We need to define ϕ. There are only two automorphisms of Z4 as shown in
Example 2.22. Let the trivial automorphism be denoted with e and the other
with σ. Then, since ϕ : Z2 → Aut(H), we have ϕ(0) = e and ϕ(1) = σ.

Now we can perform multiplication on the group. Consider multiplying the
elements (0, 0) and (1, 0). Since ϕ(0) = e this multiplication is just like that of
the direct product:

(0, 0)(1, 0) = (0 + ϕ(0)1, 0 + 0) = (0 + e(1), 0 + 0)(1, 0)

Now consider the elements (1, 0) and (0, 1).

(0, 1)(1, 0) = (0 + ϕ(1)(1), 1 + 0) = (0 + σ(1), 1 + 0) = (3, 1)

Example 2.27. We can rewrite the elements of Z4 as e, r, r2 and r3 and the
elements of Z2 as e and s. Converting the elements we used in the above
example, we have (0, 0) = e, (1, 0) = r and (0, 1) = s. Then,

(0, 0)(1, 0) = er = r

and
(0, 1)(1, 0) = sr = σ(s)(r)s = r3s

Note how the multiplication is “twisted”. That is, to “pull” the r past the s,
we have to twist and change it a little bit. We can clearly see that Z4 × Z2 is
isomorphic to the dihedral group D4.

2.4.3 Wreath Products

The generalized form of a wreath product G oH is too complicated for the scope
of this paper. Therefore, we will only consider the special case taking a wreath
product with Z2.

Consider the group G. Then G o Z2 is isomorphic to (G × G) o Z2. We
will discuss this semidirect product in the dihedral notation as in Example 2.27.
Thus, let the elements of G×G be denoted by rm1 r

n
2 .

The automorphism for a wreath product must permute the parts of an ele-
ment in G×G. Since we only have two elements, rm1 and rn2 , the only non-trivial
automorphism is to switch them. That is σ(rm1 r

n
2 ) = rn2 r

m
1 . Thus,

rm1 r
n
2 s = sσ(rm1 r

n
2 ) = srn2 r

m
1 .
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3 Music Theory

3 Music Theory

Music theory is a tool and framework with which we explain our listening expe-
rience. However, both the tool and the term “listening experience” are loosely
defined. They are dependent on the music.

During the mid-15th century, composers began constructing their pieces
around a particular pitch, called the tonic. This pitch was quickly established
at the start of the piece and all other pitches were heard relative to it. Intervals
and chords were labeled as consonant or dissonant. A feeling of tension occurred
in various ways, such as when resolution was delayed, or when the music leapt
to distant keys (more than two accidentals removed from the tonic). Resolution
to the tonic was crucial to ending the piece. After over two centuries of tonal
music, listeners have begun to expect music to resolve in particular ways.

Along with the development of tonal music was the development of tonal
theory. Its structure and notation allowed theorists to describe the listener’s
expectation. Thus, it provided an explanation for our reaction to particular
harmonies. It explained our feeling of surprise at a particular chord and our
feeling of finality at the end of a piece.

Around the turn of the 19th century, composers pushed the boundaries of
tonal music. They began using dissonant chords with unprecedented freedom
and resolved them in new ways. Eventually, their pieces no longer fit the frame-
work of tonal music. Tonal theory no longer provided an adequate explanation
for our listening experience. Thus, a new framework was constructed called
atonal music theory.

Discussions in music require a certain vocabulary. The following terms are
defined in the appendix:

• interval

• half step (semitone) & whole step (whole tone)

• flat, sharp, natural & accidental

• enharmonic equivalence

• major, minor, mode

• parallel & relative

• scale degree

• triad

3.1 Basic concepts of atonal music theory

Atonal music is based on sequences of pitches and intervals. No particular pitch
is considered more important than the others and resolution of dissonance is
unimportant. It assumes octave and enharmonic equivalence.

9



3 Music Theory

Definition 3.1. Pitches that are separated by an integer multiple of an octave,
or are enharmonically equivalent belong to the same pitch class.

Each pitch class is assigned an integer as shown in Table 1.

Table 1: Pitch-Class Integers

Integer Possible Notation
0 B], C, D[[
1 C], D[
2 C×, D, E[[
3 D], E[
4 D×, E, F[
5 E], F, G[[
6 F], G[
7 F×, G, A[[
8 G], A[
9 G×, A, B[[
10 A], B[
11 A×, B, C[

Pitch-classes are separated by intervals. In atonal music theory, they con-
sider four different definitions of “interval” to aid analysis. However, we will
give only one:

Definition 3.2. Consider the pitches a and b. The ordered pitch-class in-
terval from a to b is a− b (mod 12).

Definition 3.3. A pitch-class set is an unordered set of pitch-classes, denoted
as a string of integers enclosed in brackets. Within a pitch-class set, we do not
have information about the register, rhythm or order of the pitches.

Example 3.4. The C major triad consists of the notes C, E and G. This can
be represented as the pitch-class set [047], since C = 0, E = 4 and G = 7 as
shown in Table 1.

In atonal music, operations are performed on pitch-class sets, creating new
pitch-class sets that are spread throughout the music. Thus, the music sounds
random and yet structured at the same time. We will discuss two types of
operations in this paper: the transpositions and the inversions.

3.1.1 Tn, the Transpositions

Definition 3.5. The transposition Tn moves a pitch-class or pitch-class set up
by n (mod 12). (Note: moving down by n is equivalent to moving up by 12−n.)

Figure 2 from page 34 of [4] shows two lines from Schoenberg’s String Quartet
No. 4, which are related by T6. Note how the pitch-class intervals between notes

10



4 Group Theory as a Structure for Atonal
Music Theory

remains do not change. Figure 3 from page 35 of [4] shows a more complicated
analysis of Webern’s Concerto for Nine Instruments, Op. 24, second movement,
which depicts four different pitch-class sets related by different transpositions.

Figure 2: Two lines of pitch classes related by T6 (Schoenberg, String Quartet
No. 4).

3.1.2 TnI, the Inversions

Definition 3.6. Consider the pitch a. Inversion TnI inverts the pitch about C
(0) and then transposes it by n. That is, TnI(a) = −a+ n (mod 12).

Figure 4 from page 40 of [4] shows two lines from Schoenberg’s String Quartet
No. 4, which are related by T9I. Note how the pitch-class intervals of size n
have all been inverted to 12−n. Figure 5 from page 41 of [4] shows an analysis
of the Schoenberg, Piano Piece, Op. 11, No. 1, which depicts three different
pitch-class sets related by different inversions.

4 Group Theory as a Structure for Atonal
Music Theory

The numbering of the pitch classes reveals their isomorphism to Z12. More
interestingly, the group of transpositions and inversions, denoted Tn/TnI is
isomorphic to the dihedral group D12.

11



4 Group Theory as a Structure for Atonal
Music Theory

Figure 3: Transpositionally equivalent pitch-class sets (Webern, Concerto for
Nine Instruments, Op. 24).
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4 Group Theory as a Structure for Atonal
Music Theory

Figure 4: Two lines of pitch classes related by T9I (Schoenberg, String Quartet
No. 4)

Figure 5: Inversionally equivalent pitch-class sets (Schoenberg, Piano Piece, Op.
11, No. 1)
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4 Group Theory as a Structure for Atonal
Music Theory

Imagine laying out all the pitches in a circular pattern on a 12-sided polygon.
Then we have:

0 (C)
1 (C])

2 (D)

3 (D])

4 (E)

5 (F)
6 (F])

7 (G)

8 (G])

9 (A)

10 (A])

11 (B)

Consider the transposition T11. It sends C to B, C]to C, etc. That is,

0 (C)
1 (C])

2 (D)

3 (D])

4 (E)

5 (F)
6 (F])

7 (G)

8 (G])

9 (A)

10 (A])

11 (B)

T11

0 (B)
1 (C)

2 (C])

3 (D)

4 (D])

5 (E)
6 (F)

7 (F])

8 (G)

9 (G])

10 (A)

11 (A])

Now consider the inversion T1I. It sends C to D], D]to C, D to B, etc. This
gives:

0 (C)
1 (C])

2 (D)

3 (D])

4 (E)

5 (F)
6 (F])

7 (G)

8 (G])

9 (A)

10 (A])

11 (B)

T1I

0 (C])
1 (C)

2 (B)

3 (A])

4 (A)

5 (G])
6 (G)

7 (F])

8 (F)

9 (E)

10 (D])

11 (D)

Note the striking similarity of T11 and T1I to r and sr of D12. We can clearly
see that the Tn/TnI group is isomorphic to D12 by Tn → r12−n and TnI → rns.
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6 Uniform Triadic Transformations

5 A Flaw in Atonal Music Theory

Consider the operation that changes a major triad to a minor triad. To our
ears, this is the same operation regardless of whether we start with a CM triad
or a DM triad. However, consider the CM triad as the pitch class [047], cm as
[037], DM as [269] and dm as [259]. Then, we have

CM → cm = [047] → [037] = T7I
DM → dm = [269] → [259] = T11I

This is a misleading representation of the music, because our ears do not hear
two different actions. Therefore, the structure of atonal music theory has an
inherent flaw. It cannot support these simple transformations.

A music theorist named Hugo Riemann recognized this problem. He invented
the idea of a “triadic transformation.” Later music theorists devised three oper-
ations, called Neo-Riemannian operations, that functioned specifically on triads:

• The Parallel operation (P) moves the middle note of a triad up or down
a semitone such that a major triad becomes minor and a minor triad
becomes major. For example, it would move the E in a CM to an E[ and
the E[ in a cm triad to an E\.

• The Leading-tone exchange (L) moves the bottom note of a major triad
down a semitone and the top note of a minor triad up a semitone. Thus,
a CM triad would turn into an em triad, and a cm triad would turn into
an A[M triad.

• The Relative operation (R) sends a chord to its relative counterpart by
moving the top note of a major triad up by a whole tone, and moving the
bottom note of a minor triad down by a whole tone. Thus, a CM triad
would turn into an am triad, and a cm triad would turn into an E[M triad.

These three were particularly interesting because they allowed for parsimonious
voice-leading. That is, in moving from one triad to another, only one voice (top,
middle or bottom) moved, and it moved by nothing more than a whole step.
In addition, they allowed a transformation from any one chord to another by
composition of these operations.

6 Uniform Triadic Transformations

This P , L and R notation, while a definite imporvement, could still be unclear,
unwieldy and limited in its usefulness. For example, a move from a CM triad to a
b[m triad requires a minimum of six Neo-Rimannian operations. Furthermore,
there are nine different ways to write it in six operations: LPRPR, LRPRP,
PLRLR, PRLRP, PRPRL, RLPLR, RLRLP, RPLPR, RPRPL. Of course, there
are even more ways to write it in more than six operations. Not only has this
notation become pedantic, it also fails to reflect the music: who would hear six
operations in a simple move from CM to b[m?

15



6 Uniform Triadic Transformations

To resolve this problem, another music theorist named Julian Hook devised
a new notation for transformations on triads, which he called uniform triadic
transformations (UTTs). This notation, in fact, was a group structure with
intriguing algebraic properties. Before we jump into a discussion on Hook’s
UTTs, let us first provide some definitions.

Definition 6.1. A triad is an ordered pair ∆ = (r, σ) where r is the root of
the triad expressed as an integer (mod 12), and σ is a sign representing its mode
(+ for major, − for minor).

Example 6.2. ∆ = (0,+) represents a C major triad and ∆ = (6,−) represents
an f] minor triad.

Theorem 6.3. The set of all 24 major and minor triads, forms a abelian group
with multiplication defined by

(t1, σ1)(t2, σ2) = (t1 + t2, σ1σ2)

We call this set Γ.

Proof. This group is clearly isomorphic to Z12 × Z2, which by Theorem 2.23 is
a group.

Definition 6.4. Given ∆1 = (r1, σ1) and ∆2 = (r2, σ2), the transposition
level t = r2−r1 is the interval between the roots and the sign factor σ = σ1σ2 is
the change in sign. (σ is multiplied as expected with ++ = +,+− = −,−+ = −
and −− = +.) The Γ-interval int(∆1,∆2) is the ordered pair (t, σ) where t
and σ are the transposition level and sign factor as defined above.

Example 6.5. The Γ-interval from (0,+) (C major) to (6,−) (f] minor) is
(6,−).

6.1 Introduction to Triadic Transformations

Definition 6.6. A triadic transformation is a bijective mapping from Γ to
itself. In other words, it is a permutation of Γ.

Theorem 6.7. The set of all triadic transformations forms a group G .

Proof. After numbering the triads, this group is clearly isomorphic to S24.

The order of G is huge: 24 factorial. However, most of these transformations
have little musical meaning since the action of a transformation on one triad
may not resemble its action on another triad.

6.2 V , the Uniform Triadic Transformations

Of particular musical interest are the UTTs because they operate on all major
triads in the same manner. Similarly, the UTTs have one action for all minor
triads.
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6 Uniform Triadic Transformations

Definition 6.8. Consider the triadic transformation that transforms (r, σ) to
(r′, σ′). It is a uniform triadic transformation (UTT) if it transforms
(r + t, σ) to (r′ + t, σ′) for all t ∈ Z12.

It is important to note that not all musically interesting transformations are
UTTs. The inversions TnI, for example, are not part of the UTTs.

Any UTT is completly determined by three parameters:

• t+, its transposition level for a major triad

• t−, its transposition level for a minor triad

• σ, its sign. (Note: it may seem that σ could be different for major and
minor triads. However, in order to be a transformation, a UTT must map
Γ to itself. Thus, if it switches major triads to minor, it must switch minor
triads to major. That is σ+ = −σ−. Positive σ implies no change in mode
(it is mode-preserving), negative σ implies switching to the opposite
mode (it is mode-reversing).)

We can thus denote any UTT U by the ordered triple U =< σ, t+, t− >.

Example 6.9. We will convert Riemann’s P , L and R in UTT notation:

P =< −, 0, 0 >
L =< −, 4, 8 >
R =< −, 9, 3 >

Note, Hook uses left-to-right orthography. Thus, U1U2 implies “first U1
then U2.” As usual, U2 = UU , etc. Although it is less intuitive for mathemati-
cians, we will adhere to his notation.

6.2.1 Multiplication on V

Multiplication on V should clearly be composition. Before we derive a gen-
eral formula for the composition of two UTTs, let us consider some concrete
examples.

Example 6.10. Consider the UTTs U =< +, 4, 7 > and V =< −, 5, 10 >. Let
us calculate the product UV =< σUV , t

+
UV , t

−
UV >. When UV acts on a CM

triad (∆ = (0,+)) we have:

(0,+) U−→ (4,+) V−→ (9,−).

Thus, UV transforms the major triads through the Γ-interval (9,−). We can
deduce that σUV = − and t+UV = 9.

When UV acts on a cm triad (∆ = (0,−)) we have:

(0,−) U−→ (7,−) V−→ (5,+).

17



6 Uniform Triadic Transformations

Thus, UV transforms the minor triads through the Γ-interval (5,+) and t−UV =
5. Hence, UV =< −, 9, 5 >

This product may be calculated by multiplying the signs (σUV = σUσV ) and
adding the corresponding transposition levels (t+UV = t+U+t+V and t−UV = t−U+t−V ).
Figure 6 from page 72 of [3] depicts a visual representation of UV .

Example 6.11. Now consider the product V U . In this case we have

(0,+) V−→ (5,−) U−→ (0,−),

and
(0,−) V−→ (10,+) U−→ (2,+).

Therefore, V U =< −, 0, 2 >. In this case, the signs were multiplied as before,
the transposition levels were “cross-added.” That is, t+UV = t+V + t−U and
t−UV = t−V + t+U .

We can see that in the above example, the “cross-adding” was due to the
sign of the first transformation. In the first case, the first UTT (U) was mode-
preserving, so the second UTT (V ) acted on the same mode as U . Thus, the
corresponding transposition levels were applied in succession. In the second
case, the first UTT (V ) was mode-reversing, so the second UTT (U) acted on
the opposite mode as V and opposite transposition levels were combined. This
leads us to the general form of UTT multiplication:

Theorem 6.12. Consider two UTTs U =< σU , t
+
U , t
−
U > and

V =< σV , t
+
V , t
−
V >. Multiplication on V is given by

UV =< σUσV , t
+
U + t

(σU )
V , t−U + t

(−σU )
V >

The reader can verify that following the process above using two arbitrary
elements in V will give the desired result.

6.2.2 Inversion on V

Again, before we derive a general formula for the inverse of a UTT, let us
consider some concrete examples.

Example 6.13. Consider the UTT U =< +, 4, 7 >. Because (0,+) U−→ (4,+)

and (0,−) U−→ (7,−), we need (4,+) U−1

−→ (0,+) and (7,−) U−1

−→ (0,−). Thus,
U−1 =< +, 8, 5 >. Note how this is simply the inversion of the transposition
levels: < +,−4 (mod 12),−7 (mod 12) >.

Example 6.14. Now consider the UTT V =< −, 5, 10 >. (0,+) V−→ (5,−) and

(0,−) V−→ (10,+). Thus, (5,−) V −1

−→ (0,+) and (10,+) V −1

−→ (0,−). Therefore,
V −1 =< −2, 7 > or < −,−10 (mod 12),−5 (mod 12) >. In this case, the
transposition levels are not only inverted, but interchanged. Once again, this is
due to the sign of V .
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6 Uniform Triadic Transformations

Similarly to multiplication, the inverse of a UTT can be derived to be as
follows:

Theorem 6.15. Consider the UTT U =< σ, t+, t− >. Its inverse is given by

U−1 =< σ,−tσ,−t(−σ) >

6.2.3 Isomorphism to Z12 o Z2

With some analysis, we come upon the highly interesting and significant result
that V is isomorphic to Z12 o Z2. This isomorphism gives V any and all results
already proven about Z12 o Z2.

Theorem 6.16. The set V of UTTs is a group that is isomorphic to Z12 o Z2.

Proof. Remember from Section 2.4.3 how we represented G × G in the form
rm1 r

n
2 . Let G be Z12 and let us switch the 1 and 2 to + and -. Then the

elements of Z12 o Z2 are srm+ r
n
− where m,n ∈ Z12.

Also note that the transpositions, which are equivalent to the transposition
levels of a UTT, are isomorphic to the rotations of the D12 by Tn → rn. (Note:
we initially wrote in Section 4 that the Tn/TnI group was isomorphic by
Tn → r12−n. This reflected our visual representation of the two groups. How-
ever, the groups are still isomorphic if we choose Tn → rn, which makes the
following argument clearer.)

It seems likely that the UTTs are isomorphic to Z12 o Z2 by
< σ, t+, t− >→ srm+ r

n
−. We have already shown that the UTTs have multipli-

cation and inverses. We only need to show that it follows the multiplication of
Z12 o Z2. That is, (rm+ r

n
−)s = s(rn−r

m
+ ).

(rm+ r
n
−)s = (erm+ r

n
−)(see)

=< −, 0, 0 >< +, t+m, t
−
n >, this is a little backwards because

=< −, 0 + t−n , 0 + t+m > mathematicians use right-to-left

=< −, t−n , t+m > orthography and Hook uses left-to-
= s(rn−r

m
+ ) right orthography

Thus, multiplication is preserved and the isomorphism holds.

6.2.4 Even and Odd UTTs

UTTs can be classified as “even” or “odd” in multiple ways. Let us begin with
“even/odd in the sense of total transposition.”

Definition 6.17. We say that a UTT U =< σ, t+, t− > is even (or, more fully,
even in the sense of total transposition) if its total transposition τ(U) =
t+ + t− is an even number. U is odd (in the sense of total transposition)
if τ(U) is an odd number.
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6 Uniform Triadic Transformations

Example 6.18. The UTTs P =< −, 0, 0 >, L =< −, 4, 8 > and R =< −, 9, 3 >
are all even. Also, the Riemannian UTTs, whose total transposition τ is 0 by
definition, are all even.

Note that the UTTs can be written as a permutation of the 24 triads. Take
for example, the UTT U =< −, 0, 8 >, which breaks down into four 6-cycles:

C → c → A[ → g] → E → e → C,
D[ → c] → A → a → F → f → D[,
D → d → B[ → b[ → F] → f] → D,
E[ → d] → B → b → G → g → E[.

We can represent this in the more compact form of:

(C, c, A[, g], E, e)(D[, c], A, a, F, f)(D, d, B[, b[, F], f])(E[, d], B, b, G, g).

Recall from Section 2.2 that each of these 6-cycles can be represented as a
product of transpositions (the 2-cycles). Accordingly, we have a new definition
of even or odd:

Definition 6.19. A UTTs is even (in the sense of permutation theory)
if it can be written as a product of an even number of 2-cycles and odd (in the
sense of permutation theory) if it can be written as a product of an odd
number of 2-cycles.

It is remarkable that the two definitions of even or odd (in the sense of total
transposition versus permutation theory) are actually equivalent.

Theorem 6.20. A UTT is even in the sense of total transposition if and only
if it is even in the sense of permutation theory.

The proof of the theorem is given on page 97 of [3]

6.3 R , the Riemannian UTTs

Recall the Neo-Riemannian operators P, L and R as introduced in Section 5 and
written as UTTs in Example 6.9. For each, the transposition level for a major
triad is equal and opposite that of a minor triad. We define the Riemannian
UTTs as follows.

Definition 6.21. A Riemannian UTT is a UTT such that t+ = −t−.

Theorem 6.22. The set of R of Riemannian UTTs is isomorphic to D12.

Proof. D12 can be defined as the group of order 24 generated by s and r, such
that s2 = e, r12 = e and sr = r−1s.
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7 Musical Application

The generators of R are < −, 0, 0 > and < +, 1, 11 >.

(< −, 0, 0 >)2 =< −, 0 + 0, 0 + 0 >=< +, 0, 0 >= e ∈ R
(< +, 1, 11 >)12 =< +, 12 · (1), 12 · (11) >=< +, 0, 0 >= e

(< +, 1, 11 >)−1 =< +, 11, 1 >
< −, 0, 0 >< +, 1, 11 > =< −, 0 + 11, 0 + 1 >

=< −, 11 + 0, 1 + 0 >
=< +, 1, 11 >< −, 0, 0 >
= r−1s

6.4 K, the Subgroups of V
Generally, it is difficult to list all the subgroups of a given group G. However,
it is possible to list all the subgroups of V .

Definition 6.23. Give two integers a and b (mod 12), we define three subsets
of V as follows.

• K+(a) is the set of all mode-preserving UTTs of the form < +, n, an > as
n ranges through the integers mod 12.

• K−(a, b) is the set of all mode-reversing UTTs of the form < −, n, an+b >.

• K(a, b) = K+(a) ∪ K−(a, b)

Theorem 6.24. K(a, b) is a subgroup of V if and only if the numbers a and b
satisfy a2 = 1 and ab = b (mod 12).

The proof is given on pages 84-85 of [3].
The condition a2 = 1 is satisfied only for a = 1, 5, 7 and 11. If a = 1 then the

condition ab = b is automatically satisfied. For other values of a, the allowable
values of b are different in each case. The following is a complete list of the
groups K(a, b):

K(1, 0),K(1, 1),K(1, 2), . . . ,K(1, 11)
K(5, 0),K(5, 3),K(5, 6),K(5, 9)
K(7, 0),K(7, 2),K(7, 4),K(7, 6),K(7, 8),K(7, 10)
K(11, 0),K(11, 6)

7 Musical Application

The UTTs of order 24 are of considerable musical interest. When such a trans-
formation is applied repeatedly, the resulting chain of triads will cycle through
all 24 major and minor triads before returning to the original one. Take, for
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8 Conclusion

example, the UTT U =< −, 9, 8 >. Its repeated application produces a chain
in the scherzo of Beethoven’s Ninth Symphony (mm. 143-171):

C U−→ a U−→ F U−→ d U−→ B[ U−→ · · · U−→ A

This chain is 19 triads long, only five short of a complete cycle.
Such triad chains are rarely prolonged to this extent. There are, however,

examples from litterature that circumnavigate the entire cycle of 24 triads.
These are found in collections of pieces such as Bach’s Well-Tempered Clavier
and the Chopin Preludes, Op. 28. Table 2 from page 90 of [3] lists some other
examples of triad chains.

Table 2: Chord Progressions and Tonal Cycles Generated by Order-24 UTTs

Chord progressions
Source Progression UTT(U)
Bach, Violin Concerto in A
minor, I, mm. 88-94

e→E→a→A→d→ · · · < −, 5, 0 >

Mozart, Requiem, Confutatis,
mm10–12

C→c→G→g→D→ · · · < −, 0, 7 >

Beethoven, String Quartet, Op.
18, No. 6, IV, mm. 20–28

B→e→F]→b→C]→ · · · < −, 5, 2 >

Beethoven, Symphony No. 3, I,
mm. 178–186

c→A[→c]→A→d < −, 5, 8 >

Beethoven, Symphony No. 9, II,
mm. 143–171

C→a→F→d→B[→ · · · < −, 9, 8 >

Liszt, ”Wilde Jagd,” mm.
180–184

E[→g→D→f]→D[→ · · · < −, 4, 7 >

Tonal cycles
Source Key Sequence UTT(U)
Bach, Well-Tempered Clavier C→c→C]→c]→D→ · · · < −, 0, 1 >
Chopin, Preludes, Op. 28 C→a→G→e→D→ · · · < −, 9, 10 >
Liszt, Transcendental Etudes C→a→F→d→B[→ · · · < −, 9, 8 >

8 Conclusion

We can see that Hook’s UTTs not only have interesting mathematical properties,
but also musical significance. Musically, the choice of triads is non-arbitrary
since triads occur throughout music. Mathematically, however, the set choice is
arbitrary. Some current research in music theory investigates the generalization
Hook’s UTTs to larger chords or even to pitch-class sets. The flexibility these
generalizations will provide may greatly improve atonal analysis.
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APPENDIX

Appendix

Figure 7: A piano with the keys labeled

Definition 8.1. An interval is the distance between two pitches

Definition 8.2. Two pitches have an interval of a half step or semitone apart
if they “touch” each other on a piano. A whole step or whole tone is two
semitones.

Example 8.3. C is a semitone away from C]and B. It is a whole tone away
from D and B[.

Definition 8.4. A flat [ lowers a pitch by a semitone, a sharp ] raises a pitch
by a semitone and a natural \ does nothing to the pitch. A double flat [[
lowers a pitch by a whole tone, and a double sharp × raises a pitch by a whole
tone. The symbols [, ] and \ are called accidentals.

Example 8.5. Flats and sharps of notes are shown in Figure 7. D[[is C and
D× is E.

Definition 8.6. If two names refer to the same note on the piano, they are
considered enharmonically equivalent.

Example 8.7. C] is enharmonically equivalent to D[.

Definition 8.8. A major scale has the following sequence of whole steps (W)
and half steps (H):

WWHWWWH.

A minor scale has the following sequence of whole steps and half steps:

WHWWHWW.

Major is denoted by uppercase letters and minor by lowercase letters. The terms
“major” and “minor” denote the mode of a scale or other musical object.

Example 8.9. The C major scale has the notes CDEFGABC and the c minor
scale has the notes CDE[FGA[B[C.
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Definition 8.10. Scale degree n̂ refers to the nth note of a scale.

Example 8.11. 3̂ of the C major scale refers to E, and 3̂ of the c minor scale
refers to E[.

With the definition of scale degrees in hand, we can redefine a minor scale
as a major scale with 3̂, 6̂, and 7̂ lowered by a semitone.

Definition 8.12. Each scale uses only one type of accidental (] or [). They are
not mixed within scales. A scale is the parallel major scale of a minor scale
if it contains the same number and type of accidental and it is the relative
major scale if it begins on the same note. Similarly for a parallel and relative
minor scale.

Example 8.13. The parallel minor of C major is c minor. The relative minor
of C major is a minor.

Definition 8.14. A triad XM consists of scale degrees 1̂, 3̂ and 5̂ from the X
major scale. xm comes from the minor scale.

In general, a major triad is a chord with three pitches such that the interval
between the lowest and the middle pitch is two whole steps and the interval
between the middle and highest pitch is a whole step plus a half step. A minor
triad is a chord with three pitches such that the intervals between the pitches
are opposite those of a major triad.

Example 8.15. CM contains the pitches C, E and G. Cm contains the pitches
C, E[ and G.

Figure 8 shows the piano keys placed onto the music staff for those who are
unable to read music.

Figure 8: A piano with the keys placed onto the music staff
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