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Abstract

We introduce the the elliptic curve and the problem of counting the
number of points on the curve when it is reduced modulo a prime. For
any such curve that is nonsingular, Hasse’s theorem provides a bound
for the number of points. We prove Hasse’s theorem and discuss more
recent developments, namely, the exact formula for the number of points
on a special class of curves (the ones with complex multiplication), as well
as the Sato-Tate conjecture for the distribution of Hasse error terms on
curves for which no exact formula exists.
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1 Introduction

Number theory is a field full of seemingly simple problems that have as of today
not been resolved. It is not known, for example, if any even integer greater than
2 can be expressed as a sum of two primes (Goldbach’s conjecture), though it
has been checked by computer for up to very large n. It is not known that
there are infinitely many primes p such that p+2 is also prime (twin primes
conjecture).

The open problems are not restricted to primes, however. An example is the
3n+1 problem (Collatz conjecture) that deals with a recursion function defined
on the natural numbers. The Sato-Tate conjecture is another, dealing with a
question about the number of integral points on an elliptic curve.

Though it is still tecnhically not fully resolved, the proof of the Sato-Tate
conjecture is almost complete, with much recent development by Richard Taylor
in 2006. Similarly, other questions involving elliptic curves have been answered
such as the Tanyama-Shimura-Weil conjecture on modularity of elliptic curves.
The methods used in both problems, such as Iwasawa theory and the develop-
ment of the theory of Galois representations, are also recent.

At the same time, other questions about elliptic curves have been long known
and are easily accessible, since they require only simple algebra tools. Among
these is Hasse’s theorem, a square-root-close estimate to the number of points
on an elliptic curve, and exact formulas for the number of points on a certain
class of elliptic curves.

In this paper, we will discuss both kinds of problems. We will attempt to
give proofs of the easier kind of problems, including Hasse’s theorem. We will
also mention the recent developments, including the Sato-Tate conjecture, but
will not attempt to give proofs to them, as their proofs are long and require
very advanced theory.

In chapter 2, we will summarize this paper with an example, without proving
anything. In chapters 3 and 4, we will develop the theory of elliptic curves and
prove Hasse’s theorem. In chapter 5, we will introduce complex multiplication
and provide a narrative of the recent developments related to the problem of
counting points on an elliptic curve.

1.1 Acknowledgements

I would like to thank my project advisor, Dr. Jim Morrow, for his feedback
and patience during the second half of the quarter while my attention was split
between class and this paper. Also, Dr. William Stein, my research advisor,
for his time and explanations. Also Dr. McGovern for his explanation of field

2



extensions. I would also like to thank graduate students Chris Swierczewski and
Tom Boothby for their help and suggestions of reading material.

All calculations and were performed using Sage: Open Source Mathemat-
ics Software (http:// www.sagemath.org) on a server funded by the National
Science Foundation under Grant No. 0555776.

2 A certain cubic curve

Consider the curve E defined by the following equation:

E : y2 + y = x3 − x2

This is a cubic, whose graph is presented in Figure 1.
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Figure 1: Implicit plot of E

Via a linear shift, x→ x− 1/3 and y → y + 1/2, we transform the equation
into

y2 = x3 − 1/3x+ 19/108

But we will not be working much with this form.

Consider this curve over different characteristic fields. Characteristic 2 is
not interesting, since y2 = 0, x2 = 0, and we are left with y = 0. This isn’t even
a cubic. Neither is the result over characteristic 3, since then x3 = 0.

The first interesting prime field is characteristic 5. Any prime-p field is
isomorphic to the field of integers modulo p, so a curve over a prime field can
be represented as a collection of integral points on the grid [0..p− 1]× [0..p− 1].

It is easy to check that the ordered pairs

{(0, 0), (1, 0), (0,−1), (1,−1)}
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satisfy the curve equation in any field, and are distinct, unless p is 2 or 3. There
are no other points in F5 satisfying the equation.

For reasons to be discussed later, we add to the curve a ”point at infinity”.
Call it ∞ and add it to the list of points over any field. Then, E has 5 points
in F5.
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Figure 2: E over finite fields of characteristic 7, 13, and 17, respectively

E has 10 points in F7, that is, the point at infinity, the 4 trivial points, and
5 other points. E has 10 points in F13 and 20 points in F17. Plots of the curves
over these fields are shown in Figure 2. We exclude p = 11 because the curve
has “bad reduction” modulo 11 - this will be explained later.

How many points does E have over Fp for arbitrary p? In general, this is
an open problem, but estimates can be made. For example, since the curve is
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a cubic, no line can intersect it more than 3 times. Vertical lines can intersect
the curve no more than twice, since for a fixed x, E is a quadratic in y. Thus
the number of points on E over Fp is certainly no greater than 2p+ 1, including
the ”point at infinity”. A better bound was proven by Hasse in 1933:

Theorem 2.1. The number of points on a non-singular cubic curve over the
finite field Fp is p+ 1 + ε with |ε| < 2

√
p.

Hasse’s theorem tells us that over Fp, our curve has about p integer points
plus the point at infinity. The error term, ep = N − p − 1, is bounded in
magnitude by 2

√
p. In the case of E, Hasse’s theorem seems to be satisfied, as

can be seen in Figure 3.
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Figure 3: Blue: Hasse’s error terms ep vs. p for p < 106; red: Hasse’s bound on
ep - the graph of −2

√
p < ep < 2

√
p

The Sato-Tate conjecture is a statistical statement about the distribution of
the error terms in Hasse’s estimate. If the normed error term

ap =
ep

2
√
p

is computed for different primes (excluding 2, 3, and 11), the error terms follow a
semicircular distribution centered at 0 and with range [-1,1]. For primes p < 106,
the distribution is indeed roughly semicircular, shown in Figure 4.

The Sato-Tate conjecture was proved only 3 years ago for most, but not
all elliptic curves. In the next few sections, we will examine in more detail the
question about counting points on elliptic curves, including Hasse’s theorem and
the Sato-Tate conjecture.

3 Elliptic Curves and their Properties

An elliptic curve can be defined as follows:
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Figure 4: A histogram of ap, p < 106.

Definition 3.1. An elliptic curve E over a field K of characteristic different
from 2 or 3 is a curve that can be defined by the equation

y2 = x3 + ax+ b

with a, b in K.

We shall concern ourselves only with elliptic curves over the rational numbers
and their reduction to prime fields.

3.1 Group structure

Let E be an elliptic curve over Q. Build a group on its set of rational points as
follows:

1. Define the identity element to be the point at infinity.

2. For A,B ∈ E, define addition as follows: draw a line through A and B,
and label its third point of intersection with the curve C. In the case of a
tangent, count multiplicities. We allow A = B. We also allow any of the
points to be the point at infinity; say that any vertical line intersects E
at infinity. Then say that (A+B) + C = O.

This allows us to calculate A+B, since (A+B)+C+O = O corresponds
to a line through A+B, C and infinity. By definition, this is a vertical line
passing through C. Thus, A+B is a reflection of C through the x-axis.

For this to make sense, we first need a theorem.

Theorem 3.1. Let A,B be rational points on E. Allow A = B. Then the line
passing through A and B intersects E in 3 rational points, counting multiplicity.
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Proof. Let E be in the form y2 = x3 + ax+ b. If A and B lie on a vertical line,
there is a third intersection at infinity (by definition) and we are done.

Otherwise, Let A have coordinates (ax, ay) and B have coordinates (bx, by).
We determine the slope and intercept of the line in two cases:

Case 1: A = B. To find the slope of the tangent, differentiate.

2y
dy

dx
= 3x2 + a

λ =
dy

dx

∣∣∣∣
(ax,ay)

=
3a2
x + a

2ay

Case 2: A 6= B. Then

λ =
by − ay
bx − ax

The intercept of the line is
β = ay − λax

Then
y = λx+ β

Plug this into the elliptic curve equation.

(λx+ β)2 = x3 + ax+ b

Which is a cubic in x:

x3 − x2 + (a− 2λβ)x+ (b− β2) = 0

This is a cubic, and as such, has three complex roots. However it has rational
coefficients and two rational roots, counting multiplicity. Therefore, the third
root must also be rational.

Theorem 3.2. The set of rational points on an elliptic curve E with the addi-
tion operation defined as above, is an abelian group.

Proof. We have already proven closure in Theorem 3.1. By construction, addi-
tion is commutative since the line through A,B is the same as rgthe line through
B,A. Take O as the identity element. Then for any A ∈ E, it is clear that −A
is the third point of intersection, since then A+ (−A) intersects E at O, whose
reflection about the x-axis is also O. Similarly, O + A is the reflection about
the x-axis of −A, which is just A. This proves all properties of an abelian group
except commutativity.

Proving associativity is tedious, and not relevant to the rest of this discus-
sion. For those interested, a sketch can be found in [7]. For a more rigorous
treatment, see [6].
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3.2 Singularity

In the preceding discussion, it was necessary that the implicit derivative be well-
defined at every point. For y 6= 0, this is always the case since there the map
±y ↔ y2 is a bijection in both R× and −R×. However, there may be cusps or
other singular points when y = 0 if the defining cubic has a multiple root.

The following is well-known:

Theorem 3.3. Let y = x3 + px+ q be a cubic. Define the discriminant as

∆ = −4p3 − 27q2

Then y has 3 distinct real roots if ∆ > 0, a double (or triple) root if ∆ = 0 and
exactly one real root if ∆ < 0.

In the case of elliptic curves, the discriminant is defined in the same way,
but with an additional factor of 16. This factor is irrelevant to this discussion,
and we will omit it, but it will probably be used in more advanced literature on
elliptic curves.

If ∆ 6= 0, all roots are distinct and the curve is nonsingular. Depending on
the sign of ∆, it will consist of either one or two connected segments, as shown
in Figure 5
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∆ = 81 ∆ = −135

Figure 5: Elliptic curves with positive and negative discriminant, respectively.
Notice that the positive (top) halves of each curve “look like” positive halves of
an ordinary cubic equation, and it is easy to see how the sign of the discriminant
affects the topology of the curve.

If ∆ = 0, we say the curve is singular. The singularity is at the multiple
root and is either a cusp, as in the case of a triple root, a node (two intersecting
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lines) in the case of a double root with nonnegative values near the root, or an
isolated point in the case of a double root with nonpositive values near the root.
Examples of the cusp and node cases are shown in Figure 6.
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Figure 6: Singular elliptic curves with a cusp and a node, respectively. Again,
notice how the positive (top) part of each cubic produces each singularity. The
curve y2 = x3 − 2x2 is not in the form y2 = x3 + ax + b, but can be placed in
that form by shifting along x 7→ x− 2/3.

In this paper we will not be concerned with singular curves.

3.3 Reduction modulo p

We finally arrive at the theme of this paper: what happens to an elliptic curve
when it is reduced modulo a prime.

Let E have the form y2 = x3 +ax+ b with a and b rational in simplest form.
If neither denominator of a, b is a multiple of p, it has an inverse in Fp, so the
coefficients of E in Fp are integers in Fp.

A nonsingular curve reduced modulo p can become singular if p|∆, since
then the discriminant in Fp becomes zero. If this is the case, we say E has bad
reduction modulo p. If E over Fp is non-singular, we say E has good reduction
modulo p.

4 Endomorphisms and Hasse’s Theorem

Let E be an elliptic curve. For all primes p over which E has good reduction,
there is a square-root-accurate estimate known as Hasse’s Theorem.
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Theorem 4.1. let E be a non-singular elliptic curve over a prime field Fp. Let
Np(E) be the number of points on E. Then Np(E) ≈ p+ 1 and

|Np(E)− (p+ 1)| ≤ 2
√
p

To prove Hasse’s theorem in the general case, it is necessary to develop
background in the more advanced algebraic properties of elliptic curves.

4.1 Isogenies and Isomorphisms

For two elliptic curves, we define an isogeny as follows:

Definition 4.1. An isogeny φ from E1 to E2 which are elliptic curves is a
homomorphism such that φ(O) = O.

If φ is an isogeny that maps E to itself, we say φ is an endomorphism of E.
The set of all endomorphisms of E forms a ring under function addition and
composition:

(φ+ ψ)(P ) = φ(P ) + ψ(P )

(φ ◦ ψ)(P ) = φ(ψ(P ))

If the isogeny is defined by an irreducible polynomial, we define the degree
of an isogeny as the degree of the polynomial. Since the degree of a polynomial
is multiplicative, so is the degree of an isogeny, that is,

deg(p ◦ q) = deg(p) deg(q)

The trivial map φ : P 7→ P is an endomorphism with degree 1. We will
denote this map by 1, being the multiplicative identity of the endomorphism
ring of E. There are two other important endomorphisms of elliptic curves.

Theorem 4.2. Let E be an elliptic curve. The map φm : E → E with φ(P ) =
mP , denoted [m] is an endomorphism of E with degree m2.

Theorem 4.3. Let E be an elliptic curve over Fp where p is prime. The map
φ with φ[(x, y)] = (xp, yp), called the Frobenius endomorphism is an endomor-
phism of E with degree p.

4.2 Another property of the degree

We need the following lemma:

Theorem 4.4. Let φ and ψ be endomorphisms of E. Then

|deg(φ− ψ)− deg(φ)− deg(ψ)| ≤ 2
√

deg(φ) deg(ψ)

Note that φ − ψ may be reducible over E, so the degree of the sum is not
necessarily the maximal degree. We will not prove this lemma. (A proof can be
found in [2].)
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4.3 Hasse’s Theorem

We are now ready to prove Hasse’s theorem. (This follows the proof given in
[8])

Proof. Consider the Frobenius endomorphism on E in Fp where p is prime. This
is the map

φ : (x, y) 7→ (xp, yp)

Fermat’s little theorem tells us that

xp ≡ x mod p

So the map fixes E pointwise, that is,

φ(P ) = P

Then φ(P )− P = 0, so (φ− 1)(P ) = 0.

P ∈ ker(φ− 1)

Thus E is isomorphic to the kernel of the map (φ− 1). This may seem obvious,
but it is sufficient to prove Hasse’s theorem. The isomorphism yields

Np(E) = # ker(φ− 1) = deg(φ− 1)

By Theorem 4.4,

|deg(φ− 1)− deg(φ)− deg(1)| ≤ 2
√

deg(φ) deg(1)

But deg(φ− 1) = Np(E), deg(φ) = p, and deg 1 = 1, so

|Np(E)− p− 1| ≤ 2
√
p

And we are done.

5 Beyond Hasse’s Theorem

Hasse’s theorem applies to all nonsingular elliptic curves. From Figure 3, we see
that it is not possible to do better in general. However, we can make statements
concerning the statistical distribution of Hasse error terms over the ensemble of
primes p. Specifically, let

ap =
np(E)− p− 1

2
√
p

Hasse’s theorem tells us that−1 ≤ ap ≤ 1, and we can ask about the distribution
of the ap for a given elliptic curve over all primes p.

To do so, we consider separately two classes of elliptic curves: ones with
“complex multiplication” and ones without. Between the two classes, different
conclusions can be made about the distibution of the ap-s.
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5.1 Elliptic Curves with Complex Multiplication

Let P be a point in E over Fp and m be an integer. Then mP is also a point in
E and multiplication by m is an endomorphism of E. It follows that the ring
of integers is contained in the endomorphism ring of E.

Suppose End[E] 6= Z, that is, there is an endomorphism of E not corre-
sponding to multiplication by an integer. Then we say that E has complex
multiplication, commonly abbreviated CM.

For example (see [7]), consider the curve given by

E : y2 = x3 + x

and the map
µ : (x, y) 7→ (−x, iy)

The image of E in µ is the curve

(iy)2 = (−x)3 − x

Which is the same curve. Thus µ is an endomorphism of E, but µ does not
correspond to an integer multiplication. Thus we say E has complex multipli-
cation.

If E is CM, then the following facts are known.

• For half of the primes p, ap = 0, that is, Np(E) = p+ 1 exactly.

• For each of the finitely many isomorphism classes of CM elliptic curves,
there exist formulas producing exactly the values of ap for each prime p.
These formulas can be proven independently using the properties of the
complex endomorphism. (These are proven in [5]. Look for Theorem 1.1.)

The distribution of ap-s will thus have a peak at 0. If the peak is removed,
we can see the additional structure in the distribution, as for two CM curves in
Figure 7.

5.2 Elliptic Curves Without Complex Multiplication

In the case when the curve does not have complex multiplication, no explicit
formulas exist. However, a precise conjecture has been formulated independently
by Sato and Tate concerning the distribution of the ap’s over non-cm curves.
(See [4] for a description of the Sato Tate conjecture and a discussion related to
its proof. The proof itself can be found in [9].)

Conjecture 5.1. let E be a elliptic curve without complex multiplication. Let
ap be Hasse error terms for E over Fp. Then for any function F (t),

lim
n→∞

1
π(n)

∑
p≤n

F (ap) =
2
π

∫ 1

−1

F (t)
√

1− t2dt
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Figure 7: Distribution of the ap-s corresponding to the first ten million primes
for two CM elliptic curves, excluding the points for which ap = 0. The two
distributions look similar, but we would be able to compute them exactly if we
knew the formulas for the two elliptic curves.

Where π(n) is the number of primes less than or equal to n.

For example, if F is a characteristic function, that is, a function whose image
is 1 on a set and 0 everywhere else, the statement above tells us that the ap-s
of a non-CM curve conform to the semicircular distribution with probability
density function

2
π

√
1− t2

We illustrate the Sato-Tate conjecture with a few curves in Figure 8.
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Figure 8: Distribution of the ap-s corresponding to the first million primes for
two elliptic curves (blue). Both distributions visibly conform to the Sato-Tate
semicircular distribution (red).

The Sato Tate conjecture has been proven for most non-CM elliptic curves.
A stronger result, due to Akiyama and Tanigawa, is conjectured (see [4]) and
concerns the rate of convegence to the Sato-Tate distribution.
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Conjecture 5.2. Let F (t) be any characteristic function on [−1, 1]. Then for
all ε > 0 there exists a N > 0 such that for all F ,∣∣∣∣∣∣ 1

π(N)

∑
p≤N

F (ap)−
2
π

∫ 1

−1

F (t)
√

1− t2dt

∣∣∣∣∣∣ < N−1/2+ε

It is known that the Akiyama-Tanigawa conjecture implies the Generalized
Riemann Hypothesis, and it is believed that they are equivalent.
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