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1 Introduction

The intent of this paper is to give the unfamiliar reader some insight
toward Green’s functions, specifically in how they apply to quantum mechan-
ics. I plan to introduce some of the fundamentals of quantum mechanics in
a rather unconventional way. Since this paper is meant to have a stronger
focus on the mathematics behind Green’s functions and quantum mechanici-
cal systems, as opposed to the physical interpretation, I will not place much
of an emphasis on the postualates of quantum mechanics, with the exception
of one which fits in nicely with the discussion of Hilbert Spaces. Quantum
mechanics and Green’s functions, at first glance, seem entirely unrelated,
however within the last 50 years Green’s functions have proven themselves
to be a useful tool for solving many flavors of boundary value problems
within the realm of quantum mechanics. In addition to this, Green’s func-
tions have proven to play a large role in many body theory, perturbation
theory, and even in the development of modern quantum mechanics.

Section 2 of this paper is meant to serve as an introduction to the lin-
ear algebra behind quantum mechanics. This section will not contain any
information about Green’s functions, and is meant to develop the necessary
machinery for solving basic problems in quantum mechanics. I plan to show
how working in dual Hilbert spaces makes working with quantum mechani-
cal operators very convenient. I will also introduce Hermitian operators and
the general properties they hold.

Section 3 will be almost entirely dedicated to Green’s functions in quan-
tum mechanics. The section will begin with deriving and stating some useful
properties of time independent Green’s functions. Much of the information
that will be presented in this section will be from E.N. Economou’s Green’s
Functions in Quanatum Mechanics, [1] which is a very advanced text. I
hope to elucidate some of the jumps he assumes an astute reader with a
strong physics background will make, in order to make the material a bit
more accessible to an undergraduate mathematics student. After discussing
the time independent Green’s functions, I plan on showing the true power
of the Green’s function method by solving both the time independent and
time dependent Schrödinger equation using Green’s functions.

2 Linear Algebra

Linear algebra plays a significant role in quantum mechanics, specif-
ically with the concept of quantum states, which are the mathematical
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variables that describe a quantum system. This section is to serve as an
introduction to bra-ket notation, and to develop the necessary background
to both solve problems and prove theorems in quantum mechanics using
this very powerful and convenient notation. In the first subsection, I give a
definition for both a bra and a ket that uses material which will be explained
later in this section. Though this seems a bit convoluted, I decided it would
be best to give the reader a preview as to what we will be talking about in
subsequent subsections that makes bra-ket notation so powerful.

2.1 Introduction to Bra-Ket Notation

We will begin our introduction to bra-ket notation by defining our ket,
|i〉 as a vector in a continuously infinite dimensional complex Hilbert space
of complex square integrable functions on the reals. We define our bra, 〈i|
as the complex conjugate vector of |i〉, residing in the dual space of the
Hilbert space |i〉 is contained in. It is often convenient to think of a ket as
a column vector and a bra as a row vector. With this, we can see that the
outer product, |i〉 〈j| will form some infinite matrix X, which can act as on
operator transforming a ket to another ket. In the following subsections,
we will briefly explain the notion of Hilbert spaces, L2 (square integrable)
spaces, completeness, and of course, operators.

2.2 Vector Spaces

A vector space V is a collection of vectors |i〉 satisfying the following
properties: [5]

• |i〉+ |j〉 = |k〉, where |k〉 is a unique vector in V .

• All vectors in V commute, that is, |i〉+ |j〉 = |j〉+ |i〉.

• Associativity holds; (|i〉+ |j〉) + |l〉 = |i〉+ (|j〉+ |l〉).

• There exists some vector |O〉 such that |O〉+ |i〉 = |i〉 for every |i〉.

• For every |i〉 ∈ V , − |i〉 is also in V and |i〉+ (− |i〉) = |O〉.

• Scalar multiplication follows such that,

a(b |i〉) = (ab) |i〉

1 |i〉 = |i〉
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a(|i〉+ |j〉) = a |i〉+ a |j〉

(a+ b) |i〉 = a |i〉+ b |i〉

Where a and b are complex constants.

• Let V,W be vector spaces of a field, F ∈ C. If V ⊂ W , then V is a
subspace of W .

Let I = |i1〉 , ..., |in〉 be a set of linearly independent vectors in V . If
dim(V ) = n; then I is a basis for V . Note: n can either be finite, count-
ably infinite, or uncountable infinite. The following theorem will be stated
without proof:

Theorem 2.1. If I forms a basis for V , then any vector |j〉 can be expanded
in the basis as |j〉 =

∑
k ak |ik〉.

For a vector space V ∈ C, we define the dual space, V ∗ as:

V ∗ ≡ 〈j| : V → C (2.1)

Given the inner product space 〈j| i〉, and given that |i〉 ∈ V and 〈i| ∈ V ∗ we
can construct the following isomorphism:

|i〉 ↔ 〈i| (2.2)

V ↔ V ∗ (2.3)

a |i〉 ↔ ā 〈i| (2.4)

2.3 Inner-Product Spaces, Hilbert Spaces, and L2 Spaces

A vector space V ∈ C is an inner product space if given |i〉 , |j〉 ∈ V , there
is an inner product 〈i| j〉 ∈ C satisfying: [5], [6]

〈i| j〉 = 〈j| i〉 (2.5)

〈i| (|j〉+
∣∣j′〉) = 〈i| j〉+

〈
i
∣∣ j′〉 (2.6)

〈i| (a |j〉) = a 〈i| j〉 (2.7)

〈i| i〉 ≥ 0 (2.8)

〈i| i〉 = 0⇔ |i〉 = 0 (2.9)

Definition 1. A space V is complete if every Cauchy sequence, |in〉 con-
verges in V .
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Remark. In a complete space, we can define the infinite identity matrix
(operator) as: [2]

I =

∫
|i〉 〈i| dτ (2.10)

Using the notion of completeness, we can now define what is known as
a Hilbert Space:

Definition 2. An inner-product space that is complete under the metric
induced by the inner product is a Hilbert Space, H.

Theorem 2.2. Any complete subspace of an inner-product space is closed.
A Hilbert space is a subspace of a Hilbert space if an only if it is closed.

Proof : Lets begin with proving the first statement. Let V be a complete
subspace of an inner-product space W . Let xn be a sequence in V such that
xn converges to x ∈ W . Then xn is Cauchy in V , and since V is complete,
xn must converge to an element of V , so x ∈ V , hence V is closed. Now we
will prove the second statement. Given that a Hilbert space is complete, lets
assume that a subspace R ∈ H is complete. Then, from the first statement,
we know that R is closed. Now suppose R is closed and let xn be Cauchy
in R. Since xn is Cauchy in H, it must converge to some x ∈ H. Since R is
closed, we have xn converges to x ∈ R, hence R is closed. A subspace of an
inner-product space is also an inner-product space, and we just proved that
R is complete, therefore R is a Hilbert space if and only if it is closed. 2

Proposition 1. A Hilbert Space can be either a finite dimensional basis,
countably infinite dimensional basis, or uncountably infinite dimensional ba-
sis.

Definition 3. For p > 1, let Lp be the set of all sequences x = xn of real
or complex numbers that satisfy: [4]

∞∑
n=1

|xn|p <∞ (2.11)

We define the p-norm of x by:

‖x‖p =

( ∞∑
n=1

|xn|p
) 1

p

(2.12)

Then Lp is a metric space, under the metric:

d(x,y) = ‖x− y‖p =

( ∞∑
n=1

|xn − yn|p
) 1

p

(2.13)
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We can now show that an L2 space is a Hilbert space.

Theorem 2.3. For p > 1, an Lp space is a Hilbert Space only when p = 2.

Proof : We see that the inner product, < x,y >=
∑∞

n=1 xnȳn has a
metric;

d(x,y) = ‖x− y‖2 =

( ∞∑
n=1

|xn − yn|2
) 1

2

This agrees with the definition of an Lp space when p = 2. An L2 space
is closed and therefore complete, so it follows that an L2 space is a Hilbert
space. When p 6= 2, the Lp space is not an inner-product space and is
therefore not a Hilbert space. 2

Example 1. Let ψ1(x) be defined on a Hilbert space, H, and ψ2(x) be
defined on it’s dual space H∗. We can now definte the inner product in
Bra-Ket notation as follows:

〈ψ2| ψ1〉 =

∫ ∞
−∞
〈ψ2| x〉 〈x| ψ1〉 dx (2.14)

Since a Hilbert space is complete, it follows that
∫∞
−∞ |x〉 〈x| dx = I. This

gives us:

〈ψ2| ψ1〉 =

∫ ∞
−∞
〈ψ2| x〉 〈x| ψ1〉 dx =

∫ ∞
−∞
〈ψ2| I |ψ1〉 dx =

∫ ∞
−∞

ψ2(x)ψ1(x)dx

(2.15)

With the notion of L2 spaces being Hilbert spaces, we can now introduce
the concept of orthonormal bases. An orthonormal basis is a basis |ψi〉 which
satisfies, 〈ψi| ψj〉 = δij , where δij is the Kronecker Delta function:

δij =

{
1 : i = j
0 : i 6= j

(2.16)

Let |i1〉 , |i2〉 , ..., |i3〉 be a basis. The Gram-Schmidt orthogonalization pro-
cess works as follows. Let

|φ1〉 =
|i1〉√
〈i1| i1〉

(2.17)

Extending this process, we get:

|φn〉 =
|in〉 − 〈in| in − 1〉 |in−1〉 − ...− 〈in| i1〉 |i1〉√
|in〉 − 〈in| in−1〉 |in−1〉 − ...− 〈in| i1〉 |i1〉

(2.18)
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This makes |φi〉 an orthonormal basis. Furthermore, since |φi〉 is an or-
thonormal basis, it follows that for all |i〉

|i〉 =
∑
k

ak |φk〉 =
∑
k

|φk〉 〈φk| i〉 , ak = 〈φk| i〉 (2.19)

2.4 Linear and Hermitian Operators

A linear operator from a vector space V to another vector space W is a
transformation such that

A(|i〉+ |j〉) = A |i〉+A |j〉 , for every |i〉 , |j〉 (2.20)

A = B ⇐⇒ A |i〉 = B |i〉 , ∀ |i〉 . (2.21)

Definition 4. Given an operator L, we define the adjoint of L, L† by:

L† |i〉 ↔ 〈i|L (2.22)

Definition 5. An operator L is Hermitian if it is self-adjoint, that is, L =
L†.

Theorem 2.4. If L = L† then all eigenvalues, λi of L are real, and all
eigenstates associated with distinct λi’s are orthogonal.

Proof :

L |λ〉 = λ |λ〉 ⇒ 〈λ|L† = 〈λ|λ† ⇒ 〈µ| (L− L† |λ〉) = (λ− µ̄) 〈µ| λ〉 (2.23)

if λ = µ, λ = λ̄ is real

if λ 6= µ, < µ|λ >= 0 2

From this theorem, we can now introduce a fundamental postulate of
Quantum Mechanics.

Postulate Observables are Hermitian operators on a self-adjoint Hilbert
space.

As you will see in the next section, almost all of the operators we will be
dealing with will be Hermitian. The fact that all observables are Hermitian
allows us to give physical interpretation to many mathematical constructs.
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3 Green’s Functions in Quantum Mechanics and
Many-body Theory

Now that a brief background of the linear algebra governing quantum
mechanics has been discussed, we turn our focus to solving some impor-
tant boundary value problems that arise in quantum mechanics. To solve
these boundary value problems, we will implement the method of Green’s
functions. One of the most fundamental differential equations governing
quantum mechanics is the Schrödinger equation. At the end of the section,
we will outline the solution of it using the method of Green’s functions. The
first subsection will outline the general case of time independent Green’s
functions. We will not discuss time dependent Green’s functions in general-
ity as the math is very complicated. We will, however culminate this section
by extending our solution of the Schrödinger to the time dependent case.

3.1 Time Independent Green’s Fuctions

We will begin our discussion of Green’s functions in quantum mechanics by
defining our Green’s function in a time independent case.

Definition 6. A Green’s function is a solution to an inhomogeneous differ-
ential equation of the form: [1]

[z − L(r)]G(r, r′; z) = δ(r − r′), z ∈ C (3.1)

This equation is subject to certain boundary conditions for our two position
coordinates, r and r′ lying on some surface S on the domain Ω of r and r′. We
assume L(r) to be a linear, Hermitian, time independent differential operator
that possesses a complete set of eigenfunctions φn(r) with eigenvalues λn,
that is:

L(r)φn(r) = λnφn(r) (3.2)

Remark. From our definitions in the previous section, it’s not difficult to
see that without loss of generality, φn is an orthonormal basis set, so it
satisfies: ∫

Ω
φn(r)φm(r)dr = δnm (3.3)

Since φn(r) is complete, we can write∑
n

φn(r)φn(r′) = δ(r − r′) (3.4)
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where δ(r − r′) is the Dirac delta function and

δ(r − r′) =

{
0 : (r − r′) 6= a
∞ : (r − r′) = a

(3.5)

Remark. It is important to note that the Dirac delta function, acting on
sume function f(r′) satisfies the following property∫

Ω
δ(r − r′)f(r′)dr′ = f(r), for some r′ ⊂ Ω (3.6)

With this in place, we can now show a very neat derivation of our time
independent Green’s function, using bra-ket notation:

Example 2. Using the Bra-Ket notation developed earlier, we define |r〉 as
the eigenvector of the position operator and write the following:

φn(r) = 〈r| n〉 (3.7)

δ(r − r′)L(r) ≡ 〈r|L
∣∣r′〉 (3.8)

G(r, r′; z) ≡ 〈r|G(z)
∣∣r′〉 (3.9)〈

r
∣∣ r′〉 = δ(r − r′) (3.10)∫
dr |r〉 〈r| = 1 (3.11)

Using this notation, we can now rewrite equations (3.1) to (3.4) as,

(z − L)G(z) = 1 (3.12)

L |φn〉 = λn |φn〉 (3.13)

〈φn| φm〉 = δnm (3.14)∑
n

|φn〉 〈φn| = 1 (3.15)

Using equations (3.7) to (3.11), we can now take the 〈r|, |r′〉 matrix element
of (3.12) to obtain;

〈r| (z − L)G(z)
∣∣r′〉 = 〈r| 1

∣∣r′〉 =
〈
r
∣∣ r′〉 = δ(r − r′) (3.16)

The lefthand side of this equation is given by

〈r| (z − L)G(z)
∣∣r′〉 = 〈r| zG(z)

∣∣r′〉− 〈r|LG(z)
∣∣r′〉
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By (4.9), this can be rewritten as

zG(r, r′; z)− 〈r|LG(z)
∣∣r′〉

Since we are working in a complete space, we can use the infinite unitary op-
erator defined in equation (2.14) to rewrite the left hand side of the equation
as

zG(r, r′; z)−
∫
ds 〈r|L |s〉 〈s|G(z)

∣∣r′〉 = zG(r, r′; z)− L(r) 〈r|G(z)
∣∣r′〉
(3.17)

Using the relationship established in (3.9), we can rewrite the entire equation
as:

zG(r, r′; z)− L(r)G(r, r′; z) = δ(r − r′) (3.18)

Factoring out the G(r, r′; z) gives us the identical expression to (3.1), and
we are done.

The fact that we can express our time independent Green’s function in
Bra-Ket space means that the Green’s function of position coordinates r and
r′ is defined on a Hilbert space. Since we have shown that we are working
on a Hilbert space, and an L2 space is a Hilbert space, we are no longer
restricted to working in the position, r-space, and we are now able to apply
a Fourier transform from r ⊂ L2 to k ⊂ L2 and work in momentum, k-space.
space, etc.

If all of the eigenvalues of z − L are not equal to 0, then we can solve
(3.12) as

G(z) =
1

z − L
(3.19)

We can then multiply by the unitary operator from (3.15) to obtain

G(z) =
1

z − L
∑
n

|φn〉 〈φn| (3.20)

Since 1
z−L is a constant, we are able to move it inside the sum. After this,

we can apply (3.13) to substitute the eigenvalues of our operator L, which
gives us the following relationship

G(z) =
1

z − L
∑
n

|φn〉 〈φn| =
∑
n

1

z − L
|φn〉 〈φn| =

∑
n

|φn〉 〈φn|
z − λn

, z 6= λn

(3.21)
The result is analogous in the r representation. From this representation
of G(z), we can see that it is meromorphic with a finite number of poles,
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which coorespond to the discrete eigenvalues of L. Suppose we want to
define G(r, r′; z) at z = λ. Since G(r, r′; z) has a pole at λ, we will have to
define G(r, r′;λ) by a limiting procedure. In order to do this, we will have
to form a branch cut along certain parts of the real axis. We will do this in
the following way:

Definition 7. Let G+ denote our Green’s function defined on Im(z) > 0
and let G− be our Green’s function defined on Im(z) < 0. We then define
G at z = λ by:

G±(r, r′;λ) ≡ lim
s→0+

G(r, r′;λ± is), where z = λ+ is (3.22)

With this background in place, we will sketch out a rough proof of some-
thing that was stated as a fact in E.N. Economou’s Green’s Functions in
Quantum Physics.

Theorem 3.1. Let z be a complex variable with real part, λ and imaginary
part s. Let L(r) be a linear, Hermitian, time independent differential oper-
ator with a complete set of eigenfunctions φn, and let u(r) be an unknown
function that L is operating on. Suppose f(r) is an arbitrary inhomogeneous
function that gives us the following differential equation:

[z − L(r)]u(r) = f(r)

Then, the solution to the differential equation u(r) is given by:

u(r) =

{ ∫
G(r, r′; z)f(r′)dr′ : z 6= λn∫
G±(r, r′;λ)f(r′)dr′ + φ(r) : z = λ

(3.23)

Proof : We will prove only the case where z 6= λn, the other case is a
much more tedious process so we will take it as a fact. We will begin our
proof by letting u(r) operate on our proposed solution:

[z − L(r)]u(r) = [z − L(r)]

∫
G(r, r′; z)f(r′)dr′ (3.24)

Both z − L(r) and the integral operator are linear operators, so we are
allowed to move z − L(r) inside the integral sign.

[z−L(r)]u(r) = [z−L(r)]

∫
G(r, r′; z)f(r′)dr′ =

∫
[z−L(r)]G(r, r′; z)f(r′)dr′

Using the relationship established in (3.1), we see:∫
[z − L(r)]G(r, r′; z)f(r′)dr′ =

∫
δ(r − r′)f(r′)dr′ (3.25)
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Which by the relationship laid out in (3.6), gives us our desired result. 2

Corollary. : A solution, u(r) doesn’t exist when z coincides with a dis-
crete eigenvalue of L, unless all of the eigenfunctions associated with λn are
orthogonal to f(r).

3.2 Solving the Schrödinger Equation Using Green’s Func-
tions

The non-relativistic, one particle time independent Schrödinger equation
can be written as:

Hψ = Eψ (3.26)

Or equivalently,
[E −H(r)]ψ(r) = 0 (3.27)

Where H is the Hamiltonian operator and E denotes the corresponding
discrete eigenvalues. The general formalizm developed in the previous sub-
section can be extended to solving the Schrödinger equation as follows:

L(r)→ H(r)

λ→ E

λ+ is = z → z = E + is

λn → En

φn(r)→ φn(r)

We’ll now define our Green’s function for the Schrödinger equation as

[E −H(r)]G(r, r′;E) = δ(r − r′) (3.28)

Proceeding as we did in our proof of (3.23), we obtain the following result:

ψ(r) =

{ ∫
G(r, r′; z)f(r′)dr′ : z 6= λn∫
G±(r, r′;λ)f(r′)dr′ + φ(r) : z = λ

(3.29)

Where G(r, r′; z) =
∑

n
φn(r)φn(r′)
z−En

, and f(r) = 0. As you can see, the
solution to the time independent Schrödinger equation follows directly from
the general formalizm of the time independent Green’s functions described
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in the previous subsection. We can now extend this and introduce the time
dependent Schrödinger equation as(

i~
∂

∂t
−H

)
|ψ(t)〉 = 0 (3.30)

Where ~ = h
2π and h is Planck’s constant, given in SI units as

h ≈ 6.626x10−34Js

We will now define the time evolution operator as

U(t− t0) ≡ e
i(t−t0)H

~ .

We can define a Green’s function for this operator as follows:

U(t− t0) = i~g̃(t− t0) (3.31)

Where

g̃(t− t0) =

∫ ∞
−∞

dω

2π
e−iω(t−t0)G̃(~ω) (3.32)

Which can be obtained by means of a Fourier Transform. Now we will write
the time dependent Schrödinger equation in terms of the time evolution
operator:

|ψ(t)〉 = U(t− t0) |ψ(t0)〉 (3.33)

We can now rewrite this equation in the r representation to obtain:

ψ(r, t) = i~
∫
g̃(r, r′, t− t0)ψ(r′, t0)dr′ (3.34)

4 Conclusion

Solving the one particle non relativistic Schrödinger equation gives only
a small glimpse at the true versatility of the Green’s function method. In
the Schrödinger picture alone, Green’s functions serve as invaluable compan-
ion for finding solutions to complicated perturbed systems. Green’s func-
tions can be used in many physical situations outside of quantum mechanics
as well. Some examples include solving Poisson’s equation with Dirich-
let boundary conditions, solving the classical simple harmonic oscillator, or
even the spherical harmonic oscillator. They arise in many situations involv-
ing elliptic partial differential equations, and are an effective tool for many
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boundary value problems. To the reader interested in seeing more applica-
tions of Green’s functions working outside of quantum mechanics, I suggest
looking at G.F. Roach’s Green’s Functions [3]. It provides an introduction to
Green’s functions working on many different types of differential equations
and provides a solid background of using the method in many situations. For
the reader interested in learning more about quantum mechanics, I suggest
first working through Ira Levine’s Quantum Chemistry [2], then if you are
interested in seeing more applications of the Green’s function method within
quantum physics I would suggest first glancing over Vladimirov’s Equations
of Mathematical Physics [6] and then go through Economou’s Green’s Func-
tions in Quantum Physics [1]. I hope this paper has given you insight into
the many applications Green’s functions have towards quantum mechanics.
I also hope that this paper has given you the curiousity to further pursue
the topic and see the even larger breadth of applications Green’s functions
have in the field of mathematical physics. In either case, I hope you enjoyed
this very brief introduction to Green’s functions and quantum mechanics,
and I thank you for taking the time to read this paper!
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