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1 Introduction

Mathematics is only a hobby until it is figured out how to apply it to the world.
This paper is a discussion of an application of linear algebra and graph theory
to the discipline of geography. From this follows some obvious and some not-
so obvious uses outside of theory. We will look at a method of indexing the
centrality of a node in a graph and try to establish meaning to this value. We
will focus especially on the Gould index (eigenvector centrality) of accessibility,
demonstrating its calculation and then giving meaning and justification to its
use an index. These ideas have their basis in geographical situations, but, with
creativity can be applied to graphs describing any connections, such as social
structures, capital flow or the spread of disease.
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Terminology

Graph: A collection of abstract objects, vertices and edges. Pairs of
vertices can be connected by edges.

Centrality: The relative importance of a node within a graph. There are
various measures to determine this ranking, such as degree centrality and
Gould’s Index (eigenvector centrality).

Adjacency Matrix: A matrix A related to a graph by a;; = 1 if vertex
1 is connected to vertex j by an edge, and 0 if it is not.

Principle Eigenvalue: The largest eigenvalue.
Nonnegative Matrix: A matrix A = a;; such that a;; > 0 for all 4, j.

Primitive: A matrix A for which there exists a positive integer n such
that the elements of A™ are strictly non-negative.

Connected Graph: A graph is connected if every pair of vertices is
conntected by some path.

Diameter of a Connected Graph: This is the smallest integer n such
that any vertex may reach any other vertex by a path of no more than n
in size.

Geographic Motivaion

We are trying to get at the geographical importance of a node within a graph.
In graph theory, this is referred to as centrality. The simplest (and, in many



Figure 1: A Sample Graph

contexts, least useful) way to do this is the degree centrality. We define degree
centrality as
_ deg(v)

Cplv) = n—1"

where Cp(v) is the degree centrality of vertex v, n is the number of vertices in
the graph and deg(v) is the number of edges from v to another vertex. The issue
with this is obvious. We are pretending that a single characteristic (number of
connected edges) characterizes the entire node. For instance, in Figure 1,
nodes A and B would both have a degree centrality of 0.05. But our intuition
seems to tell us they are not equally important to the graph. Clearly, in many
contexts, say, flow of information, B would have much greater control over the
entire graph than A. A more sophisticated measure is needed.

4 Gould Index of Accessibilty

One method more sophisticated than the degree of centrality was proposed by
Peter Gould [4]. We examine this method, Gould’s index of accessibility, also
known as eigenvector centrality. First we look at the method, then we will
attempt to justify it. We work with the graph in Figure 2.



Figure 2: A Simple Graph

We begin with the adjacency matrix A of the graph, defined as

g — 1 if the vertices 7 and j are joined by an edge,
7771 0 if the vertices ¢ and j are not joined by an edge.

It is usual to define the the entries a;;, the diagonal, as 0. We have the adjacency
matrix

01 0 00O
1 01 0 00
01 0111
AiOOlOlO
001 101
001 010

Using degree centrality we get the following ranking for the vertices n;:

ny = 0.2
no = 0.4
ng = 0.8
ng = 0.4
ns = 0.6
ng = 0.4

The index that Gould proposes uses the (normalized) eigenvector from the prin-
ciple eigenvalue. In this case we have eigenvalues \g = 2.70559, \; = —1.851,
Ao = —1.350, A3 = 1.056, Ay = —0.560 and A5 = 0. Aq is the principle eigenvalue
and we have eigenvector



0.092
0.249
0.581
0.405
0.514
0.405

Vo =

This is Gould’s index of accessibility. The ith entry corresponds to the ith vertex
and this is its accessibility rank. It seems to agree with intuition. The striking
difference between this ranking and degree centrality is vertex 2 ranking below
4 and 6. Agreement with intuition is encouraging, but hardly convincing, so we
proceed to justify granting this computation the title of index of accessibility.

5 Perron-Frobenius Theorem

To proceed we require several results from linear algebra. First, we define a new
matrix

11000 0
11100 0
0111 1 1

B=A+I=10 011 1 o
0011 1 1
001011

We have simply replaced the diagonal zeros with ones. This has the effect
of giving eigenvectors of B that are exactly one greater than A, with identical
eigenvectors. Clearly, B will be symmetric (as was A), and, as such, can be
diagonalized by an orthogonal matrix. This, in turn, guarantees that the eigen-
values of B are real, so talking about their relative sizes is appropriate (we can
choose the largest). Further, we will also be guaranteed real values populating
the eigenvectors.

Finally, we will require The Perron-Frobenius Theorem. This needs two defini-
tions. We call matrix D = d;; nonnegative if d;; > 0 for all ¢,j. A primitive
matrix is a nonnegative square matrix D where there exists an integer N > 0
such that every value of DV is strictly positive. We now state the theorem, a
proof of which is found in the appendix.

Perron-Frobenius Theorem 1. If M is an n X n nonnegative primitive
matriz, then there is a largest eigenvalue \g such that



(i) Ao is positive
(i) Ao has a unique (up to a constant) eigenvector vi, which may be taken to
have all positive entries

(#ii) Ao is non-degenerate

(iv) Ao > |A| for any eigenvalue A # Ao

To see that we may apply the Perron-Frobenius Theorem, we examine BF.
Taking B to the k" power has the effect that the ijth entry of B¥ counts the
number of ways of travelling from vertex ¢ to vertex j by paths of length k,
including stopovers. We illustrate how this works with the following graph.

0066060

This graph has the following adjacency matrix, with ascending powers:

O O = =
O = ==
— == O
O = NN
N W N
N W N
— W Ut
W O Gt
T g O W
=~ Ot O =

Let’s look at the 3" entry of the first row of M?2. This was computed mul-
tiplying the 15! row vector of M by the 3" column vector. The calculation
picks out the connection 1 — 2 and 2 — 3, showing now a path length two
connecting 1 — 3. Similarly, now that that path is established, computing M?>
offers a path length 3 from 1 — 4. In this way B* counts all paths of length k
connecting any pair of vertices.

Now, the diameter of a connected graph is the minimum integer k such that
any two vertices i, j, can be connected by a path no longer than k. Therefore,
choosing k > diameter(B), we guarantee that the entries of B¥ are positive.
Then B is primitive and Perron-Frobenius applies.

Now, we have guaranteed that for a connected graph we will find a well-defined
principle vector vy whose entries are all positive. We consider a vector x that
is not orthogonal to vo. We have

x=aovo +a1vy + -+ a,vn, (ag#0).



Then

Bfx = )\Igaovo + /\’falvl 4+ )\’flanvn, (g #0)

BFx B )\’falvl )\’fLoznvn
k k0
Ao Ao

(a0 # 0).

BFx
A
that as we let k increase, the ratio of the components of B¥x converge to vg.
This fact will be essential to our justifications that follow.

Now, letting k — o0, — agVvp since Ag > A;,i # 0. What we see here is

6 Justification

Our first justification comes directly from the fact shown above, the convergence
of B¥x to the ratio of the components of vo). Even before Gould gave us his
index, the row sums of BF were an oft used measure of accessibility. As we saw
above, entry j in row ¢ gives all k length paths from i to j. So the row sum is
the total number of k length paths to all other vertices from vertex i. If we take
a column vector x, whose entries are all 1, then the row sums of B are just
B*x. As we saw above, counting longer and longer paths will bring B¥x to the
same ratio as Gould’s index.

As a second justification, let’s imagine, cheerfully, the spread of a disease. Using
the graph in Figure 2, we suppose there is a population of people at each vertex.
One person at one vertex starts with the disease and at each time step spreads
it to one person at each connected vertex. At each time step, each infected
person follows this same pattern. If our initially infected person starts at vertex
two, we represent this distribution d as

oo o~ O

Then, after k time steps, B¥d represents the new distribution of infected people.
We illustrate below.



Bd =

OO O ==
o= =N W N
= OU = 00 =3 Ot

When we normalize these vectors, an interesting pattern appears.
k
Let dj, = B79-. We have

[BFd[
0.577 0.447 0.358 0.092
0.577 0.671 0.501 0.249
0.577 0.447 0.573 0.581
di=1"0 | d2= |g9og|> d3=|(0g6| > 0= 405
0 0.224 0.358 0.514
0 0.224 0.286 0.405

This will always happen. Consider d, our initial distribution. It will always
have at least one positive entry, so it cannot be orthogonal to vg and, as shown
above, the ratio of its entries will converge to that of v,, Gould’s index. So,
no matter where the disease starts (or how many start with it), the ratio of
its distribution will settle into Gould’s index, or eigenvector centrality ranking.
The fact that such an intuitive process leads (relatively quickly) to this measure
certainly adds weight to our case.

Our last justification uses degree centrality, discussed above. We define a vector
c whose entries correspond to the degree centrality of the corresponding vertex
(counting each as adjacent to itself). In this case, we have ¢ = [2 3534 3] .

Now, as a measure of centrality, this is too naive. However, a simple improve-
ment follows the next line of reasoning. The connectedness of a vertex is not
just how many other vertices it is connected too, but also how connected those
vertices are. Thus, we add to each vertex its degree plus the degree of each
vertex it is connected to. We can iterate this process, with our k" iteration cj,
being ¢, = B*~1c. And, as before, the ratio of the entries of ¢ go to Gould’s
index as k goes to infinity. In other words, limg_. oo I%IZI = vg. This idea, that
connections have weight depending on who they are connected, coupled with
an iterative computation, is central to some some modern uses of eigenvector
centrality, as we will see in the next section.



So, we see, modeling different situations, we’ve arrived back at Gould’s index
each time. While a perfect description of what one might mean by ’connected-
ness’ may not be possible, this certainly puts Gould’s index in a font-runner
position. We’ll now look at some of its applications and examine in some detail
how it can be adapted to the real world.

7 Usefulness

Eigenvector centrality (or similar modifications/extensions) crops up in vast
array of fields. Sociologists were some of the first to use versions of eigenvector
centrality (and other methods) to measure connection between players in social
groups|3]. Eigenvector centrality has been used to study social networks of the
lek-mating wire-tailed manakin and was helpful in predicting a males probability
of social rise[1]. Work has been done to apply eigenvector centrality to the
ranking of college football teams|[5].

A more well known application comes from something very familiar to almost
all of us: Google. Google’s PageRank is the system by which the search engine
ranks the pages in its search results (though the name PageRank actually comes
from one of its key inventors, Larry Page). The graph describing the World Wide
Web is incredibly, almost impossibly, complicated and sorting it out is no small
feat. Here is the task in the words of Google founders, Sergey Brin and Larry
Page:

[Wle have taken on the audacious task of condensing every page on
the World Wide Web into a single number, its PageRank. PageRank
is a global ranking of all web pages, regardless of their content, based
solely on their location in the Web’s graph structure.

Using PageRank, we are able to order search results so that more im-
portant and central Web pages are given preference. In experiments,
this turns out to provide higher quality search results to users. Th
intuition behind PageRank is that it uses information which is ex-
ernal to the Web pages themselves - their backlinks, which provide
a kind of peer review. Furthermore, backlinks from ”important”
pages are more significant than backlinks from average pages. This
is encompassed in the recursive definition of PageRank.|[2]

Well, what is that recursive definition? We will describe a simplified version.
To actually apply eigenvector centrality measure to the web, google has had to
extend the approach to account for the variety of connections and structures of
the internet. The basic definition of PageRank is as follows.



Let w be a web page and L,, be the number of links from w to other pages
and Cy, be the set of pages that link to w. Finally, we have a number k for
normalization. Then PageRank R(w) is:

The definition is iterative. Each page can be given an arbitrary PageRank, then
the iteration is run until it converges. We can say this another way. We let M
be a square matrix such that M, ,, = L% if there is a link from v to w and 0
otherwise. We take R to be a vector of the current PageRanks of web pages.
Then R = kM R. So, R is an eigenvector of M and, in now familiar fashion,
iteration will bring R to converge to the dominant eigenvector of M. This is

Google’s version of the Gould index.

While they have made modifications to our basic model, such as making the
impact of each connection inversely proportional to the number of connections
(the factor L—lv), the heart of the model follows the structure of eigenvector
centrality. Obviously, there are greater sophistication necessary when dealing
with something as vast as the internet, but Google has shown that large systems
have an inherent ’intelligence’ and PageRank (by way of Gould’s index) helps
us uncover it.

8 Summary and Conclusions

Gould’s index has appeared in various forms, in many disciplines and by altern-
ate routes. It’s use as a measure has been shown to be invaluable in a wide
variety of contexts, with the added benefit that it can be computed in a vari-
ety of ways. It also seems to fall in line with our intuitive understanding of
connections.

The internet age seems ripe for application of eigenvector centrality and its
associated ideas. With the seemingly endlessly increasing popularity of social
media, being able to formally describe the ways in which people are connected is
of great interest. One of the strengths of this kind of evaluation (in my opinion,
though it may be debated) is its reliance on collective evaluation, as opposed to
expert evaluation.[3] Collective evaluation is usually more fluid and fast. This
is not strictly a feature of the web. I look forward to these methods being
applied in new ways to things like public transportation planning, emergency
infrastructure or social networking systems.



9 Appendix

9.1 Proof of Perron-Frobenius Theorem

Perron-Frobenius Theorem 2. If M is an n X n nonnegative primitive
matriz, then there is a largest eigenvalue Ao such that

(i) Ao is positive

(i) Ao has a unique (up to a constant) eigenvector v1, which may be taken to
have all positive entries

(#ii) Ao is non-degenerate

(v) Ao > || for any eigenvalue X # Ao

Proof. (i) Let A; be the eigenvalues of M. We have >~ A = Tr M > 0. Since the
eigenvalues of M are real, then we have A\g > 0.
(ii) Let v; be any real, normalized eigenvector of Ao, then

)\ov = Zmijvj, (Z = 1,2...77,)7
J
and let u; = |v;|. Then

0< A= E a;;0;05 = | E a;v;v;5] < E Ui
ij ij ij

The variational principle gives us that the right hand side is less than or equal
to Ag, and equality if and only if u is an eigenvector of Ag. If w; = 0 for
any 4, then since m;; > 0, then all u; = 0, which cannot be true (if the matrix
is primitive, not positive, we look at M*u = A\*u and apply the same argument).

(iii)If lambdag is degenerate, since M is real symmetric we can find two real
orthonormal eigenvectors u, v belonging to A. Suppose that u; < 0 for some 1.
Adding equations

Aou = Zmijuj7 (i=1,2..m), Xolul = Zmiﬂuj\, (i=1,2..n),
J J

we get 0=Ao(u; + |wi]) = > ; mij(uj + [ug]), so it follows u; + |u;| = 0 for all j.
Thus we have either u; = |u;| > 0 for every j, or u; = —|u;| < 0 for every j.

The same applies to v. Thus 3, vju; = £, [vju;| # 0, so u and v cannot be

10



orthogonal and \g is non-degenerate.

(iv) Let w be a normalized eigenvector of A # Ao, A # XAg. Now the non-
degeneracy of )\, together with the variational property gives

Ao > Zmz’j\wiﬂwﬂ 2 |Zmia‘wiwi| = [Al.

ij i

This proof is largely taken from F. Ninio’s here [6].
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